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Abstract. This work presents the project of neural controllers for an X-Y coordinate table with two degrees of freedom. 
Both bases of the table move horizontally, powered by tree-phase induction motors which are, operated by frequency 
inverters. For detection position of bases, optical encoders were engaged to the axes of the engines, so that the angular 
displacement was obtained. A data acquisition board made the interface between a 2.4 GHz Core2Duo computer and 
the system. This board catches signals from the encoders and provides control signals to the frequency inverters. 
Neural controllers, implemented in LabVIEW® software, determinate the control variables to power the engines. Step, 
sine and cosine reference were used to evaluate the system performance, in position control and following trajectory. 
Experimental results are presented.  
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1. INTRODUCTION 
 
Since its start, positioning systems, in their various applications in industry, have been improved with the use of 

equipment with high accuracy and fast response time. To enlarge such improvement, a great variety of controllable 
electromechanical devices such as electric motors, hydraulic or pneumatic drives have been searched, and the choice of 
these actuators is given on the basis of economic, technical and functional characteristics. 

Most XY coordinate tables, on the market, use basically two types of drives: the drive for stepper motor, which 
works in an open loop structure, and a servo drive, which uses DC or induction motors in closed loop. Because some 
processes require, in addition to positioning accuracy, drives with high rotational speeds, induction motors have become 
suitable for these applications. 

Although the drive of induction motors, by frequency inverters, is a relatively new solution, it is widely used in 
industry. The use of frequency inverters, today, is the most efficient method to control the speed of asynchronous 
motors (Electrical Equipment Weg SA, 2010). 

There are countless applications of neural networks in the field of mechanical engineering; one of them made by 
Camargo (2002), which showed the path planning of a robotic manipulator, using neural networks, in which the main 
goals were to show the application of artificial neural networks in a robotic system, perform an algorithm for the 
mapping of workload and the manipulator trajectory control, besides performing simulations, and validate, 
experimentally, the algorithm. Menezes (2007) implemented a neural controller, operating in vector mode on a 
coordinate table of two axes, driven by DC motors. His goal was to present a proposal of an XY coordinate table that 
utilized reference information, and position in vector formats. Tasinaffo and Neto (2007) showed the use of Neural 
Networks to obtain internal working models for control schemes of dynamic systems, applied to a non-linear predictive 
control scheme (NPC) with a Feedforward network, modeling the average derivatives in a structure of an Euler 
numerical integrator. 

Artificial Neural Networks are models based on the human brain, and can be defined as a mathematical model, with 
a similar structure to that of a biological neuron (Kovács, 1996). The name of neural network was given to such 
mathematical structures for its resemblance to the structure and functioning of cells and nerve tissue. Artificial neural 
networks are used to obtain approximate results for nonlinear problems through a mapping of inputs and outputs, with 
learning ability and data storage adapted to computing environment. 

The Artificial Neural Network (ANN) is defined as a distributed parallel processor, consisting of simple processing 
units, which have a natural propensity for storing experimental knowledge, making it available for use (Haykin, 2001). 
In literature, numerous studies are found with the application of neural networks, whether in robotics (Zhao-Hui et al, 
2007; Stoica et al, 2010), medicine (Yan et al., 2006), automotive (Richter, 2009 ; Ortega and Silva, 2008), as well as 
the positioning of XY coordinate tables (Kung et al. 2009; Shieh et al, 2006; Menezes Filho, 2007). 
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In this paper, we present a neural controller with a multi-layer architecture, using the backpropagation algorithm, 
applied to position control of an XY coordinate table. Such work is validated by the presentation of experimental 
results, obtained by analyzing the performance of the controller through the characteristics of the response curves to the 
step and trajectory tracking. 

 
2. EXPERIMENTAL ASSEMBLY 
 

In this research, an XY coordinate table was used as a positioning system, consisting of two perpendicular bases, X 
and Y, which move linearly in the horizontal plane. The X base of the table can travel for 150mm, and the Y base for 
100mm, and their mechanisms of transmission are trapezoidal spindle with step of 4mm/revolution. Figure 1 shows the 
XY coordinate table used for the development of this experimental work. 

 

 
 

Figure 1. XY Coordinate Table 
 
The system position control was implemented in closed loop. To drive the bases of the table, induction motors of 

380V and 60Hz, powered by frequency inverters were used to control the speed and direction of rotation of the motors 
through a control signal with characteristics determined by the neural controller. The neural controller was developed in 
LabVIEW® programming environment, in a Core2Duo 2.5 GHz microcomputer, equipped with a data acquisition 
interface type NI-DAQ6009. Optical encoders were coupled to the axes of the induction motors as to enable the 
computing of the position of each base table. The configuration of this system of measurement by optical encoders 
generates digital signals in Gray code, which are converted into binary via programming. The resolution of the 
positioning system studied is 0.0625 mm/pulse. 

