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Abstract. This paper explores the use of a hierarchical neuro-fuzzy model for image classification of macroscopic rock 

texture. The relevance of this study is to help Geologists in diagnosing and planning the oil reservoir exploitation. The 

same methodology can be also applied to metals, in order to classify the different types of materials based on their 

grain texture. We present an image classification for macroscopic rocks, based on these texture descriptors and on a 

neuro-fuzzy approach. Then, a neural network is used, and the results obtained by both approaches are compared. To 

evaluate the system performance we used 50 RGB images, for each rock class and subclass, thus producing a total of 

800 images. The classes of igneous rocks that make up the image database are: gneiss (two classes), basalt (four 

classes), diabase (five classes), and rhyolite (five classes). For each image were extracted: Hurst coefficient for gray 

and color images (a coefficient for each RGB channel); spatial variation coefficient (gray and color); entropy and co-

occurrence matrix. Tests converged to optimum solution for the classification taking into account the fuzzy rules 

extraction which had a good performance. 
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1. INTRODUCTION 
 

Oil is an essential energy resource for industrial production. It can be found in a variety of geological environments. 

The exploitation of oil is a large scale activity, in which the acquisition, distribution and use of expert knowledge are 

critical to decision making. Two sets of information are of fundamental importance in the exploitation of a new oilfield, 

which were: the oil reservoir geometry and the description of the type of porous rock that holds the oil. 

Analyzing the oil reservoir geometry it is possible to identify the amount of oil in the reservoir. The second set of 

information consists in describing the porous rock that holds the oil, called reservoir rock. The quality of a reservoir is 

determined by the unique characteristics of its rock, such as the minerals that form it, the volume and shape of pores 

(spaces that preserve fluids within the rock), the connections between the pores and the physical-chemical processes 

that may have modified these characteristics. 

The study of reservoir rocks is made based on a systematic description of rock samples collected from oil 

exploration boreholes, this is called petrography. The petrography is an activity performed in the laboratory, which 

incorporates the results of rock macroscopic and microscopic analysis. In macroscopic analysis, rock samples are 

cylindrical cleaved by drill bit, this is called witnesses. Using these samples, slices are withdrawn and there are prepared 

thin sections of 0.03 mm thickness, which will, in turn, analyzed with the use of optical microscopes of polarized light. 

It is a second important description, i.e. petrography under microscopic scale. 

In macroscopic analyses there are described several physical characteristics such as color, structure, texture, size and 

orientation of grains and fossil when available. For instance, there are many ways to classify rocks; they can be 

described as igneous, sedimentary or metamorphic. The three classes of rocks above can also be subdivided into 

subclasses. The existence of a large number of classes and subclasses makes difficult the task of rock classification, 

requiring long time of training, since it depends on the identification of features based on images. 

This paper will present the Neuro-Fuzzy Hierarchical model for automatic classification of rock texture images, 

called NFHB-Class and neural networks for classification problems where each class is composed of various 

subclasses. The system uses the following features: spatial variation coefficient, Hurst coefficient, entropy and co-

occurrence matrix. 

 

2. NFHB-CLASS MODEL 
 

The NFHB-Class (Gonçalves et al. 2009) model is an extension of the NFHB Inverted model (Gonçalves 2001) and 

(Gonçalves et al. 2006) used in data classification. The main difference between the NFHB Inverted model to NFHB-

Class model is the way the structure of the system is obtained. In NFHB Inverted model, the structure of the neuro-
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fuzzy model is created by NFHB (Souza 1999); afterward the system gets the pattern classification system. On the other 

side the NFHB-Class is capable of generating its own structure, thus avoiding the need to use the model NFHB. 

 

2.1. Basic NFHB-Class Cell 
 

A basic NFHB-Class cell (Gonçalves et al. 2009) is a mini neuro-fuzzy system that performs a fuzzy binary 

partitioning in a given area, according to the relevance of functions described by Eq. (1). The cell NFHB-Class 

generates two precise outputs (crisp) after a defuzzification process. 
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Figure 1 shows the basic representation of the cell-Class NFHB and Fig. 2 illustrates its details. 
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Figure 1. NFHB-Class cell. Figure 2. NFHB-Class cell schematic symbol. 

 

The outputs (crisp) in a NFHB-Class cell are given by Eq. (2) and Eq. (3). 
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β can be one of the two scenarios below: 

 

• The first cell input: in this case β = 1. The value '1' in the first cell input represents the entire input space, i.e. the 
entire universe of discussion of the variable xi that is being used as an input cell. 

