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Abstract. Model predictive control (MPC) designates a class of movingzon optimal control techniques based on the
use of a process model to make predictions of the plant ou@wer the past 30 years, several MPC formulations have
been reported in the literature. These formulations diffem each other mainly in the type of process and disturbance
models adopted, as well as in the cost function to be min@miz&iven a specific problem, the selection of the most
appropriate MPC approach may not be straightforward. Intfamntrol tasks usually involve multiple conflicting ob-
jectives, which cannot be easily combined in a single paréorce index for comparative assessment of different dontro
laws. Moreover, the proper use of MPC requires the tuningeoesal design parameters such as horizon lengths and
cost function weights. Therefore, a fair comparison betwgedictive controllers can only be carried out if they have
been suitably tuned with respect to the control objectivesgen consideration. This paper presents a multi-objectipe
proach for comparison of control strategies employing tbacepts of dominance and Pareto optimality. This approach
is illustrated in a simulated case study involving the cohtif an inverted pendulum coupled to a cart. Three conflictin
objectives are considered, namely (1) fast response t@isgtphanges in the cart position, (2) robustness with respe
to model uncertainties and (3) low sensitivity to sensoseoilwo different MPC formulations are compared in terms of
their Pareto boundaries for these three objectives. Thelteshow that the proposed approach may be a useful aid in the
selection and tuning of appropriate controllers for a givask.
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1. INTRODUCTION

The control and regulation of an inverted pendulum on a g benchmark problem in control systems theory.
This plant is naturally unstable with fast, nonlinear anebrsgly coupled multivariable dynamics. Because of those
characteristics, the inverted pendulum system is ofted tsgerify the effectiveness of control techniques (Wu ang L
2007). Along the years, many control formulations have lzgmiied to this problem such as neural network control (Jung
Cho and Hsia, 2007), fuzzy logic control (Zhao and Li, 20@@pportional-integral-derivative (PID) control (NouroD
and Chan, 2007), sliding mode control (Demirtas, Altun astdribullu, 2008)H ., (Wu and Liu, 2007), backstepping
(Ebrahim and Murphy, 2005) and model-based predictiverob(itu et al. (2007)). The related research results are
widely applied in many fields, such as in military industgyase flight and robots (Gao et al. (2007)).

Model-based Predictive Control (MPC) comprises diffener@thods such as generalized predictive control (GPC)
(Clarke et al. (1987)), dynamic matrix control (DMC) (Cutend Ramaker, 1980), predictive functional control (PFC)
(Richalet et al. (1978)) among several others (Camacho anddBs, 1999). The control law is based on the prediction,
obtained by the model of the controlled process, in order twimmize the difference between the process output and
the reference signal over a certain time horizon. AdvargageMPC include the possibility of handling multivariable,
time-delay control problems, subject to constraints in $tees and actuators. Moreover, robustness with respect to
model mismatch and unmodelled dynamics can also be ach{slaadejowski, 2002). However, there are many different
formulations and many tunable parameters that need to kmdemed in the design of a predictive controller. Therefore
choosing the most appropriate MPC approach for a given egdfn may not be a straightforward task. Another issue
that may complicate the design of a predictive controllehis presence of multiple conflicting engineering objectjve
which may not be easily translated into a single cost fumctio

The present paper presents a multi-objective approachadimparing and tuning some predictive control strategies
employing the concepts of dominance and Pareto optimalikys approach is illustrated in a simulated case study in-
volving the control of a single inverted pendulum coupledteoart. Three conflicting objectives are considered, namely
(1) fast response to setpoint changes in the cart posit®)rrppustness with respect to model uncertainties and (8) lo
sensitivity to sensor noise. Two different MPC formulasare compared in terms of their Pareto boundaries for these
three objectives.

