
Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

Formal comprehensiveness and uniformity and semantic intra and intermodel
consistency in the representation of Discrete Event Dynamic System models

Wilson M. Arata
University of São Paulo, Escola Politécnica, Brazil
wimarata@usp.br

Paulo E. Miyagi
University of São Paulo, Escola Politécnica, Brazil
pemiyagi@usp.br

Abstract. A remarkable characteristic in the research on Discrete Event Dynamic Systems, such as productive systems,
manufacturing systems, and information systems, is the heterogeneity of models. Due to the specific nature of these models,
there are cases where multiple and heterogeneous models are necessary so that an adequate coverage of system aspects
and of analytic results can be provided. This work discusses issues on the computational representation of these models,
more specifically, that an adequate treatment of the formal heterogeneity of models and of their integration, mainly the
semantic aspects of it, can enhance the workflow of computationally supported modeling and analysis experiments.

Keywords: Discrete Event Dynamic Systems, tools, modeling, analysis

1. Introduction

Under the perspective of Discrete Event Dynamic Systems (DEDS) (Cassandras,1993), an important class of system
can be described and analysed, such as productive systems, manufacturing systems and information systems. A charac-
teristic of DEDS is the multiplicity and diversity of modeling and analysis approaches, each one of them dealing with
specific aspects of systems and dynamics and providing different types of information. If a wide range of system and
dynamics characteristics and of analytical results is required, it is likely that one has to consider the use of multiple and
heterogenous models. In this context, it is important that computational tools capable of dealing with this heterogeneity
be available. This work discusses some important aspects of the infrastructure, mainly those related to the representation
of information, that these tools should provide so that a fluid and efficient workflow in modeling and analysis experiments
can be achieved.

This work focus on two sides of modeling and analysis experiments. The first one is on the need to deal with struc-
turally different formal descriptions relative to each heterogeneous model, basically, due to the constraints determined
by the mathematical formalisms used to analyze them. The other one is on the semantics of the models, that is, what
they mean in terms of entities, facts and relationships observed in system and respective dynamics under examination.
Specifically, it is shown how both parts should be implemented so that computationally supported modeling and analysis
experiments can take full advantage of them.

Besides this section, there are a section on how to deal with the formal differences of heterogeneous models, another
on the representation of the semantics of DEDS models, a section with an example of how to implement and use the
descriptions treated on the previous sections, and conclusions.

2. Modeling and analysis environments

All computational modeling and analysis related to DEDS take place within Modeling and Analysis Environments
(MAEs), that are the focus in this section. Ultimately, models are computationally handled in the form of numerical-
symbolic constructs and the role of a MAE is to process numerical-symbolic constructs and generate numerical-symbolic
constructs. The numerical-symbolic constructs are given the generic denomination of structures in the text that follows.

2.1 Mathematical description of MAEs and mapping models into them

Mathematically, a MAE A can be described by a triple A = 〈LC , LB , CA〉.
LC = 〈TC , EC〉 is a model composition language that provides the descriptive elements that comprise model repre-

sentations, where TC is the set of terms from which structures are made and EC is the set of all valid (according to a
certain criteria) structures — Figure 1(a) shows examples of TC and EC , the latter being a set of model representations
expressed, in this example, by forms whose fields are correctly filled with the elements of the former.

LB = 〈PB , EB〉 is a model building language, such that PB is the set of operations on TC (in LC) provided by this
language and EB is the set of all structures that can be built using operations in PB and terms in TC — Figure 1(b) shows
examples of PB , EB and the application of some operations in PB in the construction of filled and semi-filled forms that

jokamoto
 ABCM Symposium Series in Mechatronics - Vol. 2 - pp.723-730 Copyright © 2006 by ABCM

Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

:a
:c :d
:b

:a
:c :d
:b

P(A,j)

I(A,j),1

I(A,j),2

O(A,j),1

O(A,j),2

O(A,j),3(d)

:a
:b

E B

:a
:c :d
:b

a
b

c
d

p
q

p

q
PB

:_ :_

(b)

:a
:b
:c :e

b

ed
c

a

TC

E C

E B

PB

:a
:b

a
b

d
c

:c :d

p
q
r

p

q

r

(c)

(a)

ΩΦ

pn1

pn2

pn3

EC

EτLC ,Φ

Φ = Petri Nets

r2

r2 = τLC ,Φ(pn2)

EB

EC

PA

OA
EτLC ,Φ

IA

(e)

(f)

Figure 1. Elements of a MAE

belong to EB ; in Figure 1(c), another example shows a building language that provides operations to construct fragments
of forms (operations p and q) and an operation r to compose complete forms from fragments.

