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Abstract. The objective of this work is to present sufficient conditions that can guarantee stability of discrete-time

Linear Parameter-Varying (LPV) systems. The proposed stability conditions are described in terms of linear matrix

inequality (LMIs). LPV systems are systems whose dynamics changes according to a varying parameter, usually

called the scheduling parameter. Practical examples of such systems are: aerospace structures that are constantly

exposed to extreme variation of the temperature and robotic systems commonly used in pick-and-place applications.

In this work, it is assumed that the system matrices of the LPV model belong to a polytope. The stability condition,

derived using Lyapunov theory, is described by an LMI which depends on the time-varying parameter. Therefore,

this LMI must be satisfied for each time instant. This is an infinite dimensional problem which is impossible to solve

numerically. To avoid this issue, a finite set of sufficient LMI conditions is derived by imposing on the Lyapunov

matrix a polytopic structure. The set of LMIs to be determined can take into consideration bounds on the rate of

variation of the scheduling parameter. Thus, providing less conservative results than those obtained using stability

conditions that allow the scheduling parameter to vary infinitely fast, as quadratic stability. Numerical simulations

are performed to show the benefits of the proposed technique.
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1. INTRODUCTION

Performance analysis and control synthesis for linear parameter varying (LPV) systems have received a lot of attention

from the control community. This stems from the fact that LPV models are useful to describe the dynamics of linear

systems with time-varying parameters as well as to represent nonlinear systems in terms of a family of linear models

(Rugh and Shamma [2000]). In the LPV control framework, the scheduling parameters that govern the variation of

the dynamics of the system are usually unknown, but supposed to be measured or estimated in real-time (Shamma and

Athans [1991]). There is a continuing effort towards the design of LPV controllers, scheduled as a function of the varying

parameters, to achieve higher performance while still guaranteeing stability for all possible parameter variations (Apkarian

and Adams [1998], Scherer [2001]).

In the literature have been proposed several analysis and synthesis results for LPV systems have been proposed based

on different types of Lyapunov functions that are able to guarantee stability and performance. The appeal of Lyapunov

theory comes from the fact that it allows to recast many analysis and synthesis problems as linear matrix inequality (LMI)

optimization problems (Boyd et al. [1994]). For LPV systems, the resulting parameter dependent LMI conditions need to

be satisfied for the entire parameter space and, consequently, these LMI problems are infinite-dimensional. To arrive at a

finite-dimensional set of LMI conditions, the choice of the parameterization (or the structure) of the Lyapunov matrix is

essential.

Many of the existing Lyapunov approaches (Kaminer et al. [1993], Bernussou et al. [1989], Montagner et al. [2005b])

use the notion of quadratic stability where the Lyapunov matrix is constant. This yields a finite set of LMIs that are usually

conservative for practical applications, since it allows arbitrarily fast variation of the scheduling parameters. To alleviate

some of the conservatism associated with the quadratic stability-based approaches, many works have proposed the use

of parameter-dependent Lyapunov functions: for time-varying systems, piecewise Lyapunov matrices are considered by,

amongst others, Leite and Peres [2004] and Amato et al. [2005], affine and polytopic structures are used in, for instance,

Daafouz and Bernussou [2001], Montagner et al. [2005a], Oliveira and Peres [2008], De Caigny et al. [2008b,a].

The aim of this paper is to provide linear matrix inequality (LMI) conditions that enforces an upper bound on the L2

gain for discrete-time linear systems with time-varying parameters belonging to a polytope with a prescribed bound on the

rate of parameter variation. The proposed bound on the rate of parameter variation is more conservative than the bound

used in De Caigny et al. [2008b]. However,this new bound has a more realistic interpretation from a physical point of

view.

This paper is organized as follows: Section 3 presents general theoretical background regarding L2 gain of discrete-

time LPV systems. Section 4 introduces some preliminaries with respect to the modeling of the uncertain domain, and
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then applies the results of Section 3 to the specific case of polytopic discrete-time LPV systems with known bounds on

the rate of the parameter variation. Section 5 extends the analysis results and presents synthesis procedures for both

gain scheduled and robust static output feedback controllers. A numerical example is presented in Section 6 that shows

the benefits of the proposed approach. The conclusions and final remarks are presented in Section 7, and the Appendix

presents the proof of the theorems.

