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Abstract. In this paper, a multi-objective optimization process is proposed in order to enhance the design of parallel 
structures. Manipulators with parallel architecture have inherent advantages in some applications with respect to 
serial manipulators, like high stiffness, accurate positioning and high movement velocities. Therefore, they address 
great interest in some industrial applications and medical fields. Main characteristics of parallel structures like 
workspace, singularities and compliant displacements  are considered in order to propose design criteria obtaing a 
computationally efficient objective functions. The proposed procedure has been applied to a 5R Symmetric Parallel 
Manipulator.  
 
Keywords: Parallel Manipulators, Singularities, Compliant displacements, Multi-objective optimization.   

 
1. INTRODUCTION  
 
 A parallel manipulator typically consists of a moving platform that is connected to a fixed base by several serial 
chains, called limbs. Features of such system can present better stiffness and payload capacity with respect to the serial 
architectures, and high velocity and acceleration during the operation. Furthermore, errors in the joints are not 
cumulative, which contributes for its overall accuracy. Due to their characteristics they have been studied extensively 
both from theoretical and practical viewpoints. Prototypes have been conceived and built together with the development 
of theoretical investigations on kinematics and dynamics. The attention are focused to a number of possible industrial 
applications such as manipulation (Gonçalves and Carvalho, 2008a; Macho, et al., 2008), packing and 
assembly/disassembly machines (Figielski et al., 2007), motion simulation (Stewart, 1965), milling machines (Hess-
Coelho et al., 2001), toys and sensors. However, they have some disadvantages such as small and complex workspace 
with internal singularities and the complexity of their forward kinematics (Gosselin and Angeles, 1990; Macho et al., 
2008; Gonçalves and Carvalho, 2008b).  

Optimization methodologies have long been applied to mechanism synthesis in order to obtain high performances 
and suitable mechanism dimensions. Several performance criteria could be taken into account for design purposes, as 
for example workspace, singularities and stiffness. 

The workspace of parallel kinematic mechanisms has in general a complex volume shape. Discretization algorithms 
are usually used to determine workspace of manipulators. They consist in discretizing the 3-dimensional space, solving 
the Inverse Kinematics for each point, and verifying the constraints that limit the workspace (Ceccarelli et al, 2005). 
Such discretization algorithms are used by most of researchers: they are general and can be applied to any type of 
architecture. 
 One of the important limitations of parallel mechanisms is that they may lead to singular configurations in which the 
stiffness of the mechanism is compromised. The physical meaning of a singularity in kinematics refers to those 
configurations in which the number of degree of freedom (dof) of the mechanism changes instaneously. The concept of 
singularity has been extensively studied and several classification methods have been defined. Gosselin and Angeles 
(1990) suggested a classification of singularities for parallel manipulators into three main groups. The first type of 
singularity occurs when the manipulator reaches internal or external boundaries of its workspace and the output links 
loses one or more dof. Second type of singularity is related to those configurations in which the output link is locally 
movable even if all the actuated joints are locked. Third type is related to linkage parameters and occurs when both first 
and second type of singularities is involved. Tsai (1990) classify the tree type of singularity by: inverse singularity; 
direct singularity and combined singularity respectively. Their method is based in find the roots of the determinant of 
the manipulator’s Jacobian matrices. However, obtain analytical expressions for the singularity loci for mechanisms 
with more than three dof are more difficult because the complexity of the determinant. Another alternative approach to 
obtain singular configurations for parallel architectures is based in the analysis of stiffness matrix (Gonçalves and 
Carvalho, 2009). 