CA = {C(A,1), . . . , C(A,nA)} is a set representing the analytical capacity of the MAE, where C(A,j) is a triple
〈P(A,j), I(A,j), O(A,j)〉, where P(A,j) is a procedure implementing an analysis, I(A,j) = (I(A,j),1, . . . , I(A,j),n(A,j),I

) and
O(A,j) = (O(A,j),1, . . . , O(A,j),n(A,j),O

) are, respectively, the tuples whose elements are sets from which inputs are taken
and to which the results from the procedure belong; so, an execution of P(A,j) takes i(A,j) = (i(A,j),1, . . . , i(A,j),n(A,j),I

)
as input and generate o(A,j) = (o(A,j),1, . . . , o(A,j),n(A,j),O

) as results, where i(A,j),k ∈ I(A,j),k, k ∈ [1, n(A,j),I] and
o(A,j),k ∈ O(A,j),k, k ∈ [1, n(A,j),O] — Figure 1(d) schematically illustrates a representation of a C(A,j), where a proce-
dure take two structures as input and generate three structures as results.

Throughout the text, mentions to modeling language usually refer to the pair 〈LB , LC〉, what is clear by the context.
Along with mathematical models of MAEs, DEDS models are introduced by means of a transcription function τLC ,Φ :

ΩΦ −→ EC , where LC stands for a model composition language, Φ for a model type (like Petri Net (Murata,1989)
or Markov Chain (Kulkarni,1995)), ΩΦ for the set of all models of type Φ and EC for the set of all valid models in
LC . Considering this function, there is a subset EτLC ,Φ

of EC such that ∀µ ∈ ΩΦ, τLC ,Φ(µ) ∈ EτLC ,Φ
and ∀r ∈

EτLC ,Φ
,∃µ, τLC ,Φ(µ) = r. In other words, EτLC ,Φ

is the set of all representations of models of type Φ in language LC .
Figure 1(e) presents an example involving Petri net.

2.2 Interpreting target sets

Important features of MAE can be visualized by means of some of the sets introduced in the previous subsections.
They are given the denomination of target sets. The sets EC , EB , I(A,j),k(j ∈ [1, nA], k ∈ [1, n(A,j),I]) and EτLC ,Φ

are the target sets of the model composition language (LC), the model building language (LB), the inputs of the j-th
procedures (P(A,j)) and the transcription of models of type Φ onto a language LC respectively. They should be interpreted
as the expressive power of modeling language, the modeling language’s capacity of building structures (in computational
programs, it can be related to the pattern of interaction presented by their user interfaces to build model representations),
the structures that can be analysed by a procedure, and (the models of) type Φ respectively.

As an example of how diagrams with target sets can be interpreted, considering Figure 1(f), with respect to a model
type Φ, it is easy to visualize that a language LC and a transcription τLC ,Φ has been adequately provided so that models of
Φ can be represented within LC , as represented by EτLC ,Φ

⊂ EC ; analogously, EτLC ,Φ
⊂ EB indicates that LB is able

to generate the representations of Φ; in the same way, EτLC ,Φ
⊂ IA indicate that the representations of Φ can be analyzed

Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

µ1 (tipo Φ1)

EB,nΦ

(a)

nΦ MAEs

µ1 (tipo Φ1)

EB

EC
(b)transcription

target sets

µnΦ
(tipo ΦnΦ

) µnΦ
(tipo ΦnΦ

)

EB,1

type specific MAEs

EτLC ,Φ1
= EC,1 = IA,1

EτLC ,ΦnΦ
= EC,nΦ

= IA,nΦ

Figure 2. MAEs for heterogeneous models: (a) type specific (heterogeneous) MAEs and (b) comprehensive MAE

by PA; for completeness purposes, it is shown that the results of PA are structures not covered by any of the target sets.
Figure 2 illustrates two cases handling heterogeneous models. In Figure 2(a), each type of model is handled by a

specific MAE, as indicated by the target sets. In Figure 2(b), all types of models are represented using a comprehensive
model composition and building languages, including the results of the procedures implementing mathematical analysis.
Both configurations are further discussed in the text.