1.1 Notation

The ln2 space of square-summable sequences on the set of nonnegative integers Z+ is given by ln2 := {f : Z+ →
Rn|

∑∞
k=0 f(k)T f(k) < ∞}. The corresponding 2-norm is defined as ‖x(k)‖2

2 =
∑∞

k=0 x(k)T x(k). The identity matrix

of size r×r is denoted as Ir. The notation 0n,m indicates an n×m matrix of zeros. The convex hull of a set X in denoted

by coX. The set of positive real numbers is given by R
+.

2. L2 GAIN OF DISCRETE-TIME LTV SYSTEMS

Consider the following discrete-time linear time-varying (LTV) system

x(k + 1) = A(k)x(k) + Bu(k)u(k) + Bw(k)w(k)

y(k) = Cy(k)x(k) + Du(k)u(k) + Dw(k)w(k)
(1)

where the state vector x(k) ∈ R
n, the exogenous input w(k) ∈ R

r, the control input u(k) ∈ R
m and the system output

y(k) ∈ R
p. The system matrices A(k) ∈ R

n×n, Bw(k) ∈ R
n×r, Bu(k) ∈ R

n×m, Cy(k) ∈ R
p×n, Dw(k) ∈ Rp×r and

Du(k) ∈ R
p×m.

The L2 gain γ∗ of system (1) is defined by the quantity γ∗ = sup‖w(k)‖2 6=0 ‖y(k)‖2/‖w(k)‖2, with w(k) ∈ lm2 and

y(k) ∈ lp2 . The next theorem provide an upper bound γ on the L2 gain.

Theorem 1: If there exist symmetric positive-definite matrix P (k), such that V (x(k), k) = x(k)T P (k)x(k) > 0 for

all k ≥ 0 and

∆V (x(k), k) + y(k)T y(k) − γ2w(k)T w(k) ≤ 0 (2)

for all x(k) and y(k) satisfying system (1), then the L2 gain is less than γ. The proof of the theorem 1 can be found

in Appendix 7.. An upper bound on the L2 gain of system (1) can be characterized using a parameter-dependent LMI as

described in the next theorem.

Theorem 2: If there exist symmetric positive-definite matrix P (k), such that









P (k + 1) ∗ ∗ ∗
A(k)T P (k + 1) P (k) ∗ ∗
Bw(k)T P (k + 1) 0m,n γ2Im ∗

0p,n Cy(k) Dw(k) Ip









≥ 0. (3)

then γ is an upper bound on the L2 gain of system (1).

The LMI condition in theorem 2 can be derivation from Theorem 1, the derivation can be found in Appendix (7.).

3. L2 GAIN OF DISCRETE-TIME POLYTOPIC LPV SYSTEMS

In this section, Theorem 2 is particularized for the specific case of polytopic LPV systems. For this class of systems, it

is provided a finite set of LMIs, defined in the vertices of the polytope, that guarantees an upper bound on the performance

of a polytopic LPV system. Bounds on the rate of variation of the scheduling parameter are also considered. The modeling

of the uncertainty domain is first presented, afterwards, the finite sets of LMIs that guarantee an L2 upper bound on the

system gain are introduced.

3.1 Modeling of the Uncertainty Domain

Consider the following polytopic time-varying discrete-time linear system

x(k + 1) = A(α(k))x(k) + Bu(α(k))u(k) + Bw(α(k))w(k)

y(k) = Cy(α(k))x(k) + Du(α(k))u(k) + Dw(α(k))w(k)
(4)

where the state vector x(k) ∈ R
n, the exogenous input w(k) ∈ R

r, the control input u(k) ∈ R
m and the system output

y(k) ∈ R
p. The system matrices Aα((k)) ∈ R

n×n, Bw(α(k)) ∈ R
n×r, Bu(α(k)) ∈ R

n×m, Cy(α(k)) ∈ R
p×n,
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Dw(α(k)) ∈ R
p×r and Du(α(k)) ∈ R

pxm belong to the polytope

℘ = {(A,Bu, Bw, Cy,Du,Dw)(α(k)) : (A,Bu, Bw, Cy,Du,Dw)(α(k))