• The output of a previous level: in this case β = yi, where yi represents one of the two outputs of a generic cell 'j', 
whose value is also calculated by the Eq. (2) and Eq. (3). 

In NFHB-Class basic cell, the high pertinence function (µ) was implemented by a sigmoid function and the low 

pertinence function (ρ) was implemented as its complement [1- µ(x)]. The complement use leads to a simplification of 

the defuzzification procedure performed by Eq. (2) and Eq. (3), because the sum given by ( ) ( )xx µρ +  is equal to 1 for 

any values of 'x'. More details about the learning process of this process can be found in (Gonçalves 2001). 

 

2.2. NFHB-Class Architecture 
 

Figure 3 shows an example of an architecture NFHB-Class, obtained during the training system to a database that 

has three distinct classes, and its respective partition is illustrated in Fig. 4. The structure was created automatically 

without the need of using the model NFHB to the stage of training, as was the case of the model NFHB Inverted 

(Gonçalves et al. 2006). 

As the model NFHB Inverted, in NFHB-Class architecture, Fig. 3, the system has several outputs that are connected 

to cells T-conorms that defining the classes. The output of the system (class1, class2 or class3) with higher value 

defines the class to which the pattern belongs. 

The outputs of the leaves cells of the system, in Fig. 3, are listed below: 

 

10.1 ρρ=y  (4) 

 

1210 ..2 ρµρ=y  (5) 

 

1210 ..3 µµρ=y  (6) 
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20.4 ρµ=y  (7) 

 

20.5 µµ=y  (8) 
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Figure 3. NFHB-Class architecture. Figure 4. Input space partitioning of NFHB-Class. 

 

After calculating the output of each leaf cell, is done the connection of these leaves cells with the T-conorms 

neurons, which can be obtained the final output of the classifier of patterns. Each T-conorm neuron is associated with a 

specific class, as can be seen in the example described in Fig. 3, where there are three distinct classes, and consequently, 

three T-conorms neurons. 

The connections of the leaves cells with the T-conorms neurons are made, initially, connecting all the leaves cells 

with all the T-conorms neurons, as the number of classes that are organized the database. After this connection, it is 

necessary to establish weights for these connections (arcs). For the allocation of weights, we used the method of least 

squares with the use of the interactive method of Gauss-Seidel (Barret et al. 1994). 

Having defined the strategy of how the leaves cells were connected to T-conorms neurons and theirs weights of 

these links, it is necessary to define which operators T-conorms will be used to obtain the final output of the model 

NFHB-Class. 

All the outputs of the leaves cells were connected to all neurons T-conorms, as shown in Fig. 3. Each of these 

outputs is multiplied by the weight of its connection with the T-conorm neurons. The next step is to define how it 

should be the treatment of all these inputs of the neurons T-conorms that are derived from the leaves cells. 

In the example of Fig. 3, the outputs of three T-conorm neurons are calculated according Eq. (9), Eq. (10) and Eq. 

(11). 

 

5141312111 *5*4*3*2*1 wywywywywy ⊕⊕⊕⊕  (9) 

 

5242322212 *5*4*3*2*1 wywywywywy ⊕⊕⊕⊕  (10) 

 

5343332313 *5*4*3*2*1 wywywywywy ⊕⊕⊕⊕  (11) 

 

Where: y1, y2, y3, y4, e y5 are the outputs of the leaf cells; W11, W12, W13, W21, W22, W23, W31, W32, W33, W41, W42, 

W43, W51, W52 e W53 are the weight of the link between the leaf cell and the T-conorms neuron; ⊕  is the T-conorm 

operation used for processing the output of the neuron. 

In this paper, the limited -sum T-conorm operator (Yager and Filev 1994) has been used. This operator is the most 

appropriated in this case, since it considers all inputs in the output calculation. Another T-conorm operator that is very 

popular in the literature, the max, only takes the maximum membership value into account, ignoring the membership 

values of the inputs. 

The final output obtained of the NFHB-Class system is specified by the highest output obtained among all the T-

conorm neurons, determining the class to which the input pattern belongs. 

 

2.3. Learning Algorithm 
 

In the neuro-fuzzy literature the learning process is generally divided in two parts: 1) the identification of the 

structure and 2) the adjustments of parameters. The NFHB-Class model follows the same process. However, only one 
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algorithm carries out both learning task simultaneously. The learning algorithm of the NFHB-Class is performed in nine 

steps, as illustrated in the flowchart of Fig. 5. 