Stiffness can be defined as the capacity of a mechanical system to sustain loads without excessive changes of its 
geometry (Rivin, 1999). These produced changes on geometry, due to the applied forces, are known as deformations or 
compliant displacements. 
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Compliant displacements in a parallel robotic system produces negative effects on static and fatigue strength, wear 
resistance, efficiency (friction losses), accuracy, and dynamic stability (vibration). The growing importance of high 
accuracy and dynamic performance for parallel robotic systems has increased the use of high strength materials and 
lightweight designs improving significant reduction of cross-sections and weight. Nevertheless, these solutions also 
increase structural deformations and may result in intense resonance and self-excited vibrations at high speed       
(Rivin, 1999). Therefore, the study of the stiffness becomes of primary importance to design multibody robotic systems 
in order to properly choose materials, component geometry, shape and size, and interaction of each component with 
others. Some examples of design procedures based on stiffness analysis can be found in (Yoon et al., 2004; Deblaise et 
al., 2006) 

The overall stiffness of a manipulator depends on several factors including the size and material used for links, the 
mechanical transmission mechanisms, actuators and the controller (Tsai, 1999). In general, to realize a high stiffness 
mechanism, many parts should be large and heavy. However, to achieve high speed motion, these should be small and 
light. Moreover, one should point out that the stiffness is greatly affected by both the position and the values of the 
mechanical parameters of the structure parts (Yoon et al., 2004). 

There are three main methods have been used to derive the stiffness model of parallel manipulators (Deblaise et al., 
2006). These methods are based on the calculation of the Jacobian matrix  (Company et al., 2005); the Finite Element 
Analysis (FEA) (Bouzgarrou et al., 2004) and the Matrix Structural Analysis (MSA) (Deblaise et al., 2006; 
Przemieniecki, 1985; Dong et al., 2005; Gonçalves and Carvalho, 2008a).  

The methods based on calculation of the Jacobian matrix are simple and they supply one initial estimation of the 
stiffness matrix. The uses of Finite Element Analysis models are reliable, but these models have to be remeshed over 
again, involving very tedious and time-consuming routines. However these models are well adapted to validate 
analytical models, or some experimental results. Methods based on matrix structural analysis are simple and easy for 
computational implementation.  

Using the matrix structural analysis the stiffness matrix of each beam element and joint is obtained. Then, the 
elemental matrices are grouped in order to obtain the structure stiffness matrix. In singular position the stiffness is 
compromised, and the inverse stiffness matrix of the whole structure in this configuration is badly scaled, identified 
using a condition number. A large condition number indicate a nearly or singular position.  

Obtaining high performances requires the choice of suitable mechanism dimensions especially as there is much 
larger variation in the performances of parallel architectures according to the dimensions than for classical serial ones. 

Indeed, with the development of manipulators for performing a wide range of tasks, the introduction of performance 
indices or criteria, which are used to characterize the manipulator, has, became very important. A number of different 
optimization criteria for manipulators may be appropriate depending on the resources and general nature of tasks to be 
performed. Consequently, one of the problems facing the designer is how to choose performance criteria and justify the 
optimality of different designs.   

Only recently, it has been possible to consider simultaneously several design aspects in design procedures for 
manipulators. Modern design procedures make use more and more of the formulation of optimization problems that can 
be solved by using well-established mathematical techniques in commercial software packages (Ceccarelli et al., 2005). 

In this paper is presented a formulation for optimum design of parallel structures that considers the workspace, 
singularities and stiffness. This methodology is applied on 5R symmetric parallel manipulator, in order to obtain design 
parameters of the structure. As the workspace of 5R symmetric parallel manipulator has a complex format, this 
workspace has been represented through an equivalent area. The analysis of stiffness and singularity consider the 
methodology proposed by Gonçalves and Carvalho (2008a, 2009) to formulate objective functions. 
 
2. THE 5R SYMMETRIC PARALLEL MANIPULATOR  
 
 A five-bar manipulator is a typical parallel manipulator with the minimal degrees of freedom, which can be used for 
positioning a point on a region of a plane. A 5R parallel manipulator consists of five bars that are connected end to end 
by five revolute joints, two of which are connected to the base and actuated, as shown in Fig. 1. Such a manipulator 
with a symmetric structure has attracted many researchers, who have investigated its position analysis (Liu et al, 2006; 
Alici and Shirinzadeh, 2004), workspace (Macho, et al., 2008), assembly modes (Cervantes-Sánchez et al., 2001, 
singularity (Macho et al., 2008; Mbarek et al., 2007; Figielski et al, 2007; Gonçalves and Carvalho, 2009a), 
performance atlases (Liu et al, 2006) and kinematic design (Cervantes-Sánchez et al., 2001; Alici and Shirinzadeh, 
2004).   
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Figure 1. The 5R Parallel Manipulator (Liu et al., 2006). 
 

