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Abstract. A current trend in Robotics is the analysis and the design of cooperative manipulation system, i.e. systems 
composed of multiple manipulator units interacting one another in a coordinated way. A cooperative system is 
characterized by higher manipulability and load capacity with respect to single-manipulator systems. In this paper, the 
concept of the screw-based relative Jacobian is used in a novel method to resolve a trajectory generation in the joint 
space, for two robots cooperating to perform a specified task. This paper also proposes an alternative method to derive 
screw-based relative Jacobian This method is an extension of the Davies method and is based on the concept of Assur 
virtual chain to calculate the direct and inverse differential kinematics for each serial manipulator. A Cartesian-space 
tool path, defined relatively to the workpiece, is represented by an Assur virtual chain, using the screw representation 
of differential kinematics. This approach generalizes the concept of the screw-based relative Jacobian and presents a 
new systematic method to calculate it in a compact, direct and simple form. The presented method is specially suitable 
when the geometry of manipulators becomes more general and for systems with spatial manipulators.  
 
Keywords: Multiple manipulators systems, kinematics, screw-based relative Jacobian, Assur virtual chain, screw 
theory  

 
1. INTRODUCTION  
 

Compared with a single manipulator, a system with two or more manipulators working in a cooperative way could 
increase its available workspace and its load capability. A significant improvement of the system reachability, 
manipulability, and productivity can also be achieved (Huang and Lin, 2003).  

A key question is how the inverse kinematics of the whole system is calculated. The approaches used can be broadly 
categorized into two classes. The first approach is an extension of the single robot kinematics in which the joint 
equations for each manipulator are solved separately. The master-slave paradigm is an example of this type of approach 
in which the master manipulator joint positions are solved according to the specification of the task and then the slave 
manipulator joint positions are solved to satisfy the constraint equations resulting from the closed kinematic chain. 

In the second approach, the robot system is described by a single set of equations. The whole system results 
redundant and its inverse kinematics are solved by calculating its differential kinematics and, subsequently, by 
integrating the differential equations to obtain the joint positions. This approach allows to solve the system differential 
inverse kinematics by optimizing a performance measure along the trajectory (Owen et al., 2003, 2004, 2005).  

The system differential kinematics could be formulated using the concept of relative Jacobian introduced in Lewis 
(1996). In that work, the author defines the relative Jacobian of two manipulators as the matrix that relates the velocities 
of the tool (attached to one of the manipulators) relative to the blank (attached to another manipulator) as a function of 
the manipulators joint velocities.  

Lewis (1996) derives the relative Jacobian differentiating the position equation of the closed kinematic chain. We 
outline that this procedure may be cumbersome whenever the system has more than two manipulators. In order to 
overcome this difficulty, we propose a new method to derive the relative Jacobian. 

An alternative is to use the screw-based relative Jacobian concept (Ribeiro et al., 2007) and the related method, 
which is simpler and systematic, especially in case the system has more then two manipulators. 

 The objective of this paper is (a) generalize the concept of the screw-based relative Jacobian and (b) to present a 
systematic method to calculate it, using Davies method with Assur virtual chain to express the velocities of a tool 
relative to a blank, using the screw representation of differential kinematics. 
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This paper is organized as follows. Section 2, shortly presents the fundamental kinematic tools employed. Section 3 
describes the relative Jacobian. Section 4 describes the method to calculate screw-based relative Jacobian using the 
Davies method with Assur virtual chain.  Section 5 outlines the main conclusions. 
 
2. FUNDAMENTAL KINEMATIC TOOLS 
 

Our approach is based on the method of successive screw displacements and on the screw representation of 
differential kinematics. Both techniques are shortly described in this section. 

 
2.1. Method of Successive Screw Displacements 
 

The method of successive screws displacements provides a representation of the location of a link in a serial 
kinematic chain with respect to a coordinate frame based on displacements along a series of screws in an appropriate 
order (successive screws). To describe the method of successive screw displacements, we first present the 
transformation matrix associated with a screw displacement. Next, we describe the concept of the resultant screw of two 
successive screw displacements. 
 
Homogeneous transformation screw displacement representation 
 

Chasles’s theorem states that the general spatial displacement of a rigid body is a rotation about an axis and a 
translation along the same axis. Such a combination of translation and rotation is called a screw displacement (Bottema 
and Roth, 1979). In what follows, we derive a homogeneous transformation that represents a screw displacement (Tsai, 
1999). 

 
 

Figure 1. Vector diagram of a spatial displacement. 
 

Figure 1 shows a point  of a rigid body that is displaced from a first position  to a second position  by a 
rotation  about a screw axis followed by a translation of   along the same axis. The rotation brings  from  to , 
and the translation brings  from  to . In Fig. 1,  denotes a unit vector along the direction of the 
screw axis, and  denotes the position vector of a point lying on the screw axis. The rotation angle  
and the translational distance  are called the screw parameters. These screw parameters together with the screw axis 
completely define the general displacement of a point attached to a rigid body. So, they completely define the general 
displacement of a rigid body. 