 

Separa te the b i-pa rtitio n

w ith h igh erro r

-

1

E rro r< T o l E nd

D eco m pose eac h b i-

partition sepa ra ted

s im

não

In itia lize fuzz y w e igh ts 2

4

5

6

7

9

B egin

A djust the fuzz y w e igh ts

(a  e  b )

C rea te in ic ia l b i-pa rtitio n

Patte rns

dens ity <  δ

8

no

yes
E nd

A djust the w e igh ts

T -co no rm s-
3

Separa te the b i-pa rtitio n

w ith h igh erro r

-

1

E rro r< T o l E nd

D eco m pose eac h b i-

partition sepa ra ted

s im

não

In itia lize fuzz y w e igh ts 2

4

5

6

7

9

B egin

A djust the fuzz y w e igh ts

(a  e  b )

C rea te in ic ia l b i-pa rtitio n

Patte rns

dens ity <  δ

8

no

yes
E nd

A djust the w e igh ts

T -co no rm s-
3

 
Figure 5. Learning algorithm of NFHB-Class model. 

 

2.4. Strategies for Selection of Attributes for the NFHB-Class System 
 

In problems of pattern classification is important to define the goals and select, in the available database, which 

characteristics will be used. These features are attributes deemed as relevant for obtaining significant goals. 

In the case of rock classification there are a large number of interested variables available, such as the Hurst 

coefficient for grayscale and RGB channels, grayscale and RGB channels spatial variation coefficient, in addition to the 

descriptors used to define texture characteristics obtained in image co-occurrence matrices. In general, we choose the 

most representative variables collection, which are called features. 

The correct selection of the attributes avoids unnecessary partitioning, resulting more compact BSP tree structures, 

resulting in a better generalization, fewer rules and a greater interpretation degree (Gonçalves 2001). 

Two methods for characteristics selection were tested: the Jang (Barret et al. 1994) algorithm which showed better 

performance, and the entropy method (Yager and Filev 1994). Besides those methods, there are several studies using 

other techniques of features selection, such as Principal Components Analysis (Jang 1994), (Lanas 2000), (Roffel et al. 

1989), (Santen et al. 1997), machine learning (Dong and McAvoy 1996), (Aoyama, and Walsh 1997); hierarchical 

clustering (Blum and Langley 1997), (Langley 1994) and genetic algorithms (Talavera, 1999), (Dash and Lui 1997), 

(Yang and Honavar 1998). 

Two strategies for selection, fixed and adaptive, have been proposed to deal with the selecting problem, i.e. which 

input variables should be applied to partitioning inputs of each NFHB-Class cell. 

In the fixed selection sets strategy, as the order of the attributes is determined by Jang algorithm, during the model 

NFHB-Class learning process and architecture construction, each of these features is chosen and used as input for each 

level of BSP tree. The same input (attribute) is used for all nodes of the same level. This strategy generates unnecessary 

partitioning due to the fact that all nodes at the same level are forced to use the same fixed input, which is not always 

the best characteristic for this node. One of the advantages of this strategy is that the computational cost is very small, 

since the selection of features is performed once, before the learning process. 

Contrasting the methodology described above, the adaptive selection strategy chooses the best feature of input 

(attribute) for each node of the tree, regardless the level where the node is. For each node is chosen the best input using 

only the subset associated with this node. This strategy generates more compact neuro-fuzzy BSP structures according 

to the specialization of each node, resulting in better generalization performance. However, the computational cost is 

higher, since the selection algorithm must be run for each new node of NFHB-Class model. 

 

2.5. Fuzzy Rule Extraction 
 

As the NFHB
-1

 model (Gonçalves et al. 2006), the NFHB-Class model (Gonçalves et al. 2009) is capable of 

generating interpretable rules for purpose of extracting information from a specific database. The rules extracted in this 

model are of the following type: If x is high and y is small… and w is hot, then class k. 
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Figure 9 show an example of NFHB-Class model without the connections of leaves cells with the T-conorm 

neurons. In this approach, each partition of the input space (leaf node) will have an associated rule. The elements of 

each partitioning are associated to all existing k classes, with different membership levels. 

To evaluate rules were used the fuzzy accuracy and coverage (Gonçalves et al. 2006). 

