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Abstract. The main objective of this paper is to contribute to the development of a reconstruction method for the electrical
impedance tomography (EIT) problem using the boundary element method (BEM). The idea is to adopt BEM to improve
the performance of the solution of the direct problem. The EIT problem is generally formulated as an inverse problem
and the approach to its solution consists in minimizing an error functional that confronts two different models of the same
problem, one calculated from a numerical method and another experimentally obtained. An iterative process is performed
until the global minimum (sought image) of the error functional has been reached. Therefore, the direct problem is solved
many times to reconstruct the image, and the improvement of its performance is essential to obtain solutions in viable time.
BEM can provide this benefit since it effectively reduces the dimension of the numerical problem and, consequently, results
in a considerable reduction in the number of variables required for the solution. Tests with the developed BEM algorithm
considering a two-dimensional domain with piecewise constant conductivities, synthetic data for the experimental setup
and different values and distribution of the contrast have been performed. The numerical results have shown that the
method is quite promising.
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1. INTRODUCTION

The principle of the EIT technique consists in applying an electric voltage (or current) excitation profile through
electrodes positioned on the external surface of the object (for example, body or pipe), whose interior one wishes to
know, and measuring the corresponding response (electric current flux or voltage) on the same surface. The data obtained
from this procedure are supplied to a computer with specific software that reconstructs the original image, which is the
distribution of the electric contrast inside the object.

Tomography by electrical sensing represents a technique of great potential for the optimization of the process usually
associated with petroleum and chemical industries and medical applications as a monitoring technique on biological
tissues. The EIT technique is appropriated specially to industrial processes, mainly due to its low cost of installation and
maintenance, easy utilization, sufficient robustness and use in hostile regions. This technique allows the monitoring of the
conditions of the flow inside pipes or the concentration and distribution of particles in tanks, as well as determining the
phase inversion of the flow in oil-water flows, among others (Bennet and Williams, 2004; Tapp et al.,2003).

The image reconstruction of the conductivity distribution with EIT can be considered a two-part process (Dong et al.,
2005). The first is the direct problem, which calculates the electric potential inside the domain with the approximated
conductivity distribution, imposing the values of the potential on the boundary. The second is the inverse problem, which
reconstructs the internal conductivity distribution.

The inverse problem of the EIT problem can be treated as a global minimization in which the fitness function is an error
functional that expresses the difference between the actual measurements experimentally obtained and the approximated
measurements numerically obtained from a prospective contrast distribution. The global minimum of the error functional
corresponds to the sought image. The mathematical formulation of the EIT problem as an inverse problem is nonlinear and
ill-posed (Borcea,2002). This characteristic demands a powerful optimization method which will be iteratively solved.

In this optimization process, the objective function will be evaluated thousands of times to reconstruct each image and
each evaluation corresponds to the solution of a new direct problem. Therefore, the direct problem needs to be extremely
fast.

The direct problem generally does not have an analytical solution to complex geometries and boundary conditions. The
alternatives to solve the equations of the direct problem are the numerical techniques including finite difference methods
(FDM) and finite element method (FEM). Both are often time-consuming and require extensive computational resources
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and discretization of the whole domain, which is associated with unknown values of the electric potential. Accuracy
requires a large number of variables to be used for the discretization (Duraiswami, Sarkar and Chahine, 1998). Besides,
FDM are awkward for arbitrary boundary shapes (Dong et al., 2005).

Another alternative employed in this work is the boundary element method (BEM), which offers great flexibility for
arbitrary geometries and boundary shapes. The BEM approach is, in a way, a natural choice since the boundaries that are
discretized in this boundary investigation approach are only the unknowns of the inverse problems (Kolehmainen et al.,
1999).

BEM converts the field equations to integral equations posed on the boundary of the domain, and effectively reduces
the dimension of the numerical problem. Only the boundaries of the domain need to be discretized, resulting in a consider-
able reduction in the number of variables required for an accurate solution. Moreover, a solution on the boundary (electric
current flux or voltage) is calculated first, and then the solution at domain points (if required) is found as a separate step.
In opposition to the finite element method (FEM), which is the one mostly used in the EIT problem, the entire domain
mesh is required and the entire domain solution is calculated as part of the solution.