The paper is organized as follows: The single inverted pkmdunodel is presented in Section 2. Section 3 describes
the formulations of Model-based Predictive Control usedhis work. Concepts related to multi-objective controller
evaluation are presented in Section 4. Finally, sectionsgiilees the results and section 6 the conclusions.
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2. SINGLE INVERTED PENDULUM

Figure 1 presents a schematic of the Single Inverted Penmd(SUP) with two Degrees-Of-Freedom (DOF) mounted
on a linear cart. The dynamic model of this system is obtamedagrange’s method considering as the single input the
cart driving force produced by the motary), and the Lagrangian coordinates (generalized coordihatebeing the cart
linear position §.) and the pendulum angle from the upright positiai). (

Y Te
R 7 A

Ypj---mmme - "

Pendulum’s center

of gravity
r%> 0 g

F.>0

Tp ; X

Figure 1. Description of the single inverted pendulum

This model assumes that the mass of the SIP is concentratecanter of gravity. So, the total potential energy of
the system is expressed by the following equation:

Vr =M, gl, cos (a(t)) Q)

wherel,, is the pendulum mass,is the gravity acceleration ariglis the pendulum length from pivot to center of gravity
as shown in Fig. 1.

The cart’s total kinetic energy is the sum of the translaldmetic energy of the motorized caft,;, and the rotational
kinetic energy due to the cart’s DC motdi,., as expressed below:

. ( : (t>)2 o 1 B3 ()"

1
5 5 Ze
2 dt 2 T

Tct TCT
1 Jm K2\ (d ?

where M is the total mass of the system, is the cart linear position/,, is the rotor moment of inertial{, is the
planetary gearbox gear ratio ang, is the motor pinion radius.

The pendulum'’s total kinetic energy is the sum of the penaitdiranslational kinetic energ¥,,;., and the pendulum’s
rotational kinetic energyl,,., as expressed below

T,= 1M, \/ (%xp<t>>2+ (% yp<t>>2+§ (G a<t>>2 ®)

Tpt Tpr

wherel, is the pendulum moment of inertia with respect to the cenitgravity. The linear velocity’s x-coordinate and
y-coordinate of the pendulum’s center of gravity is deteredi by:

L) = (o) ~tpeosta) (4 )

Gl = ~tsin(a) (5 a0)
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Finally the total kinetic energy of the system is the sum of ) and (2), which can be expressed by:

1 d 2 d d
Tr = §(MC + M,,) (Ezc(t)> — My 1, cos(a(t)) <Ea(t)> (gxc(t)) +
Lo ar,2) (Lo i 4
(0400, 2) (o) @
By definition, the two Lagrange’s equations are expressed by
0 0
<78t 9Lan(t) (Tr — VT)) - (8IL'C (Tr — VT)) = Quec (5)
and:
0 0
<78t 9L alt) (Tr — VT)) - (a—a(TT - VT)) = Qa (6)

where the generalized forc@, ., applied on the coordinate., and the generalized fore@,,, applied on the coordinate
«, can be defined as follows, neglecting the Coulomb frictippli@d to the linear cart and the force on the linear cart due
to the pendulum’s action,

Quult) = Fit) ~ Buy (rul0) and Qu(t) = -5, (o0 %

whereB,, and B, are the viscous damping coefficient seen by the pendulumteniehotor pinion, respectively.
Finally, solving and rearranging the Lagrange’s Equati@)snd (6) results in the following non-linear equations of
motion of the single inverted pendulum:

: 2
Loty = = (L, + My 12) Beg (La(t)) — (M2 I3+ I, M, 1,)) sin(a(t)) (La(t))
e (Mo + My) I, + M. My, 12 + M2 12 sin(a(t))?
—M, 1, cos(a(t))B, (%a(t)) + ([p + M, 1127) E, o
(M, + M,) I, + M M, 2 + M2 12sin(at))2
My 13 g cos(a(t)) sin(a(t))
(M + M,) I, + M, M, 2 + M2 12 sin(at))?2

+

d—Qa(t) _ (Mc + Mp)Mp gly sin(a(t)) - (Mc + Mp)Bp (%O‘(t))
a2 (M. + M,) I, + M, M, 12 + M2 IZsin(a(t))?
. 2
— M2 2 sin((t)) cos(a(t)) (La(t))” — My I cos(a(t))Beg (ac(t))
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+
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A linearized state-space representation of Eq. (8) andd@)be obtained by considering small departure angles,
from the upright vertical position. Far(t) = [a z. ¢ #.]” the continuous-time state-space model will be