 

2.5.1. Fuzzy Accuracy 
 

The accuracy of a rule measures how well it is applied to the data (Gonçalves et al. 2006). In order to determine how 

suitable a particular fuzzy rule describes a specific class k, the fuzzy accuracy measurement was described in Eq. (12). 
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Where i
kAcurracyFuzzy _  is the accuracy of the rule for class k in partition i; 

i
jk ,α  is the membership level of 

pattern j of class k in partition i; 
i
jα  is the membership level of pattern j in partition i (regardless of the class); kP  is the 

total number of patterns of class k; and iP  is the total number of patterns in partition i. More details can be found in 

Gonçalves et al. (2006). 

 

2.5.2. Fuzzy Coverage 
 

Fuzzy coverage supplies a measure of how comprehensive a rule is in relation to the total number of patterns in the 

rule base, i.e., it measures “how many” patterns are affected by the rule at hand. The definition of fuzzy coverage is 

given by Eq. (13). 
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where CoverageFuzzy
i

_  = fuzzy coverage of partition i; P = total number of patterns in the database; 
i
jα  is the 

membership level of the pattern j in the partition i; and iP  is the number of patterns in partition i. More details can be 

found in Gonçalves et al. (2006). 

 

3. NEURAL NETWORKS 
 

The model of an artificial neuron is shown in Fig. 6. The artificial neuron consists of m inputs weighted by 

weights klw , ..., kmw  then added a junction additive. These weights are known as synaptic weights and are responsible 

for the ability to model and learn of a neural network. An activation function is placed below the sum; this function is 

known as restrictive (Haykin 2001), which in general means that it limits the range of permissive output neuron. The 

model also provides a setting called bias that has the effect of increasing or decreasing the value applied to the 

activation function. 

In mathematical terms we can define the operation of the neuron k, Fig. 6, which has the entries j (j=1,2,....m) by Eq. 

(14), Eq. (15) and Eq. (16). 

 

∑
=

=
m

j

jkjk xwu
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 (14) 

 

kkk buv +=  (15) 

 

( )kk vy ϕ=  (16) 
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Figure 6. Nonlinear neuron model. 

 

Figure 7. Architecture of an MLP-type neural network with one 

hidden layer. 

 

The activation function φ(.) is responsible for defining the output of a neuron in terms of an input v. These functions 

can be represented in many ways. More commonly, and in this work, we use sigmoid functions (Haykin 2001). 

Once defined the character of a neuron, can be defined the architecture of a neural network linking each other 

neurons through synaptic weights. The configuration presented in this work is that of a neural network with multiple 

layers known as MLP (multilayer perceptrons). This configuration is illustrated in Fig. 7. 

In general, in the task of pattern classification, the neural network architecture receives attributes predictive as input 

of the first layer of the neural network. The objective attributes (classes) are modeled by the output layer of the neural 

network. Thus the algorithm can estimate how much the desired output is far from the actual output. More details can 

be found in Freeman and Skapura (1992). 

 

4. TEXTURE 
 

According to Turceyan and Jain (1993), image texture is a combination of similar patterns with a regular frequency. 

It is an attribute that represents a spatial arrangement of pixels in a region (IEEE Standard 610.4, 1990). Jain (1998) 

defines texture as a repetition of basic patterns in space. Conci et al. (2008) refer to the texture as a visual pattern that 

has some properties of homogeneity that does not result simply in a color or intensity; it can be defined as the visual 

appearance of a surface. Although there is no precise definition for texture, it is easily perceived by human vision due to 

its range of visual patterns composed of sub-patterns, which have underlined properties, such as uniformity, density, 

roughness, regularity, intensity (Haralick et al. 1973). 

Textures can be defined as patterns of repetition of certain formed elements, called texels. Texel can be defined as 

the smallest area of digital image that make up a distinct texture. The size of the region of an image seen can not be very 

small compared to the basic element. Thus the texture can be characterized by a repeating pattern (texton or Texel) on a 

region. This model can be repeated accurately or with variations (random or not random). Size, shape, color and 

orientation of the elements of the model may vary over the regions, characterizing a pattern diversity of a texture (Conci 

et al. 2008). 

 

4.1. Spacial Variation Coefficient - SVC 
 

This coefficient quantifies the spatial characteristic of texture by means of statistical measures that describe the 

spatial variations of intensity or color. Two measures of the pixels belonging to the region of the image are used: a 

measure of position (average) and a measure of dispersion (standard deviation) (Conci et al. 2008). 

The SVC takes into account not only the distribution of intensities, but also their spatial distribution through the use 

of classes of distances. To better describe the data dispersion in terms of its value, we can use the coefficient of 

variation given by Eq. (17): 

 

100.
x

CV
σ

=  (17) 

 

where σ  is the standard deviation. 

