
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS 

 

A LEARNING CONTROL TECHNIQUE TO INCREASE THE FREQUENCY 
OF SERVO-HYDRAULIC TESTING MACHINES 

 
Juan Gerardo Castillo Alva, gcastillo@aluno.puc-rio.br 
Marco Antonio Meggiolaro, meggi@puc-rio.br 
Jaime Tupiassu Pinho de Castro, jtcastro@puc-rio.br 
Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225 Gávea, Rio de Janeiro, RJ, Brazil 
 
Timothy H. Topper, topper@uwaterloo.ca 
University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada 
 
 
Abstract. For a given material resistance and magnitudes of alternate and mean stresses, the fatigue life depends 
essentially on the number of applied load cycles on the tested material. For this reason, working with a materials 
testing machine at high frequencies brings advantages of time and cost reduction, without altering the results. To 
achieve such frequencies, it is necessary to use an efficient control system. The present work shows learning control 
techniques developed and implemented in a materials testing machine, allowing the application of constant or variable 
amplitude loads at high frequencies. The proposed methodology consists of implementing a bang-bang type control to 
restrict the system servo-valve to permanently work at its extreme limits of operation, always completely opened in 
either direction. As the servo-valve works at its operating limits, the learning algorithm tries to obtain the optimal 
instants for the valve reversions, associating them to a non-dimensional variable, stored in a specific table. The 
learning law constantly updates the table values during the test execution, improving the system response. The 
experimental validation of this method is performed in a 100kN servo-hydraulic testing machine. A control system is 
especially developed to operate the machine, with a real time control software implemented in a CompactRIO 
computational system. The experimental results show that the test frequency can be significantly increased with the 
proposed learning control technique.  
Keywords: frequency increase, learning control, bang-bang control, servo-hydraulic system 

 
 
1. INTRODUCTION 
 

Hydraulic systems are widely used in industrial systems in applications such as automated plants, robotics, motion 
simulators, metal processing plants, mineral exploration, presses, heavy machinery and materials fatigue test systems 
(Merritt, 1967). In general, hydraulic systems are used in applications where relatively high forces, torques and 
accelerations are required. Machinery used in materials fatigue testing is based on servo-hydraulic systems, to provide 
useful information about the material’s life in service by applying load cycles. The applied load may be repeated 
millions of times in typical frequencies up to one hundred times per second for metals. To achieve these frequencies, 
relatively high in a typical fatigue test, it is necessary to have an efficient control system. 

In traditional control methods, all information from the process is known in advance, deterministically described 
(Doebelin, 1976). If the initial information is unknown, a controller may be designed able to estimate the information 
during the operation. This information could be used for future control decisions, a process known as learning control. 
The literature related to the control of servo-hydraulic systems presents many developments applied to industrial 
manipulators that are used to perform repetitive tasks (Sun and Chiu, 1999). One of these works is based on Lyapunov 
controller, where the adaptive law was also proposed to remove uncertainties of the hydraulic parameters (Sirouspour 
and Salcudean, 2000). A second work uses a non-linear controller that presents a better performance in both simulations 
and experiments than the results obtained using the proportional-derivative controller (Jelali and Kroll, 2003). Another 
work uses a robust controller and disturbance rejection for servo-hydraulic systems (Ching Lu and Wen Chen, 1993). In 
this case, the results of simulations and experiments showed that this controller has the ability to maintain the accuracy 
of the system in the presence of very large variations of the plant parameters and/or external disturbancies. 

In the present work, a learning control technique is developed to increase the frequency of the applied load cycles in 
fatigue tests. An experimental control system is developed and applied to a fatigue test machine in order to assess and 
evaluate the performance of the proposed methodology.  

 
2. LEARNING CONTROL 

 
The learning process can be seen as a problem of estimation or successive approximations of unknown quantities or 

unknown function (King-Sun, 1970). In this case, the unknown quantities that are estimated or learned by the controller 
are parameters that are governed by the control laws.  
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The block diagram shown in Fig. 1 represents the learning control process. In each cycle, the system uses the 
information of the variables UIJ stored in the memory to control the system through feedback. The errors measured at 
each cycle are used to update the parameters UIJ through a learning law. The learning law is applied only at the end of 
each learning cycle k, which updates the values UIJ(k) with UIJ(k+1) based on the errors e(k). In the present application 
in fatigue testing, each learning cycle is associated with each reversal of the controlled parameter, e.g. in the peaks and 
valleys of the applied force history. 

 

 
 

Figure 1. Block diagram of the learning control 
 

The learning control methodology presented in this work aims to maintain the servo valve working in its extreme 
operation limits, keeping the valve most of the time in the fully open position in either one or other direction. This type 
of control is known as bang-bang (O’ Brien, 2006). Due to the system dynamics, the servo valve reversion instants must 
happen before the peaks and valleys of the desired force or stress. 