BEM is the most recent numerical method to solve partial differential equations. It was developed by Brebbia and
Dominguez, who published the first books about the technique (Brebbia, 1978; Brebbia and Dominguez, 1989). Since
then, BEM has become popular and considered for the EIT problem, for example in (Babaeizadeh and Brooks, 2007;
Clerc et al. 2005; Eckel and Kress, 2007).

In this context, the aim of this paper is to contribute to the improvement of the reconstruction algorithm. Specifically,
it presents some results that confirm the efficiency of the boundary element method to the direct problem of EIT.

2. STATEMENT OF THE PROBLEM

The governing non-dimensional equation of an electrical impedance tomography problem can be derived from Maxwell
equations, according to

—

V-(—a%):o in 0, 1)

where ¢ and o are 3D scalar functions that represent, respectively, the electric potential and the medium’s contrast (for
example, the electric conductivity) and €2 represents the domain problem or the sensing volume.

The interaction between €2 and the exterior occurs through boundary 0f2 and is defined by electrical excitation and
response

(&, n) = o(&,n), (§,m) € 09, )
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In Equations (2) and (3), & denotes the voltage profile, J is the electric current flux and % is the normal derivative.

The excitation-response can be mathematically modeled through the Dirichlet-to-Neumann map, in which the voltages
¢ are imposed and the current fluxes J are calculated in the whole boundary. Otherwise, if the current fluxes J are imposed
and the voltages ¢ are calculated in the whole boundary, the model is known as Neumann-to-Dirichlet map. It is also
possible to have a mixed map.

The distribution of conductivity o, which corresponds to the sough image, can not be accessed directly through a for-
mulation (Equations (1) - (3)), as both o and ¢ are unknown. One way to obtain ¢ is by treating the problem as an inverse
problem and adopting an error functional that compares measurements obtained from experimental and mathematical
models.

Specially in the Dirichlet-to-Neumann map, the first model corresponds to a collection of measurements, Jgctuais
which is the external flux resultant from the experimental assembly that contains the actual medium’s contrast (4ctual)-
The second model consists in calculating J (the external flux resultant from the numerical model) by applying prospective
values of o (04ppros) to the formulation.

Therefore, the error functional is defined as

€= ”Jactual - j|| (4)

By adjusting 0 4pprox t0 Ogctuqr Within an acceptable error level, it is possible to conclude that

Oactual = Oapproz = Jactuat = J = e =0, (@)
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or also, that o4y, indicates the global minimum of e.

For a two-phase flow, the adopted approach makes the values of o constant in Eq. (1) and the boundary includes the
interfaces between the phases. For example, in the air-water flow, the conductivity of the air is considered null and the
inclusions of air are interpreted as the exterior of the domain. In this case, Eq. (1) is simplified to a Laplace’s equation
and the reconstruction of the image consists in finding the position and extension of the internal boundaries. Figure 1
illustrates these two approaches: (a) constant o and the boundary includes all interfaces between the fluids and (b) o

assumes two different values (o, for the fluid inside the inclusions and o, for the remainder domain) and the boundary
is uniquely formed by the walls of the pipe.

80 = Q) + TOQ, 80 = Q0

(a) (b)

Figure 1. Two approaches: (a) constant ¢ and the boundary includes the interfaces between the phases and (b) non-
constant o and boundary is uniquely formed by the walls of the pipe.

3. BOUNDARY ELEMENT METHOD

Considering the two-dimensional version with constant ¢ in the whole domain, Eq. (1) becomes the Laplace equation
o 9

— +— =0. 6
922 T 0y (©6)
The procedure to obtain the integral equations of BEM is based on the book of Ang (2007). Firstly, a particular solu-

tion of Eq. (6), denominated fundamental solution, can be obtained converting coordinates = and y to polar coordinates 7
and 6 centered on (£, ), showed in Eq. (7).

