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Abstract. Model predictive control (MPC) designates a class of moving-horizon optimal control techniques based on the
use of a process model to make predictions of the plant output. Over the past 30 years, several MPC formulations have
been reported in the literature. These formulations differfrom each other mainly in the type of process and disturbance
models adopted, as well as in the cost function to be minimized. Given a specific problem, the selection of the most
appropriate MPC approach may not be straightforward. In fact, control tasks usually involve multiple conflicting ob-
jectives, which cannot be easily combined in a single performance index for comparative assessment of different control
laws. Moreover, the proper use of MPC requires the tuning of several design parameters such as horizon lengths and
cost function weights. Therefore, a fair comparison between predictive controllers can only be carried out if they have
been suitably tuned with respect to the control objectives under consideration. This paper presents a multi-objectiveap-
proach for comparison of control strategies employing the concepts of dominance and Pareto optimality. This approach
is illustrated in a simulated case study involving the control of an inverted pendulum coupled to a cart. Three conflicting
objectives are considered, namely (1) fast response to setpoint changes in the cart position, (2) robustness with respect
to model uncertainties and (3) low sensitivity to sensor noise. Two different MPC formulations are compared in terms of
their Pareto boundaries for these three objectives. The results show that the proposed approach may be a useful aid in the
selection and tuning of appropriate controllers for a giventask.
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1. INTRODUCTION

The control and regulation of an inverted pendulum on a cart is a benchmark problem in control systems theory.
This plant is naturally unstable with fast, nonlinear and strongly coupled multivariable dynamics. Because of those
characteristics, the inverted pendulum system is often used to verify the effectiveness of control techniques (Wu and Liu,
2007). Along the years, many control formulations have beenapplied to this problem such as neural network control (Jung,
Cho and Hsia, 2007), fuzzy logic control (Zhao and Li, 2006),proportional-integral-derivative (PID) control (Nour, Ooi
and Chan, 2007), sliding mode control (Demirtas, Altun and Istanbullu, 2008),H∞ (Wu and Liu, 2007), backstepping
(Ebrahim and Murphy, 2005) and model-based predictive control (Lu et al. (2007)). The related research results are
widely applied in many fields, such as in military industry, space flight and robots (Gao et al. (2007)).

Model-based Predictive Control (MPC) comprises differentmethods such as generalized predictive control (GPC)
(Clarke et al. (1987)), dynamic matrix control (DMC) (Cutler and Ramaker, 1980), predictive functional control (PFC)
(Richalet et al. (1978)) among several others (Camacho and Bordons, 1999). The control law is based on the prediction,
obtained by the model of the controlled process, in order to minimize the difference between the process output and
the reference signal over a certain time horizon. Advantages of MPC include the possibility of handling multivariable,
time-delay control problems, subject to constraints in thestates and actuators. Moreover, robustness with respect to
model mismatch and unmodelled dynamics can also be achieved(Maciejowski, 2002). However, there are many different
formulations and many tunable parameters that need to be considered in the design of a predictive controller. Therefore,
choosing the most appropriate MPC approach for a given application may not be a straightforward task. Another issue
that may complicate the design of a predictive controller isthe presence of multiple conflicting engineering objectives,
which may not be easily translated into a single cost function.

The present paper presents a multi-objective approach for comparing and tuning some predictive control strategies
employing the concepts of dominance and Pareto optimality.This approach is illustrated in a simulated case study in-
volving the control of a single inverted pendulum coupled toa cart. Three conflicting objectives are considered, namely
(1) fast response to setpoint changes in the cart position, (2) robustness with respect to model uncertainties and (3) low
sensitivity to sensor noise. Two different MPC formulations are compared in terms of their Pareto boundaries for these
three objectives.

The paper is organized as follows: The single inverted pendulum model is presented in Section 2. Section 3 describes
the formulations of Model-based Predictive Control used inthis work. Concepts related to multi-objective controller
evaluation are presented in Section 4. Finally, section 5 describes the results and section 6 the conclusions.
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2. SINGLE INVERTED PENDULUM

Figure 1 presents a schematic of the Single Inverted Pendulum (SIP) with two Degrees-Of-Freedom (DOF) mounted
on a linear cart. The dynamic model of this system is obtainedby Lagrange’s method considering as the single input the
cart driving force produced by the motor (Fc), and the Lagrangian coordinates (generalized coordinates) as being the cart
linear position (xc) and the pendulum angle from the upright position (α).
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Figure 1. Description of the single inverted pendulum

This model assumes that the mass of the SIP is concentrates atits center of gravity. So, the total potential energy of
the system is expressed by the following equation:

VT = Mp g lp cos (α(t)) (1)

whereMp is the pendulum mass,g is the gravity acceleration andlp is the pendulum length from pivot to center of gravity
as shown in Fig. 1.