Depending on model building language LB = 〈PB , EB〉, if appropriate operations are provided in PB , the process
of building model representations can occur with the participation of several operations. In this case, besides the aimed
model representation, the process generates intermediary structures, as it is the case of the already discussed Figures 1(b)
and 1(c). In the same figures, it is easy to understand that it is possible to reuse substructures to build multiple model rep-
resentations. This feature is interesting when many models with common parts have to be built in an experiment. Another
characteristic is that, the greater the number of intermediary structures, more paths to the aimed model representations
can be followed, as it can support diverse model representation building paths. Again, this can be used to support varied
configurations of modeling and analysis experiments.

So, since this work is oriented to enhance the productivity of experiments, it assumes that stepwise operations are
provided by the building language in the examples; also, the size of target set of the building language, that correlates
with the amount of intermediary structures, can be seen as a measure of the flexibility of this language.

Regarding the composition language, consider the following definition:

Definition 2..1
An ideally comprehensive and uniform modeling language is one that, with the same set of terms and complex structure
composition rules, is capable of building representations of models of an indefinite number of types.

A conclusion from this definition is that, in the case of uniform comprehensive modeling language, the inclusion of
a new type of models is a matter of finding a suitable transcription function. The uniformity is specially important when
a new type of model is to be considered: Figure 3(a) shows an example of a nonuniform model composition language
LC (with target set EC and covering model type Φ1) that, in order to expand its coverage to model type Φ2, it must be
replaced by a language L′

C (with target set E′

C); observe that, due to the nonuniformity, there is an impact on the model
building language, that has to be extended (from EB to E′

B) to deal with the representations of models of Φ2.
Due to the flexibility of the model composition language, there are two problems that must be addressed: the ambiguity

and the redundancy of representations.
The ambiguity of representations occurs if there are two (or more) transcription functions that map two (or more)

models of different types into a same structure, as illustrated in Figure 3(b). For example, when analysing a set of
models of type Φ1, a problem arises if representations of model of type Φ2 are inadvertently included in the assemble of
structures to undergo the same analysis: the origin of the inconsistencies in the results can be difficult to track down. In
programming language, a similar problem is addressed by type systems (Cardelli and Wegner, 1985) and, along this line,
Arata and Miyagi(2003) describes an implementation that employs typed terms so that this confusion can be avoided.

The redundancy of representations occurs if there are two (or more) transcription functions for models of the same type
(as illustrated in Figure 3(c)). The problem here is the possible duplication of cost in utilization of resources (like model
storage costs) and in the management of these differences if both representation schemes are involved in a experiment. A
metamodel-based reference scheme is presented in (Arata and Miyagi,2003) that supports the standardization needed to,
at least, minimize this problem.

2.3 Analysis of configurations of MAE

Let the configuration in Figure 2(a) be called Heterogeneous MAE (HM) configuration and and that in Figure 2(b),
Comprehensive MAE (CM) configuration. Observe, in the latter, that the languages LC and LB and the procedures
implementing the analysis are conceived in a way that the results of the procedures are also expressed by LC , easing the

Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

Φ2

Φ1

EB

EC

E′

C

E′

B
(a)

r r′

τLC ,Φ τ ′

LC ,Φ

µΦµΦ2
µΦ1

r

τLC ,Φ2

(b) (c)

τLC ,Φ1

Figure 3. Issues of comprehensive modeling languages: (a) nonuniformity, (b) ambiguity and (c) redundancy

use of the analysis results as inputs to other analyses. Furthermore, it is considered that the model composition language
in CM configuration is comprehensive and uniform.

Introducing costs to enable other comparisons, let us assume that the experiments that are considered are identical,
with same models, analyses and operation sequence patterns and, thus, same storage and operational costs. The compre-
hensiveness and uniformity of the language in the CM configuration becomes evident, as the number of types of models
increases, by constant learning (in training users) and implementation costs relative to the MAE; in the HM configuration,
these two costs tends to increase as new MAEs are implemented for each new type of models.

Comparing, at first, the case where there is no integration of models, that is, experiments dealing with one type of
model at a time, the costs to compare are those essentially related to the implementation and learning. In this case,
one can conclude that, as the heterogeneity of model types increases, the situation becomes more favorable to the CM
configuration.

When model integration occurs, the costs in switching contexts of work in the HM configuration, consequence of the
handling of heterogeneous models in different MAEs, must be considered. So, as the degree of integration increases, there
is a stronger tendency to the adoption of the CM configuration.

Therefore, there are two main factors that make the CM configuration a better choice: the heterogeneity of model
types and a workflow that involves an integration of heterogeneous models.