=

N
∑

i=1

αi(k)(A,Bu, Bw, Cy,Du,Dw)i, α(k) ∈ ΛN},

this model depends on α(k) ∈ R
n, a vector of time-varying parameters lying in the unit simplex ΛN for all 0 ≤ k ∈ N,

where

ΛN = {α ∈ R
N :

N
∑

i=1

αi = 1, αi ≥ 0, i = 1, . . . , N}. (5)

The rate of the parameter variation is given by

∆αi(k) = α(k + 1) − α(k), i = 1, . . . , N (6)

observe that due to (5) and (6), we have that

N
∑

i=1

∆αi(k) = 0,∀ k ≥ 0 (7)

the rate of parameter variation ∆αk is assumed to be limited by an a priori known bound b such that

−b ≤ ∆αi(k) ≤ b, i = 1, . . . , N (8)

with b ∈ [0, 1]. In Oliveira and Peres [2008], the geometric aspects of the domain of the time-varying parameters have

been exploited to derive a less conservative model for the space where the vector ∆α(k) can lie. We now briefly present

this model. The vector ∆α is assumed to belong, for all k ≥ 0, to the compact set

Γb = {δ ∈ R
N : δ ∈ co{h1, . . . , hM},

N
∑

i=1

hj
i = 0, j = 1, . . . ,M}.

From (7) and (8) the columns hj , j = 1, . . . ,M of the set Γb can be constructed as

[

h1 h2 . . . hM
]

= b























1 1 1 . . . 0
−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1
0 0 0 . . . 1























by construction, the number of columns M is given by M = N(N − 1). Now, taking a convex combination of these M
columns, we obtain

∆α = bΓbβ, where β ∈ ΛM .

Let Γ(i) be the i-th row of the matrix Γb, then ∆αi is given by

∆αi = bΓ(i)β =

M
∑

k=1

bΓ
(i)
k βk.

3.2 L2 Gain of Discrete-Time Polytopic LPV Systems

The LMI condition in Theorem 2 is now particularized for the polytopic systems (4). This LMI condition follows

directly from (3) in Theorem 2 by considering the specific time dependency of system (1) on the time-varying parameter

α(k), we this have:
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Theorem 3: If there exist parameter-dependent symmetric positive-definite matrix P (α(k)), for all α(k) ∈ ΛN , such

that

Φ(α) =









P (α(k + 1)) ∗ ∗ ∗
A(α(k))T P (α(k + 1)) P (α(k)) ∗ ∗
Bw(α(k))T P (α(k + 1)) 0m,n γIm ∗

0p,m Cy(α(k)) Dw(α(k)) Ip









≥ 0. (9)

then γ is an upper bound on the L2 gain of system (4).

The conditions of Theorem 3, which consist of evaluating the parameter-dependent LMI for all α(k) in the unit simplex

ΛN , lead to an infinite dimensional problem. However, by imposing on the Lyapunov matrix P (α(k)) the following affine

parameter-dependent polytopic structure P (k) =
∑N

i=1 αi(k)Pi, a finite-dimensional set of LMIs in terms of the vertices

of polytope ℘ can be obtained, as shown in the next theorem.

Theorem 4: If there exist symmetric positive-definite matrices Pi ∈ R
nxn, i = 1, . . . , N such that the following LMIs

hold

Φil =









Pi + bP̄l ∗ ∗ ∗
AT

i (Pi + bP̄l) Pi ∗ ∗
BT

wi(Pi + bP̄l) 0m,n γ2Im ∗
0p,n Cyi Dwi Ip









≥ 0 (10)

with P̄l =
∑N

k=1 Γ
(k)
l Pk for l = 1, . . . ,M, i = 1, . . . , N, and

Φijl =









Pi + Pj + 2bP̄l ∗ ∗ ∗
AT

i (Pj + bP̄l) + AT
j (Pi + bP̄l) Pi + Pj ∗ ∗

BT
wi(Pj + bP̄l) + BT

wj(Pi + bP̄l) 0m,n 2γ2Im ∗
0p,n Cyi + Cyj Dwi + Dwj 2Ip









≥ 0 (11)

with P̄l =
∑N

k=1 Γ
(k)
l Pk for l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N , then γ is an upper bound on the L2

gain of system (4).