After obtaining the mean and coefficient of variation for each class of distance measures for the position and 

dispersion are combined using Eq. (18), whose unique value (SCV Class) preserves the information obtained on both 

measures. 
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For color images, we must obtain the mean and coefficient of variation for the SCV of each class of distances on. 

Finally, the mean and coefficient of variation of SCV for each class are combined again by Eq. (18), for each band (R, 

G, B), resulting in the SCV of the color texture region. More details can be found in Conci et al. 2008. 

 

4.1. Hurst Coefficient 
 

The Hurst coefficient, Eq. (19), is described by some authors as an approximation of the fractal dimension for 

images in gray levels (Parker 1997). 
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N
D

1
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 (19) 

 

It is used in the calculation of the Eq. (19), the intensity of a set of pixels of an image I divided into N shares 

coincident not identical and staggered by scale factor r. Major details can be found in Conci et al. 2008. 

 

4.2. Entropy 
 

The entropy of an image can be defined as a characteristic of texture which measures its randomness, that is, the 

greater this number is, more irregular is the image analyzed. The texture entropy is given by Eq. (20). 
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where M is the total number of different textures in the image and pi is the probability that the i-th stored texture is 

used again. 

 

4.2. Co-occurrence Matrix 
 

The second-order statistic is calculated by the occurrence probability of a given pair of gray levels i and j at a certain 

distance δ and θ direction, i.e. the co-occurrence matrix may be described as a two-dimensional histogram that provides 

the occurrence frequency of P (i, j, δ, θ). 

The relationship between the pair of levels of gray i and j is performed in four directions: 0
o
, 45

o
, 90

o
 and 135

o
 from 

the central pixel X, considering its eight neighbors (Fig. 8).The distances are chosen according to the image granularity 

of the manipulated images. 

 

 
 

Figure 8. The four directions of θ: 0, 45, 90 and 135 degrees from the central pixel X. 

 

The co-occurrence matrix has the dimension (Nc x Nc), where Nc is the number of gray levels. The matrix is 

ordered from the lowest gray level to the highest, considering line and column. Thus each position of the matrix stores 

the probability of occurrence P (i, j, δ, θ) of the color of the line i with the color of column j.  

For each direction and each distance, it generates an array of co-occurrence. Haralick has shown that these four 

directions 0
o
, 45

o
, 90

o
 and 135

o
, produce four different co-occurrence matrices that should be combined to form the final 

co-occurrence matrix (Haralick et al. 1973). 

The textural information is characterized by the matrix of relative frequency P (i, j, δ, θ), which indicates the 

probability of two pixels occurrence (i and j), a separated by distance δ and angle θ (Conci et al. 2008). 
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In general, the problem is to analyze a set of co-occurrence matrices that characterize the texture, using one or more 

descriptors. Haralick et al. (1973) proposed a set of 14 texture descriptors. 

 

5. CASE STUDY 
 

To evaluate the system performance we used 50 RGB images (401x401), for each rock classes and subclasses, thus 

producing a total of 800 images. The classes and the subclass of igneous rocks that make up the image database are: 

gneiss (granite gneiss and leucocratic gneiss), basalt (aphanitic aphyric basalt, oxidized aphanitic aphyric basalt, 

porfiritic basalt and amygdaloid porfiritic basalt), diabase (altered amygdaloid diabase, equigranular diabase, porfiritic 

diabase, altered porfiritic diabase and amygdaloid porfiritic diabase), rhyolite (altered rhyolite, amygdaloid rhyolite, 

porfiritic rhyolite, amygdaloid porfiritic rhyolite and venulated amygdaloid porfiritic rhyolite). 

For each image were extracted: Hurst coefficient for gray and color images (a coefficient for each RGB channel); 

spatial variation coefficient (gray and color); entropy and co-occurrence matrix. From the 160 co-occurrence matrix, we 

computed the matrices average in the directions 0
o
, 45

o
, 90

o
 and 135

o
 for each distance, resulting in 40 matrices for the 

40 distances. Analyzing these 40 matrices, we used the following descriptors: contrast, homogeneity, energy, entropy 

and correlation. We construct 5 curves for each image, and the higher value and the area were used as attributes to 

determine the texture of the images. A sample rock example can be seen in Tab. 1. 

 

Table 1. Rocks samples. 