z(t) = Aux(t)+ Bult)
L 2 on (0
where
[0 0 1 0
0 0 0 1
A = 0 g M2 12 Beq(M, 1241,) M, 1, B,
(McAMp)I,+Me My 12— (Mc+Mp)Ip+Me My, 12— (Mc+M,)T,+Mc M, 12
0 M, g lp(Mo+M,) My, lp Beg (Mo+Mp)B,
(Mc+Mp)I,+Me My 12— (Mo+Mp)I,+Me My 12— (Mo+Mp)I,+M, M, 12
0
0
B = I,+My 12 C = L 000
(Mo+My)I,+M; M, 12 01 00
| (McA+M,)I,+M. M, 12
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Finally, for I, = 7.88 x 1073 kg.m?, M. = 1.0731 kg, M,, = 0.230kg, I, = 0.3365m, By, = 5.4 N.m.s/rad,
B, = 0.0024 N.m.s/rad andg = 9.81m/s?, and using a sampling time 6f1 s with a presence of a zero-order hold at
the plantinput, Eq. (10) can be discretized as

{ x(k+1) = Awxk)+ Bu(k) (11)
y(k) = Cux(k)
where
1 0.0055 0.059 0.0002 0.0054
A 0 1.1277 —0.0964 0.1038 B 0.0127 C— 1 0 0 0
“ | 0 0.0944 0.3082 0.0052 ~ | 0.0909 10100
0 2.5648 —1.6652 1.1194 0.2187

3. MODEL-BASED PREDICTIVE CONTROL

The objective of the Model-based Predictive Control (MP€)a achieve the best sequence of control actions that
makes the output of the plant follow some reference signaldd that, as shown in Figure 2, MPC employs the plant
model to predict the output up W steps ahead, whet® is the prediction horizon length. Using those predicticars,
optimizer computes the control sequence that minimizestfoaction and respects the constraints.

Cost
Function Constraints

N a(k|k (k
Z% Optimizer 3 (k) Plant *)
Gk +i— 1k 120k +i|k)
i=1,..., i=1,...,N
! Prediction :
Model |

Predictive Controller
Figure 2. Discrete-time predictive controller employirigte feedback

Among the several MPC formulations, this paper will be caned with a Non-Incremental and an Incremental state-
space formulation. Those techniques introduce an integeatthe plant input, in order to achieve offset-free tragkof
a step reference signal (Maciejowski, 2002).

3.1 Non-incremental state-space formulation
This formulation employs the following cost function:

J =

i

Gk + k) —ry (k+0))* + p Y _ [At(k +i — 1]k)]* (12)

N M
=1 i=1

wherey(k+1i|k) is the expected output at tinket- i calculated on the basis of the measured stétg, M is the prediction
horizon control Au(k+i—1|k) = u(k+i—1|k) —u(k+i—2|k) is the future control increment at tinket- ¢ — 1, 7, (k+14)
is the reference signal at timke+ ¢ andp > 0 is a design parameter. Decreasing the valuetehds to increase the speed
of the closed-loop response at the cost of larger controledind greater sensitivity to measurement noise (Macisfaw
2002).

By using the following notation:

Gk + 1]k) r(k + 1) a(k|k) Au(klk)
g2k || k) ak + 1]k) Adi(k + 1[k)

I
-
I

J(k + N|k) r(k+ N) ak + M — 1|k) Atk + M — 1|k)
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the cost function can be rewritten as
J = —RT(Y - R)+ pAUTAU (13)
Considering the state-space model in Eqg. (11), the rel&@ween Y and U is of the form

CB 0 0 0 CA
CAB CB 0 o 0 CA?
Y — CA%B CAB CB ... 0 U+ cA3 X (k)
CAN-1B CAN-2B (CAN-3B CB CAN
HyxnN QNx1
FUN><1
or
Y=HU+ Fy (14)
Moreover, the relation betwedn and AU can be expressed as
u(klk) 10 -+ 0 Au(kl|k) u(k —1)
u(k + 1|k) 11 -+ 0 Au(k + 11k) u(k —1)
: =1 . . : + : (15)
u(k + N —1]k) 11 1 Au(k + N — 1|k) u(k —1)
U Tn AUNx1 1n-u(k—1)
or
U=Tn AU + 1y u(k—1) (16)
wherel y is a column vector ofV unit elements. Finally, from Eq. (14) and (16), it followsth
Y =HTy AU + H 1y u(k — 1) + Q z(k) (17)
N——
GNxN Fnx1
or
Y=GAU+F (18)
By replacing Eq (18) in (13) the cost function can be rewniths
J = [GAU+F—R]" [GAU+F—R|+pAUT AU
= AU [GT G+pIN] AU+2(F—R)" GAU + (F — R)"(F — R)
which has a minimum at
AU* = [GT G+plIn] " GT (R—F) (19)
The optimal control increment at tinieis given by the first element adkU™, i.e.
(20)