 A kinematics model of the manipulator is developed as shown in Fig. 1. Each actuated joint is denoted as Ai             
(i = 1, 2), the other end of each actuated link is denoted as Bi and the common joint of the two legs is denoted as P, 
which is also the output point. A fixed global reference system Oxy is located at the center of A1A2 with the y axis normal 
to A1A2 and the x axis directed along A1A2. For the structure symmetry, one have OA1 = OA2 = r3, A1B1 = A2B2 = r1 and 
B1P = B2P = r2.  
 
2.1. Backward Kinematics 
 
 The input angles θ1 and θ2 can be obtained, by using the backward kinematics, when the position of point P is 
known by considering the reference frame Oxy and the following restriction: 
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 There are four solutions for backward kinematic problem of 5R manipulator from  Eq. (4). 
 
2.2. Forward Kinematic 
 
 The forward kinematic problem consists in obtaining the coordinates of point P with respect to a set of given inputs 
angles θ1 and θ2. From Eqs. (2) and (3) one can write 
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 The Equations (7) and (8) yield to 
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 The y coordinate can be obtained by substituting  Eq. (9) into Eq. (8) as 
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 Equations (9) and (13) provide two solutions for the forward kinematic problem of the 5R manipulator.  

 
3. A MULTI-OBJECTIVE OPTIMIZATION DESIGN FOR PARALLEL STRUCTURES 

 
Once the numerical technique is chosen or is advised for solving the proposed multi-objective optimization problem, 

the main efforts can be addressed to the formulation of common algorithms for numerical evaluation of optimality 
criteria and design procedure constraints. In the following, main aspects are overviewed by emphasizing the common 
numerical evaluations for parallel manipulators in terms of workspace, singularity, and stiffness. 
 
3.1 General concepts 
 

A multi-objective optimization problem can be written in the form  
 

[ ])(...,),(),(min 21 xfxfxf k   
 
for k objective functions  subject to equality and inequality constraints. For the vector of decision 

variables, , the task is to determine the set F of all vectors which satisfy the constraints and the 

particular set of optimal values . 

ℜ→ℜn
if :

[ ]Tnxxxx ...,,, 21=

[ ]Tnxxxx **
2

*
1

* ...,,,=
As soon as there are several objectives to be optimized simultaneously, usually there is no longer a single optimal 

solution but rather a whole set of solutions. When several objectives are optimized at the same time the search space 
becomes partially ordered. To obtain the optimal solution there will be a set of optimal trade-offs between the 
conflicting objectives. 

In this context, best solution means a solution not worst in any of the objectives and at least better in one objective 
than the other. An optimal solution is the solution that is not dominated by any other solution in the search space. Such 
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an optimal solution is called a Pareto-optimal and the entire set of such optimal trade-offs solutions is called a       
Pareto- optimal set. 

The publication of Kuhn–Tucker (1951) is one of the first rigorous mathematical treatments about Pareto 
Optimality. The work of Koopmans (1951) initiated the use of Pareto optimality in operations research. Today a number 
of papers and books on the subject are found. 

Even though there are several ways to approach a multi-objective optimization problem, most work is concentrated 
on the approximation of the Pareto set. 

Given a set of alternatives, the problem of choosing the best alternative depends on the way the data is classified. 
One of the most popular evaluation methods is to associate to each alternative a real value, and the best alternative is 
chosen as the one with the largest or the smallest value. 

In a higher dimension the notion of the smallest and the largest values is not available. In this case, the concept of 
partial order in a multidimensional space can be applied. 