The cart’s total kinetic energy is the sum of the translational kinetic energy of the motorized cart,Tct, and the rotational
kinetic energy due to the cart’s DC motor,Tcr, as expressed below:
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whereM is the total mass of the system,xc is the cart linear position,Jm is the rotor moment of inertia,Kg is the
planetary gearbox gear ratio andrmp is the motor pinion radius.

The pendulum’s total kinetic energy is the sum of the pendulum’s translational kinetic energy,Tpt, and the pendulum’s
rotational kinetic energy,Tpr, as expressed below
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(3)

whereIp is the pendulum moment of inertia with respect to the center of gravity. The linear velocity’s x-coordinate and
y-coordinate of the pendulum’s center of gravity is determined by:

d
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Finally the total kinetic energy of the system is the sum of Eq. (3) and (2), which can be expressed by:
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By definition, the two Lagrange’s equations are expressed by:
(
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where the generalized forceQxc, applied on the coordinatexc, and the generalized forceQα, applied on the coordinate
α, can be defined as follows, neglecting the Coulomb friction applied to the linear cart and the force on the linear cart due
to the pendulum’s action,

Qxc(t) = Fc(t) − Beq

(
d

dt
xc(t)

)
and Qα(t) = −Bp

(
d

dt
α(t)

)
(7)

whereBp andBeq are the viscous damping coefficient seen by the pendulum and the motor pinion, respectively.
Finally, solving and rearranging the Lagrange’s Equations(5) and (6) results in the following non-linear equations of

motion of the single inverted pendulum:
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A linearized state-space representation of Eq. (8) and (9) can be obtained by considering small departure angles,α,
from the upright vertical position. Forx(t) = [α xc α̇ ẋc]

T the continuous-time state-space model will be
{
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Finally, for Ip = 7.88 × 10−3 kg.m2, Mc = 1.0731 kg, Mp = 0.230 kg, lp = 0.3365 m, Beq = 5.4 N.m.s/rad,
Bp = 0.0024 N.m.s/rad andg = 9.81 m/s2, and using a sampling time of0.1 s with a presence of a zero-order hold at
the plant input, Eq. (10) can be discretized as
{

x(k + 1) = A x(k) + B u(k)
y(k) = C x(k)

(11)

where

A =





1 0.0055 0.059 0.0002
0 1.1277 −0.0964 0.1038
0 0.0944 0.3082 0.0052
0 2.5648 −1.6652 1.1194



 B =





0.0054
0.0127
0.0909
0.2187



 C =

[
1 0 0 0
0 1 0 0

]

3. MODEL-BASED PREDICTIVE CONTROL

The objective of the Model-based Predictive Control (MPC) is to achieve the best sequence of control actions that
makes the output of the plant follow some reference signal. To do that, as shown in Figure 2, MPC employs the plant
model to predict the output up toN steps ahead, whereN is the prediction horizon length. Using those predictions,an
optimizer computes the control sequence that minimizes a cost function and respects the constraints.

Function

ry(k + i)

i = 1, . . . , N

û(k + i − 1|k)

Optimizer

Prediction

û∗(k|k) x(k)

Predictive Controller

Model

Plant

x̂(k + i|k)
i = 1, . . . , N i = 1, . . . , N

Constraints
Cost

Figure 2. Discrete-time predictive controller employing state feedback

Among the several MPC formulations, this paper will be concerned with a Non-Incremental and an Incremental state-
space formulation. Those techniques introduce an integrator at the plant input, in order to achieve offset-free tracking of
a step reference signal (Maciejowski, 2002).

3.1 Non-incremental state-space formulation

This formulation employs the following cost function:

J =

N∑

i=1

[ŷ(k + i|k) − ry(k + i)]
2

+ ρ

M∑

i=1

[∆û(k + i − 1|k)]
2 (12)

whereŷ(k+i|k) is the expected output at timek+i calculated on the basis of the measured statex(k), M is the prediction
horizon control,∆û(k+i−1|k) = û(k+i−1|k)−û(k+i−2|k) is the future control increment at timek+i−1, ry(k+i)
is the reference signal at timek + i andρ > 0 is a design parameter. Decreasing the value ofρ tends to increase the speed
of the closed-loop response at the cost of larger control effort and greater sensitivity to measurement noise (Maciejowski,
2002).