Representing the first position  by the vector  and the second  by , 
the general screw displacement for a rigid body can be given by the Rodrigues’s formula as follows: 

 
         (1)

 
where  is the rotation matrix corresponding to the rotation  about the screw axis and  is displacement vector 
corresponding to the translation of   along the screw axis. 

Considering the augmented vectors  and  the general displacement of a rigid body 
(Eq. (1)) can be represented by a homogeneous transformation given by: 

 
         (2)
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where  
 

         
(3)

 
and the elements of  and of (see Tsai (1999) for details): 
 

         
(4)

 
         (5)
 
Successive screw displacements 
 

We now use the homogeneous transformation screw representation to express the composition of two or more screw 
displacements applied successively to a rigid body. 

Figure 2 shows a rigid body σ  which corresponds to a second moving link and is moved by two successive screw 
displacements: a first one, called the fixed joint axis , applied to the joint axis situated between the ground (fixed 
base) and the first link (first link screw axis), and a second one, called the moving joint axis , applied to the joint 
axis between the first and the second link (second link axis).  

 

 
 

Figure 2. Two-link chain and its associated screw displacements. 
 

As the rigid body rotates about and/or translates along these two joint axes, the best way to obtain its resultant 
displacement is to displace the rigid body σ  about/along the fixed axis and, in what follows, displace the body 
about/along the moving axis. In this way, the initial location of the moving joint axis can be used for derivation of 
transformation matrix , which represents the  screw displacement while the fixed joint axis is used for 
derivation of matrix , which represents the  screw displacement (see details in Tsai (1999)). Consequently, 
the resulting transformation matrix is given by a premultiplication of the two successive screw displacements, 

 
         (6)
 

By generalizing this procedure, the resulting homogeneous matrix  can be calculated by 
 

         
(7)

 
2.2. Screw representation of differential kinematics 
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The Mozzi theorem states that the general spatial differential motion of a rigid body consists of a differential 
rotation about, and a differential rotation along an axis named instantaneous screw axis (see Cecarelli (2000)). In this 
way, the velocities of the points of a rigid body with respect to an inertial reference frame O-xyz may be represented by 
a differential rotation  about the instantaneous screw axis and a simultaneously differential translation τ about this 
axis. The complete movement of the rigid body, combining rotation and translation, is called screw movement or twist 
and is here denoted by . Figure 3 shows a body “twisting” around the instantaneous screw axis. The ratio of the linear 
velocity and the angular velocity is called pitch of the screw h= ||τ||/|| ||.  

 
Figure 3. Screw movement or twist. 

 
The twist may be expressed by a pair of vectors, i.e. =[ T vp

T] T, where ω represents the angular velocity of the 
body with respect to the inertial frame, and v  represents the linear velocity of a point p  attached to the body which is 
instantaneously coincident with the origin  of the reference frame. A twist may be decomposed into its magnitude (the 
terms amplitude and intensity are also found in the literature) and its corresponding normalized screw. The twist 
magnitude, denoted as  in this work, is either the magnitude of the angular velocity of the body, || ||, if the kinematic 
pair is rotative or helical, or the magnitude of the linear velocity, ||v ||, if the kinematic pair is prismatic. The normalized 
screw, 

p

, is a twist in which the magnitude is factored out, i.e. 
 

         (8)
 
The normalized screw coordinates (Davidson and Hunt, 2004) may be given by, 

 

         
(9)

 
where, as above, the vector   denotes a unit vector along the direction of the screw axis, and the vector 

 denotes the position vector of a point lying on the screw axis.  
So, the twist given in Eq. (8) expresses the general spatial differential movement (velocity) of a rigid body with 

respect to an inertial reference frame O-xyz. The twist could also represent the movement between two adjacent links of 
a kinematic chain. In this case, the twist  represents the movement of link  with respect to link . 

In Robotics, generally, the movement between a pair of bodies is determined by either a rotative or a prismatic joint. 
For a rotative joint, the pitch of the twist is null , and the normalized screw of the  joint is expressed by: 

 

         
(10)

 
For a prismatic joint, the pitch of the twist is infinite  and the normalized screw of the  joint reduces to: 
 

         
(11)
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2.3. Davies method 
 

Davies method is a systematic way to relate the joint velocities in closed kinematic chains. Davies (Davies, 1981, 
2000) derives a solution to the differential kinematics of closed kinematic chains from the Kirchhoff circulation law for 
electrical circuits. The resulting Kirchhoff-Davies circulation law states that “The algebraic sum of relative velocities of 
kinematic pairs along any closed kinematic chain is zero” (Davies, 1981).  