AT (k|k) = Kype (R — F)

where
Kypo=[10 - 0[G"G+pIx] GT
IxN NxN
Then, a discrete-time integrator is used to calculate tiérobto be applied to the plant:

u*(klk) = u(k — 1) + Au™(k|k)
In usual MPC formulations, the control is kept fixed after atcol horizon of M steps within the prediction horizon
(Camacho and Bordons, 1999). By imposiivg(k + M — 1]k) = 0for M < i < N, the lastV — M elements of vector
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U become equal ta(k + M — 1|k). As a result,H must be replaced with matri¥ zzp, in which the first(M — 1)
columns are equal to the corresponding column&iand theM ** column equals the sum of columis to NV of H, i.e.

CB 0 0 .. 0
CAB CB 0 e 0
2
Hnpp — | CA’B CAB CB . 0 (21)
CAN-1B CAN=2B cAN=3p ... YN cAN-Mp
Moreover, the prediction equation (18) becomes
[ Au(k|k) T
. : A(k|k)
w M -1
Y =Gnxn u(k:—|—0 2 +F = GRrED : +r
Au(k + M — 1|k)
L 0 -

whereGrgp is an(N x M) matrix corresponding to the firgt/ columns ofG. Therefore,H andG must be replaced
respectively withH zpp andG rgp, in the optimal control calculations.

3.2 Incremental state-space formulation

This formulation also employs the cost function defined in @Q). However, insted of using Equations (14) and (16)
to obtain a prediction equation of the form (18), an incretakstate-space model will be adopted. For this purpose, Eq.
(11) is rewritten as

{ Ax(k+1) = AAz(k)+ B Au(k)

Aylk) = CAx(k) (22)

whereAxz (k) = z(k) —z(k — 1), Au(k) = u(k) — u(k — 1) andAy(k) = y(k) — y(k —1). As shown in (Lopes, 2007),
this incremental model can be used to obtain a predictioatouof the form
AY = H AU + Q Ax(k) (23)

whereAY = [Aj(k + 1|k) AG(k +2|k) --- Ag(k+ N|k)]" andH andQ matrices are those defined in the previous
formulation. The relation betweetY andY can be expressed as

Gk + 1]k) 10 - 0 AG(k + 1]k) y(k)
y(k + 2|k) 11 -0 AG(k + 2|k) y(k)
. =1 . . . . + .
J(k + NIk) 1 1 - 1] | Ag(k+ NJk) y(k)
N—
Y TN AYle 1N y(k)
or
Y =Ty AY + 1y y(k) (24)
From Eq. (23) and (24),
Y =Ty H AU + Ty Q Ax(k) + 1n - y(k)
N——"
G F
ie.,
Y=GAU+F (25)

Equation (25) is the same form of Eq. (18). Therefore, thénmgdtcontrol increment can be obtained by using Eq.
(20). Itis worth noting thats in (25) are numerically equal to the corresponding matric€48). In fact, it can be shown
thatTy H (expression fof in Eq. (25)) equaldi T’y (expression fot5 in Eq. (18)). The only difference with respect to
the previous formulation consists of the expression fortterm, which is now calculated frothz (k) andy(k), instead
of z(k) andu(k — 1). This difference may lead to a different behaviour in thesprece of sensor noise.
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4. MULTI-OBJETIVE CONTROLLER EVALUATION

Most real-world problems involve multiple conflicting objéves. In such cases, improving one objective may degrade
the performance in terms of one or more of the other objestiidhe process of optimizing a collectionaf objective
functions in a simultaneous manner is called multi-obyentiptimization or vector optimization (Marler and Aror&d2),
which can be expressed by (Takahashi, 2007):