By using the following notation:
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∆û(k + 1|k)

...
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the cost function can be rewritten as

J = (Y − R)T (Y − R) + ρ∆UT ∆U (13)

Considering the state-space model in Eq. (11), the relationbetween Y and U is of the form

Y =





CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B . . . CB





︸ ︷︷ ︸
HN×N

U +




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



︸ ︷︷ ︸
QN×1

X(k)

︸ ︷︷ ︸
FUN×1

or

Y = H U + FU (14)

Moreover, the relation betweenU and∆U can be expressed as



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
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1 0 · · · 0
1 1 · · · 0
...

...
. . .

1 1 · · · 1


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∆û(k|k)
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...
∆û(k + N − 1|k)
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︸ ︷︷ ︸
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+





u(k − 1)
u(k − 1)

...
u(k − 1)





︸ ︷︷ ︸
1N ·u(k−1)

(15)

or

U = TN ∆U + 1N u(k − 1) (16)

where1N is a column vector ofN unit elements. Finally, from Eq. (14) and (16), it follows that

Y = H TN︸ ︷︷ ︸
GN×N

∆U + H 1N u(k − 1) + Q x(k)︸ ︷︷ ︸
FN×1

(17)

or

Y = G ∆U + F (18)

By replacing Eq (18) in (13) the cost function can be rewritten as

J =
[
G ∆U + F − R

]T [
G ∆U + F − R] + ρ ∆UT ∆U

= ∆UT
[
GT G + ρ IN

]
∆U + 2 (F − R)T G ∆U + (F − R)T (F − R)

which has a minimum at

∆U∗ =
[
GT G + ρ IN

]−1
GT (R − F ) (19)

The optimal control increment at timek is given by the first element of∆U∗, i.e.

∆û∗(k|k) = KMPC (R − F ) (20)

where

KMPC = [1 0 · · · 0]︸ ︷︷ ︸
1×N

[
GT G + ρ IN

]−1
GT

︸ ︷︷ ︸
N×N

Then, a discrete-time integrator is used to calculate the control to be applied to the plant:

û∗(k|k) = u(k − 1) + ∆û∗(k|k)

In usual MPC formulations, the control is kept fixed after a control horizon ofM steps within the prediction horizon
(Camacho and Bordons, 1999). By imposing∆û(k + M − 1|k) = 0 for M < i ≤ N , the lastN −M elements of vector
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U become equal tôu(k + M − 1|k). As a result,H must be replaced with matrixHRED, in which the first(M − 1)
columns are equal to the corresponding columns inH and theM th column equals the sum of columnsM to N of H , i.e.

HRED =





CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B . . .

∑N

n=M CAN−MB




(21)

Moreover, the prediction equation (18) becomes

Y = GN×N





∆û(k|k)
...

∆û(k + M − 1|k)
0
...
0





+ F = GRED




∆û(k|k)

...
∆û(k + M − 1|k)



+ F

whereGRED is an(N × M) matrix corresponding to the firstM columns ofG. Therefore,H andG must be replaced
respectively withHRED andGRED, in the optimal control calculations.

3.2 Incremental state-space formulation

This formulation also employs the cost function defined in Eq. (12). However, insted of using Equations (14) and (16)
to obtain a prediction equation of the form (18), an incremental state-space model will be adopted. For this purpose, Eq.
(11) is rewritten as
{

∆x(k + 1) = A ∆x(k) + B ∆u(k)
∆y(k) = C ∆x(k)

(22)

where∆x(k) = x(k)−x(k − 1), ∆u(k) = u(k)− u(k− 1) and∆y(k) = y(k)− y(k− 1). As shown in (Lopes, 2007),
this incremental model can be used to obtain a prediction equation of the form

∆Y = H ∆U + Q ∆x(k) (23)

where∆Y = [∆ŷ(k + 1|k) ∆ŷ(k + 2|k) · · · ∆ŷ(k + N |k)]
T andH andQ matrices are those defined in the previous

formulation. The relation between∆Y andY can be expressed as




ŷ(k + 1|k)
ŷ(k + 2|k)

...
ŷ(k + N |k)





︸ ︷︷ ︸
Y

=





1 0 · · · 0
1 1 · · · 0
...