This instant of reversion is represented by a non-dimensional variable UIJ, which is defined as the fraction of the 
peak-valley (or valley-peak) path where the valve should be reverted. For instance, when controlling a force cycle from 
10 to 110kN, a value UIJ = 0.8 would be equivalent to reversing the valve when 80% of the path between 10 and 110kN 
has passed, i.e., when the measured force is equal to 10 + 0.8×(110−10) = 90kN. In this same example, when returning 
from 110 to 10kN, the same value UIJ = 0.8 would be equivalent to reversing the valve at 110 − 0.8×(110−10) = 30kN. 

This UIJ is a parameter that depends on several factors such as the amplitude and mean value of the applied load, and 
it is also influenced by dead zones caused in some cases by slacks in the test specimen fixtures. The objective of the 
proposed approach is to learn the values of UIJ as a function of the load amplitude, mean, and direction (either from 
peak to valley or from valley to peak). 
 
2.1. Learning Tables 

 
Figure 2 shows a table that stores non-dimensional numbers Ui,j (with the indexes in lowercase) associated with the 

learning process. These numbers are the discrete values of UIJ for several combinations of load amplitude and mean. 
The columns show the values of the gamma (twice the amplitude) of the physical variable to be controlled, while the 
rows show the minimum value of the peak-valley half-cycle. Note that this table can be divided into two parts, one 
associated to when the system is going from a valley to a peak, and another when it is going to a valley. In order to join 
both tables, the concept of negative gamma is used, which indicates the transition from a peak to a valley. 

Therefore, Ui,j is defined as an element associated with the row i (minimum value “mini”) and the column j 
(associated with the gamma “gamaj”). For a loading with a minimum value mini and gamma equal to gamaj, then UIJ = 
Ui,j. If the minimum and gamma values are between two consecutive values in the table, mini < min < mini+1 and gamaj < 
gama < gamaj+1, then UIJ is obtained by interpolation (see Figure 3): 
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Figure 2. Learning table 
 
 

 
 

   gamaj gamaj+1  

 0,8595 0,8364 0,8153 0,9314 0,9650 

mini 0,8143 0,7923   0,9736 

mini+1 0,7640 0,7289   0,9812 

 0,7128 0,6935 0,9216 0,9715 0,9878 

 0,6550 0,6320 0,9418 0,9835 0,9934 

Ui+1,j

Ui,j

Ui+1,j+1

Ui,j+1

 
 

Figure 3. Procedure for interpolation when the values of gamma and minimum are between two cells  
 
 

Once calculated the value of UIJ from Eqs. (1-3), the servo valve reversal point can be calculated from 
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2.2. Learning Law 
 

The learning law governs how the Ui,j values are updated after each load reversion in the test. Thus, the new value of 
UIJ is calculated using the error between the measured peak (or valley) x and the desired peak (or valley) xd 
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where x' is the valley or peak measured in last reversion. Note that the defined error is dimensionless, and that x can be 
any variable to be controlled in the tests, such as applied force, test specimen deformation or hydraulic piston 
displacement. 

Columns (gamma) 
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In the case where x and xd are peaks, x' will be a valley, and the difference (xd − x') will be positive. Thus, if there is 
an undershoot in this event, then x < xd, resulting in e > 0. In the same way, if an overshoot happens, then e < 0. 

On the other hand, if x and xd are valleys, then x' will be a peak, and the difference (xd − x') will be negative. In the 
case of an undershoot when the loading decreases, then x > xd, and therefore e > 0. Similarly, for an overshoot, e < 0. 

As a result, positive errors are always associated to undershoots, while negative ones to overshoots, no matter if the 
transition is from a valley to a peak or from a peak to a valley. Clearly, if an overshoot happens, then the approach is to 
reverse the valve sooner in future similar events, which implies in decreasing UIJ for that combination of (min, gama). 
On the other hand, in the case of an undershoot, it would be necessary to increase UIJ. 

Assuming that any undershoots or overshoots will remain below 100%, then −1 < e < 1, and a learning law can be 
proposed: 
  

: (1 )IJ IJU U e= ⋅ +                    (6) 
 

The above learning law does not need adjustable gains. It is associated with an increment of UIJ by a factor (1+e) in 
the case of an undershoot (e > 0), and a decrease in its value for an overshoot (e < 0). It is possible to introduce a gain to 
multiply the error in equation (6), in order to tune the learning rate. Nevertheless, a unitary gain was enough in this 
work to achieve a stable and fast learning law. 