We use this law to obtain the relationship among the velocities of a closed kinematic chain as in Campos et al. 
(2005) and in Santos et al. (2006). In this way, considering that the velocity of a link with respect to itself is null, the 
circulation law could be expressed as 

 

         
(12)

 
where  is a vector which dimension corresponds to the dimension . The Eq. (12) can be rewritten as 

 

         
(13)

 
Equation (13) is the constraint equation which, in general could be written as 
 

         (14)
 

where  is the network matrix containing the normalized screws which signs depend on the screw 
definition in the circuit orientation, and  is the magnitude vector. 

A closed kinematic chain as actuated joints, here named primary joints, and passive joints, here named secondary 
joints. The constraint equation, Eq. (14), allows calculating the secondary joint velocities as functions of the primary 
joint velocities. To this end the constraint equation is rearranged highlighting the primary and secondary joint velocities. 
So, Eq. (14) can be written as follows: 

 

         (15)
 
where  and  are the primary and secondary network matrices, respectively, and  and  are the corresponding 
primary and secondary magnitude vectors, respectively. 

Equation (15) could be rewritten as 
 

         (16)
 
and 
 
         (17)

The primary and secondary matrices columns are the screws corresponding to the respectively primary and 
secondary joints. By Eqs. (10) and (11) it is clear that to compute theses matrices, the directions ( ) and the locations of 
the joints axes ( ) relative to a reference frame should be determined first. This could be done using the successive 
screw displacement method as presented in the sequel. 

Consider the augmented vectors  and , corresponding to the direction 
and location of the  joint, and let  and , with  index, be the vectors  and  at the reference position, 
i.e., in case  and  are null. As the vectors defining the  joint axis direction and location depend on the movement 
of the  preceding joints, the augmented vectors are calculated by: 

 
         (18)

 
         (19)

 
where  is the resulting matrix given in Eq. (7) 
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2.4. Assur virtual chain  
 

The concept of Assur virtual chain, virtual chain for short, is essentially a tool to obtain information about the 
movement of a kinematic chain or to impose movements on a kinematic chain (Campos et al. (2005)). 

This concept was first introduced by Bonilla (2004) which defines the virtual chain as a kinematic chain composed 
of links (virtual links) and joints (virtual joints) satisfying the following three properties: (a) the virtual chain is open; 
(b) it has joints whose normalized screws are linearly independent; and (c) it does not change the mobility of the real 
kinematic chain. 

A virtual chain useful to describe movements in three-dimensional space is the PPR orthogonal chain with two 
virtual links (C1 and C2) connected by three prismatic joints (PP), whose movements are in the x, y, and z orthogonal 
directions, and a rotative joint (R), see Fig. 4. The prismatic joints are called  and , and the rotative joint is called 

.  
The first prismatic joint ( ) and the last rotative joint ( ) are attached to the chain to be analyzed (real chain). 

Joint  connects real link R1 with virtual link C1, joint  connects virtual link C1 with virtual link C2 and rotative 
joint  connects virtual link C2 with real link R2 (see Fig. 4).  

 

 
 

Figure 4. PPR Assur virtual chain. 
 

Let the twist  represent the movement of link C1 in relation to link R1, twist  represent the movement of link 
C2 in relation to link C1, twist  represent the movement of link R2 in relation to link C2. Therefore, the movement 
of real link R2 in relation to real link R1 may be expressed by .  

The normalized screws corresponding to the virtual joints represented in the  frame are 
 

         

(20)

 
Notice that the orthogonal PPR Assur virtual chain represents relative movements in a planar Cartesian system. 

Other Assur virtual chains can be found in Bonilla (2004) and Campos et al. (2005).  
Considering the PPR Assur virtual chain, let  be the real link R2 angular velocity relative to the p frame(attached 

to the real link R1). Let  be the linear velocity of the real link R2 that is instantaneously coincident with the origin of 
the p frame. According to the twist definition given before, and considering that the resulting movement of the real link 
R2 relative to the link R1 is obtained adding linearly the joint twists (Tsai, 1999), the twist expressing the velocity of 
real link R2 relative to real link R1 is given by: 

 

         
(21)

 
3. RELATIVE JACOBIAN  

 
The relative Jacobian was first defined by (Lewis, 1996) for two manipulators operating in kinematic cooperation, 

with the movement of the tool (attached to the end-effector of one of the manipulators) relative to the blank (attached to 
another manipulator). More specifically the relative Jacobian gives the velocities of the tool relative to the blank as a 
function of the manipulators joint velocities. The same definition is used in Owen et al. (2003) (2004) (2005). 
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In this work we use the frame, vector and rotation matrix notation as in Sciavicco & Siciliano (2000), in which  
is the  frame and  is the vector from the   frame to the   frame as seen from the   frame, and  denotes 
the rotation matrix of frame  with respect to frame . 