Doy &m) = - lle =2+ =0l for (o) £ (€n) )

Equation (7) satisfies Eq. (6) everywhere except at point (£, n), where it is not well defined.
The divergence theorem for two-dimensional Laplace’s equation provides a reciprocal relation between any two solu-
tions ¢ and ¢, of Eq. (6) in region €2 bounded by curve 0Y2, that is,

0 0
/ <¢28¢nl - ¢1a¢:) ds(z,y) =0 (8

o0

Taking ¢1 = ®(z,y; &, n) from the fundamental solution, Eq. (7) and ¢ = ¢, the following solution to the problem,

i. e., a general formulation for the solution of the interior boundary value problem defined by Eqgs. (1)-(3) at any point
(&, ) inside 99 is

A(&n)cb(ﬁ,n)/{cb(x,y);(@(x’y;&n))‘P(x,y;é“,n);(sb(:v,y)) ds(x,y) ©)

o0
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3.1 Specialized Numerical Solution of BEM for the EIT problem

The direct problem of EIT can be numerically solved through an algorithm computationally implemented. Firstly,
the boundary 0 is discretized in a prefixed number N of elements, Q%) k = 1,2, ..., N, whose coordinates of the
extremities of each element are supplied to the program. By convention, the elements are numbered following the anti-
clockwise direction to the external boundary and following the clockwise direction to the internal boundaries, so that the
normal vector always points to the external domain 2. The final extremity of the last element may coincide with the initial
extremity of the first element for each connected boundary. Therefore, the domain and inclusions are approximated by
polygons. Figure 2 shows an example where the external boundary is approximated using 6 elements and the inclusion
using also 6 elements, P;,i = 1..14, are the coordinates of the extremity of the elements and 77 is the normal vector.

Figure 2. Example of discrete domain.

e boundary conditions are imposed considering constant values of ¢ in . at the midpoint of element &,
The b dary diti 7' posed idering 1 f Eq.(2) h dp f el k
(E(k) , y(k>) or constant values of J in Eq.(3), depending on the boundary condition imposed on the element, that is,

a(k) _ QS(T(}C),?(]C)) for k= 172, ,N (11)
j(k) = —J%(f(k)vy(k)) for k= 1727 7N (12)

However, both ¢ and J must be known in all elements to solve the problem in the internal points. Therefore, to obtain
the unknown boundary condition on each discrete piecewise of boundary 9Q(¥), in Eq. (9), (&, 7) is calculated in the mid-
point of each element, (Z*),7*)), and \(¢,n) = 1/2, supposing that the midpoints lie on a smooth part of the discrete
boundary. The resultant discrete equation is

N

1—(k —(k 0 —(k X

§¢( =y e / %@(I,y;f(“,?(k))]dsw,y)—J() / O (x,y; 7N, g*)ds(x,y) (13)
k=1

o0 k) o0 (k)

fork=1,2,...,N.

Eq. (13) constitutes a system of [V linear algebraic equations containing /N unknowns.

The solution on the boundary is calculated first, and then the solution at domain points (if required) is found as a
- . —=(k) = . . .
separate step. After obtaining the pair (gb( ), J (k)) for each element, the direct problem of EIT is solved, as the internal
values of ¢ are not necessary. However, if the solution at some internal point (£,7) is required, Eq. (9) is solved with
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A(€,m) = 1. The discrete version of Eq. (9) is

N
i / O @2,y €, m)ds(a,y) — TV / Bz, : € n)ds(z, y) (14)
k=1 500k PRIO)

fork=1,2,...,N.

The integrals of Eq. (13) - (14) are generally solved numerically using, for instance, the quadrature of Gauss, with a
more accurate method in the point of singularity (£, 7). However, this work uses an analytical solution given by (Ang,
2007).