Proof Multiply (10) by α2
i βl and sum for l = 1, . . . ,M, i = 1, . . . , N . Multiply (11) by αiαjβl and sum for

l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N . Summing the results yields

Φ(α(k)) =

M
∑

l=1

N
∑

i=1

α2
i βlΦil +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβlΦijl

The set of LMIs(10)-(11) guarantees that Φ(α(k)) is positive semidefinite.

3.3 Extended L2 Gain of Discrete-Time Polytopic LPV Systems

Extended characterization for the L2 gain in derived using some additional variables. These extra variables will prove

themselves valuable in the control design. First, multiply (9) pre and post with

T =









P (α(k + 1))−1 0 0 0
0 P (α(k))−1 0 0
0 0 Im 0
0 0 0 Ip









to arrive at the following LMI, where Q(k) = P (k)−1









Q(α(k + 1)) ∗ ∗ ∗
Q(α(k))A(α(k))T Q(k) ∗ ∗

Bw(α(k))T 0m,n γ2Im ∗
0p,n Cy(α(k))Q(α(k)) Dw(k) Ip









≥ 0.

Theorem 5 The L2 gain of system (4) has as is upper bound γ if the following LMI is feasible

Ψ =









Q(α(k + 1)) ∗ ∗ ∗
G(α(k))T A(α(k))T G(α(k)) + G(α(k))T − Q(α(k)) ∗ ∗

Bw(α(k))T 0m,n γ2Im ∗
0p,n Cy(α(k))G(α(k)) Dw(α(k)) Ip









≥ 0. (12)

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.208-217
Copyright © 2010 by ABCM



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

The proof the theorem 5 can be found in Appendix (7.).

Theorem 6 If there exist symmetric matrices Qi ∈ Rnxn and matrices Gi ∈ Rnxn, i = 1, . . . , N such that the

following LMIs hold

Ψil =









Qi + bQ̄l ∗ ∗ ∗
GT

i AT
i Gi + GT

i − Qi ∗ ∗
BT

wi 0m,n γ2Im ∗
0p,n CyiGj Dwi Ip









≥ 0

with Q̄l =
∑N

k=1 Γ
(k)
l Qk for l = 1, . . . ,M, i = 1, . . . , N, and

Ψil =









Qi + Qj + 2bQ̄l ∗ ∗ ∗
GT

i AT
j + GT

j AT
i Gi + Gj + GT

i + GT
j − Qi − Qj ∗ ∗

BT
wi + BT

wj 0m,n 2γ2Im ∗
0p,n CyiGj + CyjGi Dwi + Dwj 2Ip









≥ 0

with Q̄l =
∑N

k=1 Γ
(k)
l Qk for l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N , then γ is an upper bound on the L2

gain of system (4). The proof of theorem 6 is similar to the proof of theorem 4.

4. L2 GAIN STATIC OUTPUT FEEDBACK

In this section, the analysis result presented in Theorem 6 is extended to provide a finite set of LMI conditions for the

synthesis of robust and gain scheduled static output feedback controller that guarantee an upper bound on the closed-loop

L2 gain for the discrete-time polytopic linear time-varying system (4).

4.1 Gain Scheduled Case

We assume that the first q states of the system can be measured in real-time for feedback without corruption by the

exogenous input w(k) or the control input u(k), that is, y(k) = Cyx(k) where y(k) ∈ R
q is the measured output. The

matrix Cy is dependent of the time-varying parameters and is assumed to have the structure

Cy =
[

Iq Oq,n−q

]

. (13)

If this is not the case, one can use a similarity transformation as proposed in Geromel et al. [1996], whenever the

output matrix is not affected by the time-varying parameter.

The aim is to provide a parameter-dependent control law u(k) = K(α(k))y(k) with K(α(k)) ∈ R
mxq such that the

closed-loop system

x(k + 1) = Acl(α(k))x(k) + Bw(α(k))w(k)

y(k) = Ccl(α(k))x(k) + Dw(α(k))w(k),
(14)

with

Acl(α(k)) = A(α(k)) + Bu(α(k))K(α(k))Cy

Ccl(α(k)) = Cy(α(k)) + Du(α(k))K(α(k))Cy

is asymptotically stable with a bound γ on the closed-loop L2 gain, from W (k) to y(k) guaranteed for all possible

variation of the parameter α(k) ∈ ΛN .