The Pareto cone: Let  be the positive octant of the n-dimensional Euclidean space. Then, for two vectors 

,  in , one has 

n
+ℜ

( )21 ,..., xxx = ( )nyyy ,...,1= nℜ yx ≤  if and only if ii yx ≤ , ni ...,,1= . The cone  is called the 

Pareto cone because the original Pareto optimality is defined by the order generated by this cone. When n=1, the usual 
order of real numbers is exactly this order. The order is total in the sense that any two numbers x and y are comparable: 
either  or . On the other hand, when n > 1 this order is not total. 

n
+ℜ

yx ≥ xy ≥
By using the concept of partial order it is possible to define the concept of optimal solution. However, in a real 

world situation, a decision making (trade-off) process is also useful to evaluate optimal solutions. Therefore, in this 
paper a procedure to determine the Pareto frontier is presented. An up-to-date discussion about this subject is presented 
by Pardalos and Du (2008). 
 
3.2. Optimum workspace for planar parallel manipulators 

 
 It is possible to compute the workspace of a parallel manipulator through a geometrical approach. The 
corresponding procedure is described by Gonçalves et al. (2007).  This formulation uses the volume of solids of 
parallelepiped, cylindrical or spherical geometry. In such case a fixed volume is the goal to be achieved. As this work is 
carried out to study the planar mechanism this methodology is modified to maximize the area of the workspace. 

It is possible to demonstrate the relationship between such approach and the maximization of the perimeter of a 
planar figure, Fig. 2. In the present paper the objective is to maximize the workspace, Ap, and not only achieve a given 
area, A. Therefore, if x and y are the sides of a rectangle, the objective of maximum area can be achieved through the 
expression 

 
          (15) yxf .1 =

 
 

Figure 2. The r tangle geomet . 

3.3. Optimum stiffness and singularity for planar parallel manipulators 

In this paper, the stiffness matrix is obtained from the method Matrix Structural Analysis (MSA), also known as the 
is

    

f the three-dimensional straight bar with uniform cross-sectional area is  

ec ry
 

 
 
d placement method or direct stiffness method (DSM). The methods of structural analysis is based on the idea of 
breaking up a complicated system into component parts, discrete structural elements, with simple elastic and dynamic 
properties that can be readily expressed in a matrix form. The discrete structure is composed by elements which are 
joined by connecting nodes. When the structure is loaded each node suffers translations and/or rotations, which depend 
on the configuration of the structure and the boundary conditions. For example, in a fixed linkage no displacement 
occurs. The nodal displacement can be found from a complete analysis of the structure. The matrices representing the 
beam and the joint are considered as building blocks which, when fitted together in accordance with a set of rules 
derived from the theory of elasticity, provide the static and dynamic properties of the whole structure   
(Przemieniecki, 1985).   
 The stiffness matrix o
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 On Equation (17) E  and G  are, respectively, the modulus of elasticity and the shear modulus of element j; Iyj, Iyz are 

         

joint is given by (Gonçalves and Carvalho, 2008a): 

             (18) 

 
 Where k  = diag(ktx, kty, ktz, krx, kry, krz); ktx, kty, ktz are the translation stiffness and  krx, kry, krz the rotational stiffness 

n of MSA is necessary to write the stiffness matrices of all elements in the same reference frame. This 

n reference frame (elementary stiffness matrix), for 
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A
ole structure can be obtained using the MSA. Based on how the structure elements are connected, from their nodes, it 

is possible to define a connectivity matrix. As each segment and joint stiffness are known, the global stiffness matrix is 
obtained by a superposition procedure. This global stiffness matrix is singular because the system is free. After 
application of the boundary conditions, for example, where the displacements are known, the new matrix is invertible 
and the compliant displacements can be done by: 

 
–1{

 
W
tail in (Gonçalves, 2009).  
In a singular position the h
this configuration is badly scaled, identified by using a condition number. A large condition number indicate a nearly 

or singular position. 
The condition num
eyer, 2000), Eq. (22). 
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As a result, a general computational routine for the mapping of the workspace of the parallel robotic structure is 

v

gure 3 shows the model MSA. The links are given by nodes: 1-2; 3-4; 5-6 and 7-8. The revolute joints are 
v

nd G = 0.8 x 10  N/m ); the cross-sectional area is circular 

pulator is possible to map the stiffness, Eq. (21) simultaneously 

 

 
gi en, since the stiffness matrix is dependent of the configuration of the structure. Simultaneously with the mapping of 
workspace, the method MSA is applied to obtain the stiffness matrix of structure and the computation of the condition 
number.  
 The Fi
gi en by nodes: 2-3; 4-5 and 6-7. The model has 8 nodes. 
 The segments are built with steel (E = 2 x 1011 N/m2 a 11 2