 

granite gneiss 
leucocratic 

gneiss 

aphanitic 

aphyric basalt 

oxidized 

aphanitic 

aphyric basalt 

porfiritic 

basalt 

amygdaloid 

porfiritic 

basalt 

altered 

amygdaloid 

diabase 

equigranular 

diabase 

        

porfiritic 

diabase 

altered 

porfiritic 

diabase 

amygdaloid 

porfiritic 

diabase 

altered 

rhyolite 

amygdaloid 

rhyolite 

porfiritic 

rhyolite 

amygdaloid 

porfiritic 

rhyolite 

venulated 

amygdaloid 

porfiritic 

rhyolite 

        

 

In all tests were used 50% of the database to train the NFHB-Class model and the neural network and 50% of the 

database to validate them. Table 2 summarizes the classification results for the NFHB-Class models and for the neural 

networks. 

To illustrate the tree structure found by the model NFHB-Class was chosen the test performed with the gneiss rock, 

using adaptive strategy selecting of features, where the success in the training set was 100% and hit the set of validation 

was 98%, as can be seen in Fig. 9. Figure 9 shows the structure founded by the NFHB-Class model. The T-conorms 

connections are not shown, because they hinder the understanding process of the rules extracting. 

In the Fig. 9 the attributes are encoded by: X2 – Hurst coefficient for Red channel, X3 – Hurst Coefficient for Green 

channel, X4 – Hurst coefficient for Blue channel, X6 – CVE for Red channel, X7 – CVE for Green channel, X8 – CVE 

for Blue channel, X10 – Entropy of the Image for Red Channel, X11 – Entropy of the Image for Green Channel, X12 – 

Entropy of Image for Blue channel. 

Through the path in the tree (Fig. 9) is possible to extract rules that describe the database of the gneiss rock. Below 

is listed some rules extracted from Fig. 9. 

 

Rule1: If X8 is low and if X12 is low and if X6 is low then Class = 1. [Accuracy: 0.6813 / Coverage: 0.1105] 

Rule2: If X8 is low and if X12 is low and if  X6 is high and if X3 is low then Class = 1. [Accuracy: 0.548 / 

Coverage: 0.06137] 

Rule3: If X8 is low and if X12 is low and if X6 is high and if X3 is high then Class = 1. [Accuracy: 0.5152 / 

Coverage: 0.05707] 
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Table 2. Classification results with the NFHB-Class model and neural network. 

 

Rock Model Training set Validation set Number of generated rules 

NFHB-Class
1 

100 % 98 % 52 

NFHB-Class
2 

100 % 98 % 12 Gneiss 

Neural network 100 % 96 %  

NFHB-Class
1 

95% 87% 81 

NFHB-Class
2 

88% 84% 25 Basalt 

Neural network 100% 86%  

NFHB-Class
1 

81.6% 71.2% 110 

NFHB-Class
2 

92% 73.6% 83 Diabase 

Neural network 93.6% 69.6%  

NFHB-Class
1 

93.6% 78.4 % 225 

NFHB-Class
2 

96% 78.4 % 56 Rhyolite 

Neural network 97.6% 75.2%  

              1
 Strategy for fixed selection of feature sets. 

         
2
 Strategy for adaptive characteristics selection. 
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Figure 9. Tree structure of NFHB-Class model, without T-conorm connections, with adaptive selection strategy for 

the test performed with the rock gneiss. 

 

6. CONCLUSIONS 
 

This paper presents the use of NFHB-Class model to classify macroscopic image of rocks. This approach creates its 

own architecture, thus creating automatically their rule base. Two strategies for characteristic selection in the database 

were adopted; fixed and adaptive. Using the algorithm embedded in the model of Jang, it is not necessary to use 

principal component analysis to determine the best combination of attributes which is more representative for the rock 

textures.  

The results with the NFHB-Class model, to the classification task, obtained more than 73% of accuracy in the 

validation set for all classes of rocks, which indicates the great potential of the model to this aim. 

For the gneiss rock class, the greatest hit for the four databases tested was 98% using the validation set. For the 

basalt rock class the result was 87%. For the diabase rock class the best result for all databases tested was 73.6% in the 

validation set. For the rhyolites rock class we obtained 78.4%. 

All tests performed with the NFHB-Class model were repeated with neural networks for comparison purposes. In all 

cases, the model NFHB-Class obtained better validation results than the neural networks. 

One of the advantages of NFHB-Class model is the fact that it generates fuzzy rules that explain the extraction of 

knowledge, i.e., it is possible to have a very satisfactory rating. Therefore it presents a classification explanation, which 

does not happen if using a neural network or a committee of neural networks for a classification task. 
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