 
3. IDENTIFICATION SYSTEM 

 
To obtain the synaptic weights of the neural controller, the experimental system identification and simulation were 

required. 
The accomplishment of a mathematical model, using equations governing the dynamics of the process, is not always 

possible due to either the time required or the lack of knowledge about the system. Aiming to solve this drawback, 
identification techniques were developed to determine the mathematical model of systems, from the input and response 
signal of those systems, so that this model represents the real system with good accuracy. (Aguirre, 2004). 

Data acquisition for the system identification was achieved through a trial, applying an excitation signal of square 
wave type with predetermined amplitude and width. The sent signal drives the engine, causing an angular movement on 
its axis. The system response is reflected in the displacement of the table, and is received by the encoder, and sent to the 
computer where it is stored in a data file generated by MATLAB®, together with the excitation in the engine. 
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The identification was made from the data input and output of the plant, filed in an archive, using the identification 
model (Box Jenkins Model). The model parameters were estimated with the identification toolbox for MATLAB 
computer program. The process described above was performed several times, resulting in a family of models. From 
this family, a model, that presented an answer closer to the real system in the validation process, was chosen. Figures (2 
and 3) show the signals of excitation and response curves of position of the bases X and Y. 
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Figure 2. (a) Signal of excitation; (b) response curve of position of the base X.   
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Figure 3. (a) Signal of excitation; (b) response curve of position of the base Y.   
 
Equations (1 and 2) show the models in the form of transfer function in the discrete mode of the base X and Y, 

respectively, obtained in the process of identification that were used to represent the transfer functions of the coordinate 
table, in the program for simulating the neural controller to acquire the initial synaptic weights to drive the table. 
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4. IMPLEMENTATION OF MULTILAYER NEURAL CONTROLLER 
 

Given that an XY coordinate table was considered an uncoupled system with two degrees of freedom, i.e., the 
movement of a base does not cause interference with the movement of the other, for this work, two independent 
controllers were used, each controller consisting of individual entries and outputs. 

For the design of the controllers, Multilayered Neural Networks (MNN) of the direct type were used. Its architecture 
is arranged in three layers, an input layer containing four neurons, one hidden layer with eight neurons and an output 
layer, containing only one neuron which provides the output signal to control the frequency inverters. The number of 
neurons for the output layer was empirically determined, by testing the neural network with values of 4, 8 and 12 
neurons; the architecture with eight neurons in the intermediate layer presented the best result. Figure 4 shows the 
schematic diagram of neural network used in the control system. 

 
 

 
 

Figure 4. Schematic diagram of Multilayer neural network used in the control system. 

 
 

The signals of the first layer (input layer) are shown in Eq. (3). 
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The second layer (hidden layer) of the MNN has 8 neurons. For each neuron in this layer, the induced field Vin is 

defined, given by Eq. (4). 
 

ninin IWV ×=  (4) 
 

The induced field of each hidden neuron is applied to a function of the hyperbolic tangent type, called Activation 
Function. The output of each hyperbolic tangent function is called Functional Signal of the hidden neuron, given by Eq. 
(5). 
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The third layer (output layer) consists of one neuron. For this neuron, we define the induced field, given by Eq. (6), 

as the linear combination of outputs of the function signals of hidden neurons Y, graded by the synaptic weights of 
Whid. 
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The Activation Function of each neuron in the output layer, of the hyperbolic tangent type, given by Eq. (7), 
provides the output signal, which is the control signal to the motor connected to that network. 

 

)v(

)v(

out out

out

e1
e1)v(Tanhouts −

−

+
−

==  (7) 

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 82



In backpropagation, all network weights are adjusted. The backpropagation is initiated by the local gradient of the 
output layer (∇ out), which is defined as the product of the derivative of the activation function of output neuron, and 
the position error at time k, e(k) (difference between the table base position and the reference) with the Jacobian J, 
given by Eq. (8): 

 

dk
)v(Tanh(dJ)k(e out

out ××=∇  (8) 

 
The value of the Jacobian was considered equal to one.  
With the local gradient given by Eq. (8), the variations of the weights (whid), that connect the output layer with the 

hidden layer, were calculated, and given by Eq. (9): 
 

Youthid ×∇×η=∆  (9) 
 

where η is the factor of convergence of the algorithm.  
Finally, the synaptic weights (whid) are given by Eq. (10): 
 

hidhidhid WW ∆+=     (10) 
 

The modification of the synaptic weights between the first layer and the hidden layer is started with the calculation 
of local gradients of each neuron in the hidden layer, given by Eq. (11): 
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where: k = 1, 2, ..., 8;          
 
According to the local gradient, given by Eq. (11), the variation of the weights between the input layer and the 

hidden layer (Win) is calculated according to Eq. (12): 
 

n
T

inin I×∇×η=∆     (12) 
 

Finally, the modification of synaptic weights (win) is calculated, linking each input neuron to the hidden layer 
neurons, according to Eq. (13): 

 

ininin WW ∆+=     (13) 
 

After the process of backpropagation, forward processing is applied to the MNN, providing control signals to the 
positioning of the XY table. 