The general steps of the program can be enumerated as:

Step 1: define the coordinates (x(¥), y(*)) of the initial extremity of each boundary element;

Step 2: calculate the medium points (Z(*), 7(*)) and normal unitary vector [n,, n,] of each boundary element;

Step 3: define the type and the value of the boundary condition (Dirichlet ou Neumann) of each boundary element;

Step 4: calculate the integrals of Eq. (13);

Step 5: construct the linear system to determine ¢ or J of each boundary element;

Step 6: solve the linear system;

Step 7: define the internal points (€, n);

Step 8: calculate the integrals of Eq. (14);

Step 9: calculate the approximated values of ¢(, 7).

It is important to observe that the matrix of the linear system constructed in Step 5 depends on the coordinates of the
boundary elements and on the type of the boundary condition imposed. An important consequence is that the dimension
of the linear system does not depend on the number of internal points where the solution will be calculated, that is, the
internal mesh can be considerably fine and the method may reach a solution with great accuracy using relatively few
boundary elements.

Another characteristic is that the linear system is solved once, in Step 6, and does not need to be solved again during
the calculation of ¢ in the points of the internal mesh, independently of the number of these points.

4. NUMERICAL RESULTS

A program has been implemented using C language, based on the routines presented by Ang (2007) and Brebbia and
Dominguez (1989). To solve the linear system generated by Eq. (13), the gaussian elimination with partial pivoting was
implemented. The first numerical tests showed the validation of the program considering three examples which have
analytical solutions. However the most important goal of these examples is to show how versatile the program is, as it
admits boundary conditions of Dirichlet, Neumann or mixed types, rectangular and circular domains. In fact, the program

admits any geometry of the external and internal boundaries since each one is a simple closed curve.
The three boundary value problems (BVPI)-(BVPIII) used in this stage are:

V2 =0 (z,y) € 2=1[0,1] x [0,1]
(z,0) =0 for x€0,1]
(BVPD<{ ¢(0,y) =0 for y€[0,1]
oz, 1) = for z€0,1]
(1, y)—y for y€[0,1]

The analytical solution of BVP Lis ¢(z,y) = z.y.
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V2 =0 (z,y) € 2=10,1] x [0,1]
#(0,y) =0 for ye[0,1]

(BVPID ¢ ¢(1,y) = cos(my) for ye[0,1]
%2(x,0) =0 for x€10,1]
gn
2(z,1)=0 for x € [0,1]

The analytical solution of BVP Il is ¢(z, ) = %}W
@veip{ V=0 (r,y) € Q= {(z,y) € R*2? +y* < 1}
d(x,y)=x+y for ($7y)EaQ:{($,y)6R2;x2+y2:1}

The analytical solution of BVP Il is ¢(x, y) = = + y.

For BVP I and BVP II, the program calculates the approximate solution in 400 internal points uniformly distributed
in a 20 x 20 cartesian mesh. For BVP III, the program generated a square mesh of 23 x 23 points centered in the origin
of the cartesian system (the origin coincides with the center of the circular domain) and the solutions are calculated only
in the mesh points located in the interior of the domain. Therefore, the number of evaluated internal points in BVP III is
variable depending on the number of boundary elements.

A relative error, Eq. (15), was used to compare the analytical and numerical solutions in all evaluated points and shows
the accuracy of the results.

|¢actual - ¢approm|
RE = : (15)
|max{¢actual} - mln{(bactual”

The program was run for the three BVP and for different values of the number of boundary elements (/N). The
maximum relative error of each test is presented in Tab. 1.

Table 1. Decrease in the maximum relative error for the three BVP varying the number of elements.

N 8 16 24 32 40 48 56

BVPI | 0.12627202 | 0.03479151 | 0.01161412 | 0.00345948 | 0.00089747 | 0.00041890 | 0.00031500
BVPII | 0.13079459 | 0.02887951 | 0.00868101 | 0.00504889 | 0.00264197 | 0.00206198 | 0.00139268
BVP I | 0.04164375 | 0.02057055 | 0.01342036 | 0.00469346 | 0.00597683 | 0.00256674 | 0.00355676
N 64 72 80 120 160 200 240

BVPI | 0.00020005 | 0.00009505 | 0.00003758 | 0.00000995 | 0.00000442 | 0.00000221 | 0.00000111
BVPII | 0.00119112 | 0.00107359 | 0.00090436 | 0.00049537 | 0.00032143 | 0.00022859 | 0.00017217
BVPIII | 0.00154004 | 0.00201672 | 0.00095336 | 0.00058668 | 0.00007334 | 0.00011000 | 0.00003667

The error values are also plotted and can be seen in Fig. 3, where the relative error axes are on a logarithmic scale.