Since the learning table only stores discrete values of UIJ, then the values Ui,j, Ui,j+1, Ui+1,j, Ui+1,j+1 that generated 
UIJ(min,gama) by interpolation must also be updated according to the learning law, where mini < min < mini+1 and also 
gamaj < gama < gamaj+1. This update process is also made using weight factors, i.e., the neighboring cell closer to UIJ 
shall be updated in a greater degree than the other three neighbor cells. This process is easily implemented with the 
learning law 
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Note that Eqs. (2-3) may be rewritten in terms of α and β as follows 
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3. SIMULATIONS 
 

Simulations of the control system applied to a servo-hydraulic testing machine were performed in MATLAB. The 
simulation includes the modeling of a 100kN servo-hydraulic machine, including detailed models for the servo-valve 
(Viersma, 1980; Thayer, 1965). The system model is too lengthy to be included in this work, however its full 
description can be seen in Alva (2008). 

The simulations for the servo-hydraulic machine, performed for constant and variable amplitude load histories, show 
excellent results for the proposed learning control law. Figures 4 and 5 show how the controller learns by changing the 
location of the reversion points of servo valve at each load cycle. The learning process starts assuming UIJ equal to 0.5 
for any value of (min, gama).  

As shown in Fig. 6, the learning process also presents good results for variable amplitude histories. In this example, 
three blocks with different (min, gama) values need to be applied to the specimen. In the first block, the learning 
process takes about 5 to 6 cycles to converge. The second block also needs 6 blocks to converge, because its (min, 
gama) is very different from the one from the first block, updating a very different section of the learning table. But the 
learning in the third block converges in only 2 cycles, because it could benefit from the updated Uij values learned from 
the second block, which had similar (min, gama) values. 
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Note also from Fig. 6 that the frequency of the system response depends on the desired amplitude. The blocks 1 and 
3, which have the same amplitude [10 – (–10)]/2 = [30 – 10]/2 = 10kN, result in a higher frequency than block 2, with a 
lower amplitude [25 – 10]/2 = 7.5kN. This variable frequency is not an issue in fatigue testing, because the fatigue life 
of most materials under room temperature depends only on the load amplitude and mean, not on its frequency. These 
frequencies, on the other hand, are the highest achieveable for a given system and load history, since the servo-valves 
are always operating at their operational limits and their reversion has been optimized due to the learning law. 
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Figure 4. Learning control responses for a constant amplitude history from 0 to 10kN 
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Figure 5. Learning control responses for a constant amplitude history from −10 to 10kN 
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Figure 6. Learning control responses for a variable amplitude input 
 
4. EXPERIMENTS 
 

The proposed methodology is applied to a fatigue test machine INSTRON model 8501, with a servo valve MOOG 
D562 and with a current signal command of ±40 mA. The piston from this machine can generate forces up to 100 kN 
with a displacement amplitude of ±50 mm (from a central position). The fatigue test machine has a force sensor to 
control force histories, and a LVDT for displacement commands. A strain gage or clip gage attached to the test 
specimen also allows the control of a deformation history. The hydraulic fluid is supplied by a hydraulic pump at the 
pressure of 190 bar.  

The learning control is implemented in a CompactRIO cRIO9004 computational system, from National Instruments. 
This system includes modules for analog outputs (NI9263), analog inputs, and an exciter module for strain gages 
(NI9237), see Figure 7. 

The tests are run for zero mean loads and force amplitudes of 10 kN, 20 kN, 30 kN and 40 kN, all of them using 
±20mA of current in the servo valve. The tests are performed using εN test specimens made of steel with 12mm in 
diameter in its thinnest section.  

Figure 8 compares the performance of the proposed learning control using lower ±20mA currents and the traditional 
one from the Instron controller using ±40mA, for the servo-hydraulic machine under several load amplitudes. It is 
possible to observe a better performance of the learning control for low amplitudes and an equal performance for high 
amplitudes, even though the learning control only needs half the current. The traditional control is only able to outcome 
the proposed learning control when it is allowed to use currents beyond 40mA in the servo-valve (overdrive). 

It is expected that using a current of ±40mA in the proposed learning control process it will be possible to obtain 
even better results. Learning control with currents beyond 40mA (overdrive) will also be investigated in future work. 

 
5. CONCLUSIONS 
 

In this work, it was shown that it is possible to increase the work frequency of a fatigue test machine using a 
learning control technique applied to servo-hydraulic systems. Both the bang-bang control and proposed learning laws 
do not need adjustable gains, simplifying their implementation. The proposed control system was simulated and applied 
to a fatigue testing machine, implemented in a CompactRIO system. The results showed that the proposed control is 
capable to generate frequencies higher than those obtained with the original controller using lower currents for the servo 
valve triggering. 
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Figure 8. Performance comparison between the proposed learning control limited to ±20mA with the traditional Instron 
Controller at or beyond 40mA limits 
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