By replacing the state-space matrices in (12) with those from the closed-loop (14), we obtain

Θ((α(k)) =









Q(α(k + 1)) ∗ ∗ ∗
Θ21 G(α(k)) + G(α(k))T − Q(α(k)) ∗ ∗

Bw(α(k))T 0m,n γ2Im ∗
0p,n (Cy(α(k)) + Du(α(k))K(α(k)))G(α(k)) Dw(α(k)) Ip









≥ 0

where Θ21 = G(α(k))T (A(α(k)) + Bu(α(k))K(α(k)))T and by substituting Z(k) = K(k)G(k), we obtain

Ω(α(k)) =









Q(α(k + 1)) ∗ ∗ ∗
Ω21 G(α(k)) + G(α(k))T − Q(α(k)) ∗ ∗

Bw(α(k))T 0m,n γ2Im ∗
0p,n Cy(α(k))G(α(k)) + Du(α(k))Z(α(k)) Dw(α(k)) Ip









≥ 0.
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where Ω21 = G(α(k))T A(α(k))T + Z(α(k))T Bu(α(k))T .

Theorem 7 If there exist symmetric matrices Qi ∈ Rnxn , Gi,1 ∈ Rqxq, Gi,2 ∈ Rn−qxq, Gi,3 ∈ Rn−qxn−q and

Zi,1 ∈ Rmxq, i = 1, . . . , N such that the following LMIs meets

Ωil =









Qi + bQ̄l ∗ ∗ ∗
GT

i AT
i + ZT

i BT
ui Gi + GT

i − Qi ∗ ∗
BT

wi 0m,n γ2Im ∗
0p,n CyiGi + DuiZi Dwi Ip









≥ 0 (15)

with Q̄l =
∑N

k=1 Γ
(k)
l Qk for l = 1, . . . ,M, i = 1, . . . , N, and

Ωil =









Qi + Qj + 2bQ̄l ∗ ∗ ∗
GT

i AT
j + GT

j AT
i + ZT

i Buj + ZT
j BT

ui Gi + Gj + GT
i + GT

j − Qi − Qj ∗ ∗
BT

wi + BT
wj 0m,n 2γ2Im ∗

0p,n CyiGj + CyjGi + DuiZj + DujZi Dwi + Dwj 2Ip









≥ 0

(16)

with Q̄l =
∑N

k=1 Γ
(k)
l Qk for l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N , with

Gi =

[

Gi,1 0q,n−q

Gi,2 Gi,1

]

and Zi

[

Zi,1 0m,n−q

]

(17)

are feasible, then the parameter-dependent controller

K(k) = Z(k)G(k)−1 (18)

stabilizes the open loop with γ is an upper bound on the L2 gain of the closed-loop (14).

Proof Multiply (15) by α2
i βl and sum for l = 1, . . . ,M, i = 1, . . . , N,. Multiply (16) by αiαjβl and sum for

l = 1, . . . ,M, i = 1, . . . , N − 1, j = 1, . . . , N . Summing the results yields

Ω(α(k)) =

M
∑

l=1

N
∑

i=1

α2
i βlΩil +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβlΩijl

using (17) and (18) and considering the specific structure (13) for Cy , the LMI Ω(α(k)) can be written as









Q(α(k + 1)) ∗ ∗ ∗
G(α(k))T (Acl(α(k)))T G(α(k)) + G(α(k))T − Q(α(k)) ∗ ∗

Bw(α(k))T 0m,n γ2Im ∗
0p,n (Ccl(α(k)))G(α(k)) Dw(α(k)) Ip









≥ 0

Therefore, as a result of Theorem 5, feasibility of the LMIs (15) and (16) ensures that the closed-loop (14) is asymp-

totically stable with an upper bound γ on its L2 gain.

4.2 Robust Static Case

Robust L2 gain static output feedback controller u(k) = KCyx(k) is a particular case of gain-scheduled and can be

calculated using theorem 7 by fixing K = ZG−1 for Zi = Z and Gi = G.