with 0.005m diameter and r1 = 0.1m; r2 = 0.1m and r3 = 0.1m. The boundary conditions are given by actuators 
considered as blocked in nodes 1 and 8. The external force and torque are applied on node 5, which is the center of the 
end-effector.  The others joints are passive and modeled with ktx = kty = ktz =2 x 1011 N/m; krx = kry = 2 x 1011 N/rad and 
krz = 0 N/rad like proposed by Gonçalves (2009).    
 Applying the methodology MSA for the 5R mani
with calculation of the singularities positions, Eq. (22). 
  

 
 

Figure 3. Model MSA of 5R mechanism. 
 

The objective function for the analysis of the singularity is 
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objective e stiffness, obtained by Eq. (21), considers the compliance displacements of 
oi

 The  function that evaluates th
p nt P, node 5, corresponding the linear compliant displacement x and y, and the rotational compliance displacement 
about axis z. The completed procedure for obtained the compliant displacements is describe in Gonçalves (2009) and 
Gonçalves and Carvalho (2008a). The corresponding objective functions are: 
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here (f3_x)d, (f3_y)d and (f3_φz)d are the compliant displacements obtained by Eq. (21) and the (f3_x)g, (f3_y)g and (f3_φz)g w

are the  initial values desired. The initial values of (f3_x)g, (f3_y)g and (f3_φz)g may be different for each problem. The 
criterion adopted is explained on the next section. 
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3.4 Weighting Objective Formulation 

 that takes into account all the objective functions in such a way that an 

            (26) 

whe α ≥ 0 are weighting coefficients that represent the relative importance of each separate criterion. From the 

           (27) 

where c   are scaling factors. Usually, satisfactory results are obtained if 

 

   To formulate the performance criterion  
overall multi-criterion objective function can be written, the Weighting Objective Method is used. The minimization 
process leads to a Pareto optimal solution or, alternatively, to a set of optimal solutions. The scalar objective function 
that represents the performance criteria altogether is written as:      
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numerical point of view the minimization process depends also on the numerical values that express the objective 
functions. Due to scaling problems, the numerical values that express the objective functions should be adjusted. 
Otherwise, α

i
 will not represent the relative importance of the objective functions (Deb, 2001). Consequently, Eq. (26) 

should be rewritten as follows: 
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of the objective function fi calculated separately (Eschenauer et al, 1990). Eq. (27) was used in the optimization 

re performed to evaluate the proposed objectives in a unified approach. The maximum 
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ss of generality, a minimization objective is given by 

0
if  

processes shown in this paper. 
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he proposed formulation can be solved as a maximization problem by multiplying this objective function by (-1). 
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 to find the optimal solution of the problem.  
to the state 
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T
The design variables are the radius R of the links, r1 is the length of the first link, r2 is the length of linkage bar, and
s the length of the basis, Fig. 1. The feasible value of each design variables is bounded by 0.001 < R < 0.05 m,  

0.01 < r1 < 1 m, 0.01 < r2 < 1 m and 0.01 < r3 < 1 m, respectively. 
Since an initial design (R0, r1,0, r2,0, r3,0) is given, weighting fac
ue, the objective function is evaluated without such constants, that is, )1( 0 =if . The values of the objective 

functions when using such design are set as weighting factors
0

if .  
Deterministic and heuristic optimization methods were used
For a deterministic evaluation, a Sequential Quadratic Programming (SQP) was adopted, since it belongs 

the art in nonlinear programming methods (Powell, 1978). At the major iterations, a positive definite quasi-Newton 
approximation of the Hessian of the Lagrangian function is calculated using the BFGS method. 

Results obtained by this methodology are presented in Table 1. 
 