...
. . .

1 1 · · · 1





︸ ︷︷ ︸
TN





∆ŷ(k + 1|k)
∆ŷ(k + 2|k)

...
∆ŷ(k + N |k)





︸ ︷︷ ︸
∆YN×1

+





y(k)
y(k)

...
y(k)





︸ ︷︷ ︸
1N y(k)

or

Y = TN ∆Y + 1N y(k) (24)

From Eq. (23) and (24),

Y = TN H︸ ︷︷ ︸
G

∆U + TN Q ∆x(k) + 1N · y(k)︸ ︷︷ ︸
F

i.e.,

Y = G ∆U + F (25)

Equation (25) is the same form of Eq. (18). Therefore, the optimal control increment can be obtained by using Eq.
(20). It is worth noting thatG in (25) are numerically equal to the corresponding matricesin (18). In fact, it can be shown
thatTN H (expression forG in Eq. (25)) equalsH TN (expression forG in Eq. (18)). The only difference with respect to
the previous formulation consists of the expression for theF term, which is now calculated from∆x(k) andy(k), instead
of x(k) andu(k − 1). This difference may lead to a different behaviour in the presence of sensor noise.
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4. MULTI-OBJETIVE CONTROLLER EVALUATION

Most real-world problems involve multiple conflicting objectives. In such cases, improving one objective may degrade
the performance in terms of one or more of the other objectives. The process of optimizing a collection ofm objective
functions in a simultaneous manner is called multi-objective optimization or vector optimization (Marler and Arora, 2004),
which can be expressed by (Takahashi, 2007):

θ∗ = arg min
θ∈Rn

f(θ) (26)

whereθ ∈ R
n is the vector of parameters that must be tuned andf(·) : R

n 7→ R
m is a functional comprising the

objectivesf1, f2, . . . , fm.
By considering, without loss of generality, that the objective functions must be minimized, a solutionθ(2) is said to be

dominated byθ(1) if the following conditions are both satisfied:

• The solutionθ(1) is not worse thanθ(2) for all the objectives, i.e.fj(θ
(1)) ≤ fj(θ

(2)) for all j ∈ {1, . . . , m}.

• The solutionθ(1) is strictly better thanθ(2) for at least one objective, i.e.fj(θ
(1)) < fj(θ

(2)) for somej ∈
{1, . . . , m}.

If θ(1) is not dominated by any other solutionθ ∈ R
n, then it is said to be non-dominated in the search space of

the problem. The set of all non-dominated solutions forms the so-called Pareto-optimal boundary (or simply Pareto
boundary), as illustrated in Fig. 3 form = 2 objectives.

Objective 1

O
b

je
ct

iv
e

2

Pareto-optimal

boundary

Non-dominated solutions

Dominated solutions

Figure 3. Pareto-optimal boundary form = 2 objectives.

The solutions of the Pareto boundary are optimal in the sensethat there are no better solution when all the objectives
are considered simultaneously.

In this paper,m = 3 objectives were considered for the SIP namely:(1) fast response to setpoint changes in the cart
position,(2) robustness with respect to model uncertainties and(3) low sensitivity to sensor noise. The parameter vector
θ comprises the parametersN , M andρ of the predictive controller.

The fist objective was quantified by the rise time (Tr) for a 20 cm step in the set-point in the absence of measurement
error and model mismatch. Moreover,Tr was determined as the time required for the plant output,y, to reach90%
of the steady-state value. The second objective, robustness with respect to model uncertainties, was quantified by the
standard deviation (σFAULT ) of the plant output evaluated considering a loss of10% in the motor power. In this case,
was added two quantizations that represent the tachometersactions. One of this sensor, with a step of quantization of
0.0015 rd, represents the tachometer of the pendulum angle. The othersensor, with a step of2.2749·10−5 m, simulates the
tachometer of the car position. Finally, the third objective, low sensitivity to sensor noise, was quantified by the standard
deviation (σNOM ) of the controlled output. It was computed by considering the angle and the position tachometers, and
neglecting the model mismatch due to the loss in the motor power. ForσFAULT andσNOM evaluations, the reference
signal was maintained at a constant value of zero.