0" = arg min f(0) (26)
wheref € R" is the vector of parameters that must be tuned Afgl : R™ — R™ is a functional comprising the
objectivesfi, fa,. .., fin-

By considering, without loss of generality, that the objeefunctions must be minimized, a solutiéf?) is said to be
dominated by if the following conditions are both satisfied:

e The solutio") is not worse thaid(® for all the objectives, i.ef;(01)) < f;(0)) forall j € {1,...,m}.
e The solutiond) is strictly better thar9(®) for at least one objective, i.ef;(01)) < f;(0)) for some; €
{1,...,m}.

If (1) is not dominated by any other solutigne R™, then it is said to be non-dominated in the search space of
the problem. The set of all non-dominated solutions fornes gb-called Pareto-optimal boundary (or simply Pareto
boundary), as illustrated in Fig. 3 fat = 2 objectives.

Pareto-optimal
boundary

o Dominated solutions
*Non-dominated solutions

Objective 2

Objective 1
Figure 3. Pareto-optimal boundary for = 2 objectives.

The solutions of the Pareto boundary are optimal in the stivadhere are no better solution when all the objectives
are considered simultaneously.

In this paperm = 3 objectives were considered for the SIP namély: fast response to setpoint changes in the cart
position,(2) robustness with respect to model uncertainties@ndow sensitivity to sensor noise. The parameter vector
0 comprises the parametehs M andp of the predictive controller.

The fist objective was quantified by the rise timig)for a20 ¢m step in the set-point in the absence of measurement
error and model mismatch. MoreovéF, was determined as the time required for the plant outputp reach90%
of the steady-state value. The second objective, robustnigls respect to model uncertainties, was quantified by the
standard deviationo(r oy 7) Of the plant output evaluated considering a losg@f in the motor power. In this case,
was added two quantizations that represent the tachoretgamns. One of this sensor, with a step of quantization of
0.0015 rd, represents the tachometer of the pendulum angle. Thesheor, with a step @2749-10~5 m, simulates the
tachometer of the car position. Finally, the third objeetilow sensitivity to sensor noise, was quantified by thedstech
deviation ¢ o) Of the controlled output. It was computed by considerirgdngle and the position tachometers, and
neglecting the model mismatch due to the loss in the motorepo®oror oy, andoyoas evaluations, the reference
signal was maintained at a constant value of zero.

For each combination a¥, M andp in therangeg < M < N < 30 with unit step and.5 < p < 30 with a0.5 step
a set of non-dominated solutions was obtained for each MR@Ulation using digital simulation in thiatLab/Simulink
environment with at** orderRunge-Kuttasolver and a fixed step size 6001s. The velocities were estimated from the
position readings by using second-order derivative filteith the following transfer function:

62.83197 - s

G(s) = 27
(5) = 27500 628319 5 7 62.8319° (27)
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5. RESULTS AND DISCUSSION

The Pareto boundaries in two-dimensional plots, obtainetthé linear interpolation of the non-dominated solutions,
for the two MPC formulations are presented in Figure 4. Asloaseen in this figure, all of the objectives are conflicting
with each other.

R —Non- 1 = 1 -
3801 K3 ‘_.m?:?erl::r:?;ig:?; F&E':Iatlon\ =Non-Incremental Formulation| =Non-Incremental Formulation|
3 u 0.9 -+Incremental Formulation 09 _[r**Incremental Formulation
£ 360
£ B _. 08| . 1 .08
o K 2 2
3 340F 5 - -
3 B Sort e 1 "o
o P :
320t \\ 06f B, : 0.6
30:? L L L L 0.5 L e, L L L 0.5 L
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Figure 4. Two-dimensional plots for the Pareto-optimal iaries.

Figure 5 presents the Pareto boundaries for the two MPC fiations considering the three objectives simultaneously.
These boundaries were generated by cubic interpolatidmeofibn-dominated solutions.