Table 1. Optimal design provided by a det
 

0
1f  0

2f  0
1,3f  0

2,3f  0
3,3f  

(0.005, 0.1, 0.1, 0.1) 2.7e-12 3.3e+18 9.4e+3 0.3 2.0e+5 , 1.00) (0.05, 0.01, 0.01
(0.01, 0.3, 0.3, 0.3) 2.4e-11 8.0e+17 4.0e+4 2.4 1.4e+5 (0 ) .037, 0.010, 0.031, 0.010

(0  3.3e-004 .03, 0.01, 0.01, 0.01) 2.7e-14 5.4e+20 7.9343 4.1e+5 (0.05, 0.01, 0.13, 1.00) 
 

The pr ti ghl nea lows t all ion i ay lead to 
big

be preferred. 

oblem under considera on is hi y nonli r. It fol hat sm  deviat n the design values m
 deviations in the objectives. In this context the deterministic optimization is well suited to perform a fine tuning of 

the design parameters aiming to improve the overall performance of the system. The interpretation of this behavior is: if 
the small decrease of any performance will lead to a bigger increase of other performance, this new configuration will 
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The second analysis was carried out by means of a heuristic optimization methodology, the so called Differential 
Evolution Methodology. This strategy is based on genetic algorithm and has been proven to be suitable to deal with a 
num

ion does not requires information about the gradient of the objective function. 

 used to provide a 
hig

of evolution (lines 1 to 9, respectively). Each strategy was evaluated 
thr

 Optimal 

ber of problems. 
A feature of such methodology is that initial design is not required. Furthermore, local minima are not a problem, 

since the search direct
Without loss of generality, weighting parameters were chosen the same than those used in the first experiment. It 

should be pointed out that different values may influence the optimal design. This behavior can be
her priority to some objective against others. 
The optimal results are presented in the Table 2 below. Different evolution criteria can be set in the procedure. The 

current implementation provides nine strategies 
ee times (columns 1st , 2nd and 3rd respectively).  

 

Table 2. Optimal design provided by a heuristic procedure. 
 

design 
Strategy R r3 r1 r2 

 1st 2nd 3rd 1st 2nd 2nd 3rd 1st 2nd 3rd3rd 1st

1 0.0410 0.0305 0.0453 0.8700 0.7141 0.6138 0.0936 0.2295 0.6215 0.4058 0.1262 0.8608 
2 0.0018 0.0044 0.0345 0.9842 0.3264 0.5511 0.1755 0.5356 0.4315 0.1152 0.6579 0.6480 
3 0.0318 0.0345 0.0010 0.7743 0.7070 0.8668 0.9335 0.4479 0.6164 0.9730 0.0294 0.9901 
4 0.0071 0.0454 0.0392 0.4955 0.5384 0.3442 0.8545 0.1181 0.6118 0.8752 0.8276 0.7438 
5 0.0063 0.0217 0.0476 0.6354 0.3660 0.4495 0.1352 0.5627 0.0694 0.1430 0.7451 0.8681 
6 0.0120 0.0105 0.0148 0.3798 0.8969 0.7337 0.0966 0.1081 0.1464 0.6437 0.0537 0.8384 
7 0.0159 0.0193 0.0206 0.0557 0.5973 0.8336 0.2035 0.8738 0.1430 0.7230 0.9342 0.0699 
8 0.0311 0.0080 0.0011 0.8205 0.5638 0.1973 0.8874 0.0145 0.1511 0.9318 0.7690 0.2754 
9 0.0015 0.0205 0.0455 0.5370 0.3810 0.5567 0.2866 0.1398 0.0426 0.9468 0.4407 0.0633 

 
 this e  tr  . c e  d re d

ighly nonlinear nature of the problem and a high sensitivity of the objectives regarding small changes on the design 
var

thodology to obtain design parameter of a parallel robotic structure was presented.  
nd forward kinematic equations of a 5R symmetric parallel manipulator were presented. It was 

fol , stiffness and 
sin

 

to improve the initial design by means of a local optimization. This method is recommended when 
a fi

ted; this problem is highly nonlinear and coupled; there are optimization methods suitable for fine 
tun

 

are thankful to CNPq, CAPES and FAPEMIG for the partial financing support of this 

h, B., 2004, “Optimum synthesis of planar parallel manipulators based on kinematic isotropy and 
Robotica 22, 97–108, 2004. 