5. NUMERICAL EXAMPLE

Consider the polytopic time-varying (4) for n = 3 and N = 2 with the following system matrices:

[

A1 A2

]

=µ





1 0 −2 0 0 −1
2 −1 1 1 −1 0
−1 1 0 0 −2 −1



 , Bw,1 =





0
1
0



,

Bw,2 =





0
0
1



, Bu,i =





1
0
0



 , Cz,i =





1
1
1





T

,Du,i = Dw,i = 0,

with i = 1, 2 and µ ∈ R
+. The system matrices are borrowed from Oliveira and Peres [2008]. The aim in this example

is to determine the maximum bound bmax on the rate of parameter variation as a function of the scalar µ such that the
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system can be stabilized by an L2 gain static output feedback controller presented in this paper and compare with results

shown in De Caigny et al. [2008b]. Both gain-scheduled and robust output feedback controllers are designed for case the

measurement equation y(t) = Cyx(k), with all states are available for feedback (Cy = In).

Figure 1 shows Bmax as a function of µ. The curves R1 and R2 are robust controllers, G1 and G2 are gain-scheduled

controllers, being the R1 and G1 controllers presented in this paper and R2 and G2 controllers presented in De Caigny

et al. [2008b].
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Figure 1. Maximal bound bmax on the rate of parameter variation as a function of the scalar µ
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Figure 2. Guaranteed upper bound γ on the L2 gain as a functino of the scalar b

For low values of µ, all control designs result in controllers that allow the parameters to vary arbitrarily fast in the unit

simplex since bmax = 1. However, as µ increases, the maximal allowed bound bmax becomes smaller. Obviously, this

occurs first for the robust case R1, since it is the most restrictive control design. Note also that since the gain-scheduled

controllers are less restrictive than the robust controllers, the curves associated with the gain-scheduled controllers are

always on the right of the curves associated with the corresponding (in terms of output measurements) robust controllers.

To check the achieved performance, µ is now fixed to be µ = 0.6185. Figure 2 shows the achieved upper bound γ on

the closed-loop L2 gain as a function of the allowed bound 0 ≤ b ≤ 1 on the rate of variation.

For all control designs, it is clear from Figure 2, that as the bound b increases, the performance becomes worse since

the upper bound γ increases. In the robust case R1 and R2, the upper bound γ increases very fast as the value of the bound

b increases. This can be expected since Figure 1 shows that for the robust case R1 with µ = 0.6185 the LMI conditions
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become infeasible for b > 0.2422 and for the the robust case R2 the LMIs become infeasible for b > 0.6836. In the gain

scheduled case G1 and G2, the conditions are feasible for all values of b.

For the specific case b = 1, where the parameters can vary arbitrarily fast in the unit simplex ΛN , the gain-scheduled

case G1 yields the gain γ = 7.2569, in case G2 the gain is γ = 6.0642. As seen in Figure 2, the LMI conditions in

Theorem 7, by explicitly considering the bound b on the rate of variation, can provide a value very near L2 gain bound γ
for the gain-scheduled case G1 as compared to the results of the G2, same more conservative. For the case b= 0, the robust

cases R1 and R2 presented same yields γ = 7.4563 and gain-scheduled cases G1 and G2 presented yields γ = 1, 9935.

As shown in Figure 2, the results of the controllers G1 and G2 are near, but the results presented this paper with

controller G1 are more reliable, by be more conservative.

6. CONCLUSION

In this work, new LMI conditions are presented for the synthesis of robust and gain-scheduled L2 gain static output

feedback controllers for discrete-time polytopic linear time-varying systems based on parameter dependent Lyapunov

functions. The synthesis procedures explicitly take an a priori known bound on the rate of parameter variation into

account, thus reducing the conservatism generally associated with methods that allow arbitrarily fast parameter variation.

Compared to the conditions of De Caigny et al. [2008b], the proposed approach yields similar results. They have

different modeling for the rate of the parameter variation which has a more realistic physical interpretation.
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Proof of Theorem 1

Summing (1) for k = 0, . . . , T , with x(0) = 0, leads to

V (x(T + 1), T + 1) +

T
∑

k=0

(y(k)T y(k) − γ2w(k)T w(k)) ≤ 0.

Since V (x(T + 1), T + 1) > 0, this implies

T
∑

k=0

y(k)T y(k) ≤ γ2
T

∑

k=0

w(k)T w(k)

and consequently

‖z(k)‖2/‖w(k)‖2 ≤ γ.

Since (1) holds for all w(k) and y(k), we conclude that

sup ‖z(k)‖2/‖w(k)‖2 ≤ γ.