(a) Non—-Incremental state-space formulation (b) Incremental state-space formulation

i 400
: 390
380 - e 3
360 e , o
SgauLr (MM 320 340 nowm (MM

320
Opaurr(Mm) 300”340

(c) Superimposed graphs

1.2 Non-Incremental Formulation
Incrementa| Formulation

380 360 380

340 360
320 o, (mm)
T ppLr(MM) 300 340 NoM

Figure 5. Pareto-optimal boundaries for Non-Incrementdllmcremental state-space formulations.

A joint Pareto boundary, presented in Fig. 6, can also be rgége by gathering the solutions obtained by both
formulations and retaining the non-dominated ones. It by merging sections of the individual boundaries shown

in Figures 5a and 5b. Therefore, depending on the relatipoitance assigned to each objective, one MPC formulation
will be more appropriate than the other.

400
380 —= 440

360 w0 B
a0 380

320 ~ 360
FeauLt (MM) 300 340 nom (MM)

Figure 6. Joint Pareto boundary for the two MPC formulations

Decisions concerning the choice of MPC formulations cowddhitade by analyzing the two-dimensional plots pre-
sented in Fig 7. These plots depict projections of the joareB® boundary on each plane defined by a pair of objectives.
The labels indicate sections corresponding to the indali@areto boundary of each formulation.
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Figure 7. Projections of the joint Pareto boundary for Nanrémental and Incremental state-space formulations.

As can be seenin Fig. 7a, the best compromise betweap ;- ando oy IS obtained by using the non-incremental
state-space formulation. On the other hand, Figures 7b arsth@w that the incremental state-space formulation offers

the best compromise t6,.

An alternative visualization method consists of the use @fdl Diagrams (Blasco et al., (2008)). For this purpose,
each objective is normalized to the inter{@l1]. The distance of the non-dominated solutions to the origegrding to a
suitable norm) are then plotted against each objective aok eptimization parameter. The resulting graphs, obtHiye
using 2-norm distances, are presented in Figure 8. Thexgitds possible to analyse the relation between the obgesti
and the optimization parameters. The best compromise ani@three normalized objectives can be defined as the
solution closest to the origin. In this case, it is obtaingahbn-incremental state-space formulation with=4, N =7
andp = 0.5. Itis worth noting that, according to Figure 8, faf > 11,1 < N < 50r N > 13, andp > 2 all the

solutions are dominated.
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Figure 8. Level Diagrams for Incremental and Non-Increrakstite-space formulations.

Other visualization strategy proposed in this work was tseeaf the contour plot of the spherical coordinates as shown
in Fig. 9, where the color chart represents the radial distda origin. Thus it is possible to visualize the region vehisr
preferred the use of one formulation rather than the other on

(a) Incremental state-space Formulation

80

(b) Non-Incrental state-space Formulation
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L
90 20 30 40

50
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Figure 9. Contour plot of Pareto-optimal boundaries.

6. CONCLUSION

70

Optimal Solution

80

90

This paper presented a comparative analysis of the incretn@md non-incremental state-space predictive controls
formulations applied to the control of a single inverted ghelmm system. By using the concept of dominated solutions
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and Pareto boundaries, the comparison was carried outirstef the performance of three conflicting objectives, ngmel
(1) fast response to setpoint changes, (2) robustness edfiect to model uncertainties and (3) low sensitivity taseen
noise, for a range of MPC tuning parameters (predictionZworiV, prediction controlM and a design parametgy.
Moreover, three methodologies for the visualization ofd®awoptimal solutions were proposed to help in the decision
concerning the choice of the most appropriate control fdatmn. The first technique is based on projections of thetjoi
Pareto boundary on each plane defined by a pair of objeciifessecond, called level diagrams, consists of repreggntin
each objective and design parameter on separate diagraorsiang to the distance of the non-dominated solutionseo th
origin. The third strategy is based on the contour plot ofRaeeto boundaries represented in the spherical coordinate

It is worth noting that when is defined the area where one fdaititan has a better performance than the other, using
for example the projections of the joint Pareto boundaiig, ffossible to readjust the parameters of the controllevene
switch to another control strategy in the presence of somiéifathe sensors or actuators. In this paper, was analysed t
performance of the system in the presence of a fault in thenpaiwer and in the sensor.

Future works could extend this investigation by considgother control techniques (not restricted to MPC), as well
as the use of different performance objectives.
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