In  case th  method is not at acted by a local minimum Differen es on th optimal esign a  justifie  by a 
h

iables. 
 

5. CONCLUSION 
 

In this paper a me
First, backward a

lowed by general concepts of multi-objective optimization concepts, optimum workspace formulation
gularity analysis. 
A key point to evaluate multi-objective problems is the computation of weighting factors to correctly express 

objective priorities. 
The current study considered objectives with the same priority. It was achieved by using results of an initial design 

as weighting factors.
Two strategies were used for the optimization process. The first strategy was a Quadratic Sequential Programming. 

The method was able 
ne tuning of design variables is required. The improvement of the overall performance index is sometimes achieved 

by means of the penalization of individual objectives. The second strategy consists in a Differential Evolution 
Methodology. This heuristic method is able to search for a global optimum. Different evolution parameters were 
considered in multiple runs.  

The result shows that there is no unique solution for this problem. It follows that, multiple designs lead to similar 
objective values. 

From the results is possible to conclude that: the proposed formulation is able to deal with the complexity of the 
parameters evalua

ing of the parameters (deterministic approach) and evaluation of a wide design scenario (heuristic approach). 
Future research includes the analysis of the Pareto frontier when a qualitative analysis is considered and the use of 

stochastic optimization methods to consider uncertainties in the parameters. 

6. ACKNOWLEDGEMENTS 
 

 The first and second authors 
esearch work. r

 

7. REFERENCES 
 

Alici G., Shirinzade
force balancing”, 

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.599-608
Copyright © 2010 by ABCM



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

Bouzgarrou, B.C., Fauroux, J.C., Gogu, G., Heerah, Y., 2004, “Rigidity analysis of T3R1 parallel robot with uncoupled 
kinematics”, Proc. of the 35th International Symposium on Robotics, Paris, France. 

aunschweig, pp.21-35. 

mation, Barcelona, Spain. 

s and Automation, Barcelona, Spain. 

hanical Engineering – COBEM 2007. 

 Italy. 

amics, Control and 

Go
ems of Mechanics – DINAME 2009, Angra dos 

Go
). 

lel Kinematic Mechanism”. Proc. of the 32nd Int. Symposium on Robotics, Seoul, Korea. 

otics, Paris, France. 

orld Congress, Besançon, France. 

Prz k. 
ekker Inc., New York. 

ical Engineers, 

anism”, Robotica, vol. 22, pp. 463-475. 

rk. 

Press, Berkeley, California, 39–54. 

Esc , A., 1990, “Multicriteria Design Optimization”, Berlin, Springer-Verlag.  
rical Analysis, 

ible for the printed material included in this paper.  

Ceccarelli M., Carbone G, 2005, “Numerical and experimental analysis of the stiffness performance of parallel 
manipulators”, 2nd International Colloquium Collaborative Research Centre 562, Br

Cervantes-Sanchez, J.J., Hernandez-Rodriguez, J.C., Angeles, J., 2001, “On the kinematic design of the 5R planar, 
symmetric manipulator”, Mechanism and Machine Theory 36, 1301–1313. 

Company, O., Pierrot, F. and Fauroux, J. C., 2005, “A method for modeling analytical stiffness of a lower mobility 
parallel manipulator”, Proc. Of IEEE ICRA: Int. Conf. On Robotic and Auto

Deblaise, D., Hernot, X., Maurine, P., 2006, “A Systematic Analytical Method for PKM Stiffness Matrix Calculation”, 
IEEE International Conference on Robotics and Automation. 

Dong, W.; Du, Z., Sun, L., 2005, “Stiffness influence atlases of a novel flexure hinge-based parallel mechanism with 
large workspace”, Proc. of IEEE ICRA: Int. Conf. On Robotic

Figielski, A.; Bonev, I. A., Bigras, P., 2007, “Towards development of a 2-DOF planar parallel robot with optimal 
workspace use”, Systems, Man and Cybernetics. 