 
5.  SIMULATION SYSTEM AND INITIAL SYNAPTIC WEIGHTS ACQUISITION 

 
To obtain the initial synaptic weights to be implemented in the neural controller, an off-line training of artificial 

neural networks was performed, using the transfer functions gotten from the identification process shown in section 3. 
For such off-line training, a controller was implemented in the LabVIEW® computer program, using the identified 

transfer functions represented by Eqs. (1 and 2). Before the implementation of the program, it was randomly 
determined, in MATLAB®, the synaptic weights win, that link the input layer to the hidden layer, and the synaptic 
weights whid, connecting the hidden layer to the output layer of the neural networks, that control the position of XY 
tables. The algorithm below shows the implemented process flow: 

 
1) Run the program to generate random weights whid and win in MATLAB®. 
2) Run the program in LabVIEW® environment that simulates the closed loop control of position of XY tables, with 

adaptive neural controllers. During this step the weights whid and win are adjusted and stored at every sampling period. 
3) Observe the waveform of the XY table output variable in the simulation program. Should no steady state errors 

occur, and the maximum reduction of over-signals be achieved, quit the simulation process, storing the synaptic weights 
whid and win. Otherwise, return to step 2 for new training of the weights. 

 
For this stage of the simulation, reference signals of step type in XY bases, as well as driving of the type trajectory 

tracking, i.e., drives with sine and cosine bases for X and Y, respectively. Figs. 5 and 6 show the simulation results for a 

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 83



step type reference to the bases X and Y respectively. Figs. 7 and 8 show the simulation results for sinusoidal and 
cosinusoidal references to the XY bases respectively. 
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Figure 5. Base X response curve to a reference of the step type 14 mm 
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Figure 6. Base Y response to the reference of the step type 10 mm 
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Figure 7. Base X response curve to the sinusoidal excitation signal 
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Figure 8. Base Y response curve to the excitation signal cosinusoidal 

 
 

Equations (14 and 15) present the initial synaptic weights of the neural network, obtained in the process of off-line 
network training: 
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6. EXPERIMENTAL RESULTS 
 

In the following graphs, plotted in the computational program MATLAB®, the values of voltage control from 0 V to 
5 V correspond to moves to the right of the base X, and base Y advancement, while the voltage control from 0 V       to 
-5 V gives results to displacement of the bases X and Y to the left and backward, respectively, with reference to an 
observer in front of the table.  

With respect to the bases X and Y, drives were conducted, starting from its center, using a reference signal, of the 
step type, with amplitude of 100mm to the base X, and -70mm to base Y. Figure 9 shows the response curves and the 
reference to the bases X and Y. 
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Figure 9. Response curves and reference signal to the step a) 100mm base for X, (b) -70mm to base Y 

 
Analyzing Fig. 9, the time of settlement Ts was obtained, exceeding percentage %UP, and the percentage of steady 

errors ess (%) in response curves of the table, the results are presented in Table 1. 
 
 

Table 1. Performance index extracted from the experimental response curves of the bases X and Y 
 

 

Measure Value 

 (base X) (base Y) 

Reference Signal  Reference Signal 

100 mm -70 mm 
Ts (s) 10, 335 8, 6504 

UP (%) 0,0625 0 
ess (%) 0 0 

 
Aiming to evaluate the performance of the neural controller, as to the monitoring of trajectories, concurrent drives 

to the base X and Y were imposed, with reference sine and cosine, respectively. In the drive with the sine and cosine 
functions, the reference position had amplitudes of 15mm for the period T of 160 seconds. Both reference signals of the 
bases had their values composited, turning their rectangular coordinates resultants to polar coordinates, using the 
program implemented in LabVIEW® environment, for obtaining a reference in the form of a circle with a diameter of 
30mm, centered on the point (0.0)mm of the system. 

Figure 10 shows the signals of response curve, and the reference signal to the driving of X and Y bases, 
respectively. 
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Figure 10. Response curves and sinusoidal reference signal to the base X, and cosinusoidal to base Y   

 
Figure 11 shows the response curves of displacement of the table, and the reference signal composed of the bases X 

and Y. 
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Figure 11. Response and reference curves, composed of the bases X and Y 

   
In the graphs of sine and cosine, we can see a good performance in the monitoring of outputs to the trajectories of 

references; in addition, there was an expected performance, with a maximum error of 1.5% for a period of 160 seconds. 
 
7. CONCLUSIONS 
 

In this paper, we presented a strategy of driving to a coordinate table, with two degrees of freedom, driven by three-
phase induction motors. The control was exercised by a controller implemented in a computing environment that 
integrates the programs LabVIEW® and MATLAB®, installed on a PC. 

For a step type drive, the simulation results obtained experimentally with the neural controller did not show steady-
state error and a maximum overdrive rate of 0.0625%. 

For the case of the imposition of reference trajectories of the type sinusoidal and cosinusoidal, all with amplitude of 
15mm, there was an expected performance, with a maximum error of 1.5% for a period of 160 seconds. 
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It was also noted that the multilayer neural network, with learning achieved through the technique of 
backpropagation algorithm, has met the objectives proposed for a positioning system driven by three-phase induction 
motors. 
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