Figure 3 shows that the relative error decreases significantly when the number of boundary elements increases. The
program was also tested for more than 240 boundary elements. However, the results do not present significant variations.
It took all the above tests less than one second of computational time to be executed.

The second test simulates a two-phase flow inside a unitary square pipe. For the purpose of test, the domain was
placed in the [0, 1] x [0, 1] set in a Cartesian coordinates system with one inclusion inside the domain (gray area in Fig. 4
simulating one "square" bubble) defined for the [0.61,0.72] x [0.61, 0.72] interval.

The external boundary was discretized in 80 elements (20 per side) and the internal boundary in 16 elements (4
per side), generating N = 96 elements. The electric voltage excitation profile adopted is the diametrical (also called
triangular) configuration. This profile was numerically simulated as a voltage of 10V emitted from the electrode located
in the superior right corner of the square and gradually decreasing to a minimum value (0V') in the electrode diametrically
opposed to it. The advantage of this configuration is that it allows the electric field to pass through the sensing domain to
be more sensitive to changes inside the domain, detecting the electrical contrast distribution better (Figueroa and Seleghim
Junior, 2001). Figure 5 shows the potential imposed on the external boundary related to the elements. It is important to
observe that the null fluxes are imposed on all elements in the internal boundary.

To evaluate the sensitivity of the BEM in relation to the approximated current flux in the external boundary, this test
was based on tests of Figueroa and Seleghim (2001) and considered one prospective inclusion had been dislocated through
the diagonal from the lower left corner to the upper right corner and had taken eight positions, as seen in Fig. 6. The
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Figure 3. Relation between the maximum relative error and the number of elements for BVP I, BVP IT and BVP III.
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Figure 4. Actual position of the inclusion inside the domain.
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Figure 5. Triangular electric voltage excitation profile on the 80 elements of the external boundary.

inclusion is a square with sides of 0.11 and the lower left corners of each position were, respectively, 0.1, 0.12, 0.23, 0.34,
0.45, 0.56, 0.67 and 0.78. This figure also shows the best approximation to the actual position of the inclusion.

The error functional, Eq. (4), compares the J,ctua1 Obtained with the inclusion in the actual position and J calculated
for each position of the prospective inclusion. Figure 7 presents a graph of the normalized values obtained for functional
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Figure 6. Prospective inclusion set in 8 positions in the diagonal of the square and the best approximation.
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Figure 7. Normalized values of functional e for the eight positions of the prospective inclusion.

Figure 7 corroborates the observation that position 6 is the best approximation for the actual position. Furthermore,
when the prospective position approaches the actual position, the value of the error functional decreases. Finally, in this
test the prospective inclusion never occupies exactly the actual position, thus the lowest value of the error functional is
not zero.

5. CONCLUSIONS

For the validation of the program developed, considering three BVP, tests have shown that BEM is a versatile program
since it admits boundary conditions of Dirichlet, Neumann or mixed types and rectangular and circular domains. In fact,
the program admits any geometry of the external and internal boundaries since each one is a simple closed curve.

Also, BEM produces results that are sensitive in relation to the approximated current flux in the external boundary.
Specifically, one prospective inclusion was dislocated through the diagonal from the lower left corner to the upper right
corner of the domain and took eight positions. Hereby, one could calculate the error functional, which compared the
current flux obtained with the inclusion in the actual position and the current flux calculated for each position of the
prospective inclusion. It was possible to observe that when the prospective position approaches the actual position, the
value of the error functional decreases.

Therefore, BEM is a very promising technique to obtain the direct solution of the EIT problem.

Future works should introduce regularization techniques and an optimization method to reconstruct the image of EIT,
which could be based on heuristic or deterministic methods.
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