Gonçalves, R. S., Santos, R. R.,  Carvalho, J. C. M., 2007, “Optimum Workspace for parallel manipulators”, 
Proceedings of 19th International Congress of Mec

Gonçalves, R. S., Carvalho, J. C. M., 2008a, “Stiffness analysis of parallel manipulator using matrix structural 
analysis”, EUCOMES 2008, 2-nd European Conference on Mechanism Science, Cassino,

Gonçalves, R. S., Santos, R. R.,  Carvalho, J. C. M. , 2008b, “On The Performance of Strategies for the Path Planning 
of a 5R Symmetrical Parallel Manipulator”, DINCON 2008, 7th Brazilian Conference on Dyn
Applications, May 07-09, Unesp at Presidente Prudente, SP, Brazil. 
nçalves, R. S., Carvalho, J. C. M., 2009, “Singularities of Parallel Robots Using Matrix Structural Analysis”, 
Proceedings of the XIII International Symposium on Dynamic Probl
Reis, RJ, Brazil. 
nçalves, R. S., 2009, “Estudo de Rigidez de Cadeias Cinemáticas Fechadas”, Universidade Federal de Uberlândia 
Thesis (in Portuguese

Gosselin, C. M., Angeles, J., 1990, “Singularity analysis of closed loop kinematic chains,” IEEE Trans. Robot. Autom. 
6(3), 281– 290. 

Hess-Coelho, T.A., Batalha, G.F., Moraes, D.T.B., Boczko, M., 2001, “A Prototype of a Contour Milling Machine 
Based on a Paral

Liu, Xin-Jun, Wang, J., Zheng, Hao-Jun., 2006, “Optimum design of the 5R symmetrical parallel manipulator with a 
surrounded and good-condition workspace”, Robotics and Autonomous Systems, nº 54, pp. 221-233. 

Macho, E., Altuzarra, O., Pinto, C., Hernandez, A., 2008, “Workspaces associated to assembly modes of the 5R planar 
parallel manipulator”, Robotica, pp. 1-9. 

Majou, F., Gosselin, C.M., Wenger, P., and Chablat, D., 2004, “Parametric stiffness analysis of the orthoglide”, Proc. of 
the 35th International Symposium on Rob

Mbarek, T., Lonij, G., Corves, B., 2007, “Singularity analysis of a fully parallel manipulator with five-Degrees-of-
Freedom based on Grassmann line geometry”, 12th IFToMM W

Meyer, C.D., 2000, “Matrix Analysis and Applied Linear Algebra”, SIAM. 
emieniecki, J. S., 1985, “Theory of Matrix Structural Analysis”, Dover Publications, Inc, New Yor

Rivin, E.I., 1999, “Stiffness and Damping in Mechanical Design”, Marcel D
Stewart D. A, 1965, “Platform Whit Six Degrees of Freedom”, Proceedings of the Institution of Mechan

Vol. 180, Pt. 1, n. 15, pp. 371-386. 
Tsai, L.W., 1999, “Robot Analysis: The Mechanics of Serial and Parallel Manipulators”, John Wiley & Sons, New 

York, pp.260-297. 
Yoon, W. K., Suehiro, T., Tsumaki, Y., Uchiyama, M., 2004, “Stiffness Analysis and Design of a Compact Modified 

Delta Parallel Mech
Koopmans, T.C., 1951, “Activity Analysis of Production and Allocation. Cowles Commission for Research in 

Economics”, Monograph, 13, John Wiley and Sons, New Yo
Kuhn, H.W., Tucker, A.W, 1951, “Nonlinear Programming”. Proceedings of the Second Berkeley Symposium on 

Mathematical Statistics and Probability, University of California 
Pardalos, P. M. and Du, Ding-Zhu, 2008, “Pareto Optimality, Game Theory and Equilibria”, Springer Optimization and 

Its Applications, Springer Science. 
Deb, K., 2001, “Multi-Objective Optimization using Evolutionary Algorithms”, John Wiley, New York. 

henauer, H. , Koski, J. and Osyczka
Powell, M.J.D., 1978, "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations", Nume

G.A.Watson ed., Lecture Notes in Mathematics, Springer Verlag, Vol. 630. 
 

8. RESPONSIBILITY NOTICE 
 

The authors are the only respons

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.599-608
Copyright © 2010 by ABCM