For each combination ofN , M andρ in the ranges1 < M ≤ N < 30 with unit step and0.5 < ρ < 30 with a0.5 step
a set of non-dominated solutions was obtained for each MPC formulation using digital simulation in theMatLab/Simulink
environment with a4th orderRunge-Kuttasolver and a fixed step size of0.001s. The velocities were estimated from the
position readings by using second-order derivative filterswith the following transfer function:

G(s) =
62.83192 · s

s2 + 2 · 0.9 · 62.8319 · s + 62.83192
(27)
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5. RESULTS AND DISCUSSION

The Pareto boundaries in two-dimensional plots, obtained by the linear interpolation of the non-dominated solutions,
for the two MPC formulations are presented in Figure 4. As canbe seen in this figure, all of the objectives are conflicting
with each other.
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Figure 4. Two-dimensional plots for the Pareto-optimal boundaries.

Figure 5 presents the Pareto boundaries for the two MPC formulations considering the three objectives simultaneously.
These boundaries were generated by cubic interpolation of the non-dominated solutions.
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Figure 5. Pareto-optimal boundaries for Non-Incremental and Incremental state-space formulations.

A joint Pareto boundary, presented in Fig. 6, can also be generated by gathering the solutions obtained by both
formulations and retaining the non-dominated ones. It is formed by merging sections of the individual boundaries shown
in Figures 5a and 5b. Therefore, depending on the relative importance assigned to each objective, one MPC formulation
will be more appropriate than the other.

Figure 6. Joint Pareto boundary for the two MPC formulations.

Decisions concerning the choice of MPC formulations could be made by analyzing the two-dimensional plots pre-
sented in Fig 7. These plots depict projections of the joint Pareto boundary on each plane defined by a pair of objectives.
The labels indicate sections corresponding to the individual Pareto boundary of each formulation.
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Figure 7. Projections of the joint Pareto boundary for Non-Incremental and Incremental state-space formulations.

As can be seen in Fig. 7a, the best compromise betweenσFAULT andσNOM is obtained by using the non-incremental
state-space formulation. On the other hand, Figures 7b and 7c show that the incremental state-space formulation offers
the best compromise toTr.

An alternative visualization method consists of the use of Level Diagrams (Blasco et al., (2008)). For this purpose,
each objective is normalized to the interval[0, 1]. The distance of the non-dominated solutions to the origin (according to a
suitable norm) are then plotted against each objective and each optimization parameter. The resulting graphs, obtained by
using 2-norm distances, are presented in Figure 8. Therefore, it is possible to analyse the relation between the objectives
and the optimization parameters. The best compromise amongthe three normalized objectives can be defined as the
solution closest to the origin. In this case, it is obtained by non-incremental state-space formulation withM = 4, N = 7
andρ = 0.5. It is worth noting that, according to Figure 8, forM > 11, 1 < N < 5 or N > 13, andρ > 2 all the
solutions are dominated.
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Figure 8. Level Diagrams for Incremental and Non-Incremental state-space formulations.

Other visualization strategy proposed in this work was the use of the contour plot of the spherical coordinates as shown
in Fig. 9, where the color chart represents the radial distance to origin. Thus it is possible to visualize the region where is
preferred the use of one formulation rather than the other one.

Figure 9. Contour plot of Pareto-optimal boundaries.

6. CONCLUSION

This paper presented a comparative analysis of the incremental and non-incremental state-space predictive controls
formulations applied to the control of a single inverted pendulum system. By using the concept of dominated solutions
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and Pareto boundaries, the comparison was carried out in terms of the performance of three conflicting objectives, namely
(1) fast response to setpoint changes, (2) robustness with respect to model uncertainties and (3) low sensitivity to sensor
noise, for a range of MPC tuning parameters (prediction horizonN , prediction controlM and a design parameterρ).
Moreover, three methodologies for the visualization of Pareto optimal solutions were proposed to help in the decision
concerning the choice of the most appropriate control formulation. The first technique is based on projections of the joint
Pareto boundary on each plane defined by a pair of objectives.The second, called level diagrams, consists of representing
each objective and design parameter on separate diagrams according to the distance of the non-dominated solutions to the
origin. The third strategy is based on the contour plot of thePareto boundaries represented in the spherical coordinates.

It is worth noting that when is defined the area where one formulation has a better performance than the other, using
for example the projections of the joint Pareto boundary, itis possible to readjust the parameters of the controller or even
switch to another control strategy in the presence of some fault in the sensors or actuators. In this paper, was analysed the
performance of the system in the presence of a fault in the motor power and in the sensor.

Future works could extend this investigation by considering other control techniques (not restricted to MPC), as well
as the use of different performance objectives.
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