Let the velocity vector of the tool relative to the blank’s frame given by: 
 

         (22)

 
where,   and  are the vectors of the linear and angular velocities of the tool (point ), in the blank’s frame ( ).  

The relative Jacobian is defined by (Lewis, 1996): 
 

         (23)
 

where,  is the relative Jacobian, and  is the vector of the manipulators joint velocities, obtained by combining the 
tool manipulator joint velocities  and the blank manipulator joint velocities : 
 

         (24)

 
In Lewis (1996) the relative Jacobian is calculated for a planar case of two manipulators by differentiating the 

relative position vector. This procedure is based on visualization of that vector, which is easy only in the planar case. 
Moreover, the differentiation of that relative position vector is cumbersome and can be difficult when we have more 
than two manipulators or spatial robots. 

An alternative is to use the screw-based relative Jacobian concept (Ribeiro et al., 2007) and the related method, 
which is simpler and systematic, especially in case the system has more then two manipulators. 

In the next section we present a new method based on screw representation of the movements and using the Assur 
virtual chain concept. This new method beside the same characteristics of the screw-based method, allows, addicionally, 
to introduce kinematic constraints to the kinematic chain. 

 
4. SCREW-BASED RELATIVE JACOBIAN USING ASSUR VIRTUAL CHAINS 

 
In this section, the screw-based relative Jacobian is derived using the screw representation of differential 

kinematics, the Assur virtual concept and the Davies method. As in the relative Jacobian definition (Eq. (23)), we intend 
to calculate the velocity of a point t attached to the tool with respect to the p frame attached to the blank (see Fig. 5). 
 

 
 

Figure 5. Two 3-dof robotic planar system. 
 
To this end we introduce an Assur virtual chain between the blank and the t point in the tool (see Fig. 6). The Assur 

virtual chain closes a kinematic chain formed by manipulator 1 (tool robot) kinematic chain and manipulator 2 (blank 
robot) kinematic chain. This allows to use the Kirchhoff-Davies circulation law, which can be written as the following 
constraint equation: 
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         (25)
 

where  is the matrix whole columns are the normalized screws corresponding to the manipulator 1 joints,  are the 
twist magnitudes of the manipulator 1 joints,  is the matrix whole columns are the normalized screws corresponding 
to the manipulator 2 joints and  are the twist magnitudes of the manipulator 2 joints. 

 
 

Figure 6. PPR Assur virtual chain in two 3-dof robotic planar system. 
 
Using Eq. (21), the Eq. (25) results: 
 

         (26)
 
or 
 
         (27)
 
where  , and 

 
         (28)

 
We intend to calculate the velocity of the t point attached to the tool with respect to the p frame attached to the 

blank, and this velocity can be expressed by the orthogonal PPR Assur virtual chain as defined in section 2, and is given 
by: 

 

         
(29)

 
Equation (21) can be rewritten, and  is given by: 
 

          (30)

 
Substituting Eq. (26) and (30) in Eq. (29), the velocity of the t point attached to the tool with respect to the p frame 

attached to the blank ( ) can be expressed by: 
 

         
(31)
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Comparing Eq. (31) and Eq. (23), we obtain the relative Jacobian as function of the matrices whole columns are the 
normalized screws corresponding to the manipulator 2 joints ( ), the normalized screws corresponding to the 
manipulator 1 joints ( ) , and the normalized screws corresponding to the Assur virtual joints, as following: 
 

         
(32)

 
From Eqs. (32), (20), (14), (13), (10) or (11), and (7) the screw-based relative Jacobian using the Assur virtual 

chain may be calculated in a systematic way, entering the following input data: 
 

i. the tool point t position with respect to p frame is expressed by PPR Assur virtual chain; 
ii. the directions ( ) and locations ( ) of the manipulators axes joints are given with respect to the p frame, in 

the manipulators reference position; and, 
iii. the manipulators joint movements.  
 
It should be outlined that the proposed screw-based relative Jacobian method using Assur virtual chain, this first 

requirement, is introduced in a direct and compact way. This makes it simpler, especially in case the system has more 
than two manipulators. Because of this, in a certain way, we could state that the screw-based relative Jacobian using 
Assur virtual chain generalizes the screw-based relative Jacobian concept. 
 
5. CONCLUSIONS 
 

The paper presents a new method to calculate the screw-based relative Jacobian for manipulators cooperating in a 
task. The method uses the Davies method with Assur virtual chains to express the velocities of a tool relative to a blank. 
We use the screw representation of differential kinematics and define the screw-based relative Jacobian as function the 
normalized screws corresponding to the manipulators joints and the normalized screws corresponding to the Assur 
virtual joints.  

This new method generalizes the concept of the screw-based relative Jacobian and is a systematic procedure to 
calculate it in a compact, direct and simple form.  
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