Proof do Theorem 2

From Theorem 1, we now that

∆V (x(k), k) + y(k)T y(k) − γ2w(k)T w(k) ≤ 0

This inequality is equivalent to

»

x

w

–T »

A(k)T P (k + 1)A(k) − P (k) + Cy(k)T Cy(k) A(k)T P (k + 1)Bw(k) + Cy(k)T Dw(k)
Bw(k)T P (k + 1)A(k) + Dw(k)T Cy(k) Bw(k)T P (k + 1)Bw(k) + Dw(k)T Dw(k) − γ2I

– »

x

w

–

≤ 0

Now, this condition is satisfied if the linear matrix inequality

[

P (k) − A(k)T P (k + 1)A(k) − Cy(k)T Cy(k) −A(k)T P (k + 1)Bw(k) − Cy(k)T Dw(k)
−Bw(k)T P (k + 1)A(k) − Dw(k)T Cy(k) −Bw(k)T P (k + 1)Bw(k) − Dw(k)T Dw(k) + γ2I

]

≥ 0

holds. Using Schur complement we can write the following LMI





P (k) − A(k)T P (k + 1)A(k) − P (k) −A(k)T P (k + 1)Bw(k) − Cy(k)T Dw(k) Cy(k)T

−Bw(k)T P (k + 1)A(k) −Bw(k)T P (k + 1)Bw(k) + γ2I Dw(k)T

Cy(k) Dw(k) I



 ≥ 0

which is equivalent to equation (3) using Schur complement again .

Derivation of the Theorem 4

First note that if P (α(k)) is given by P (k) =
∑N

i=1 αi(k)Pi. Then P (α(k + 1)) can be written as

P (α(k + 1)) =

N
∑

i=1

αi(k + 1)Pi =

N
∑

i=1

(αi(k) + ∆αi(k))Pi

=

N
∑

i=1

αi(k)Pi +

N
∑

k=1

∆αk(k)Pk =

N
∑

i=1

αi(k)Pi +

M
∑

j=1

N
∑

k=1

bΓ
(k)
j βjPk
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Define P̄j =
∑N

k=1 Γ
(k)
j Pk, we obtain

P (α(k + 1)) =

N
∑

i=1

αi(k)Pi +

M
∑

j=1

bβjP̄j .

We will make the derivation of the theorem for the element (2,1) of Φ(α(k)) :

Φ(α(k))(2,1) = A(α(k))T P (α(k + 1))

using the formula for P (α(k + 1)), we obtain

Φ(α(k))(2,1) = (
N

∑

i=1

αiA
T
i )(

N
∑

j=1

αjPj +
M
∑

l=1

bβlP̄l)

can be write

Φ(α(k))(2,1) = (

N
∑

i=1

αiA
T
i )(

N
∑

j=1

αjPj) + (

N
∑

i=1

αiA
T
i )(

M
∑

l=1

bβlP̄l).

Multiplying the first term by
∑M

l=1 βl = 1 and the second term by
∑N

j=1 αj = 1 we obtain

Φ(α(k))(2,1) = (

N
∑

i=1

αiA
T
i )(

N
∑

j=1

αjPj)(

M
∑

l=1

βl) + (

N
∑

i=1

αiA
T
i )(

M
∑

l=1

bβlP̄l)(

N
∑

j=1

αj).

The first term can be worked out as

(
N

∑

i=1

α2
i A

T
i Pi +

N−1
∑

i=1

N
∑

j=i+1

αiαj(A
T
i Pj + AT

j Pi))(
M
∑

l=1

βl)

and the second term can be worked out as

(
N

∑

i=1

α2
i A

T
i +

N−1
∑

i=1

N
∑

j=i+1

αiαj(A
T
i + AT

j ))(
M
∑

l=1

bβlP̄l).

Summing these two up and rearranging the terms, we obtain

Φ(α(k))(2,1) =
M
∑

l=1

N
∑

i=1

α2
i βlA

T
i (Pi + bP̄l) +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβl(A
T
i (Pi + bP̄l) + AT

i (Pi + 2bP̄l))

or equivalently as

Φ(α(k))(2,1) =

M
∑

l=1

N
∑

i=1

α2
i βlΦil(2,1) +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβlΦijl(2,1).

In this case Φ(α(k)) can be written as

Φ(α(k)) =

M
∑

l=1

N
∑

i=1

α2
i βlΦil +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβlΦijl.
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