Thus, at this point, it is possible to enumerate important features that an extensible MAE for heterogeneous mod-
els should present: the elements of MAE and the transcriptions of different types must be coordinated, comprehensive
and uniform model composition language, flexible model building language, analytical extensibility (to incorporate new
analysis procedures), ambiguity avoidance mechanisms, and redundance minimization mechanisms.

These guidelines are important to computationally support an effective workflow in modeling and analysis experiments
involving heterogeneity, benefiting application and research projects as a wider coverage of aspects can achieved and more
techniques can be developed and applied.

3. Representing the semantics of models

An important part of the modeling and analysis experiments has a formal orientation, like when ensuring the well-
formedness of models and in the application of mathematical analysis techniques. However, the semantics of models is
equally important. In this context, semantics refers to the meaning, that is, to what is being represented by them. So, the
semantics of models corresponds to what is observed in the dynamics being treated, and the same must be true for the
results of the analysis of those models. Normally, this must be ensured during the conception models.

This text proposes a structured and consistent representation scheme of the semantics involved in modeling and anal-
ysis experiments as a means to present the information provided by the models in a relatively uniform way: so, to obtain
information about dynamics being modeled, instead of having to deal with diverse mathematical constructs (reflecting the
heterogeneity of models), it can be derived from a set of semantics-oriented descriptions presented in a uniform manner.
Thus, it is shown that an adequate representation of the semantics can bring different improvements to computationally
supported modeling and analysis experiments, particularly when intra and intermodel consistency is observed. For that
purpose, predicate-based representations of semantics are presented.

3.1 Representing with terms, functors and predicates

In the representations of semantics presented here, the most basic element is the term. Terms are used mainly to
represent entities or in the formation of functors or predicates.

Functors are a form to represent objects with complex structures and they are similar to the functors adopted in logic
programming languages like Prolog (Deransart et al., 1996). Functors have the following syntax:
<name>(<argument>,...,<argument>)

Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

free(M)

end(assbl(M,pA and pB))

free(bufB)

free(bufA)

init(assbl(M,pA and pB))

assbl(M,pA and pB)

wait(pA,assbl(M,pA and pB))

wait(pB,assbl(M,pA and pB))

arrival(pA,bufA)

arrival(pB,bufB)

enable(free(M) and

cause(init(assbl(M,pA and pB)),

at(free(M),initialState).
at(free(bufA),initialState).
at(free(bufB),initialState).

wait(pB,assbl(M,pA and pB))),
init(assbl(M,pA and pB)).

assbl(M,pA and pB) and
free(bufA) and
free(bufB)).

wait(pA,assbl(M,pA and pB)) and

Figure 4. Annotated Petri net and predicates describing it

that is, it has, in the beginning, a name followed by a list of terms, other functors or logical expression involving functors
within parentheses. Functors can be nested indefinitely.

The functors process(M,p),init(process(M,p)) and end(process(M,p)) can be used to express “machine M process a
part p”, “Initiating the processing of a part p by machine M” and “Ending the processing of a part p by machine M”.

Expressions involving functors can be constructed by the use of the conjunctive operator and. For example, the
expression init(process(M,p) and go(p,labA)) can be used to represent “start of processing by machine M on a part p
that is destined to be sent to laboratory labA (for tests)”. One important aspect of expression is the inferability: from this
expression, it is possible to infer the occurrence of process(Machine,part); the same can be said of go(part,labA). This
is important in the achievement of consistency in the representation of semantic information.

Predicates are used to state that a fact is true. Predicates have the same basic form as functors, that is, a name followed
by, in parentheses, a list of arguments that can be terms or functors (or expressions with functors), except that there is a
period at the end and predicates cannot be nested.

For example, the predicate at(process(M,p),s12) can be employed to indicate that the statement “at state s12, machine
M is processing a part p” is true.

3.2 Representing facts described by a model

Basically, the approach presented here is to associate representations in the form of terms, functors or expressions to
elements of models. That representations are denominated annotations. The descriptions of what the model as whole is
expressing is represented by predicates.

An effort should be dedicated to the consistency in the representation of facts, so that, if a fact occurs in various
situations, there is a way to infer that occurrence from the description of each of these situations. So, if a situation
presents that fact, relationships involving the latter can be relevant to that situation.

Considering the Petri net in Figure 4, the transitions represents the beginning and the end of a condition (annotated
by functor assbl(M,pA and pB)). Both the beginning and the end refers to the same condition, and it is reflected in the
functors that annotate the transitions have the same argument. So annotations are useful in relating model componentes to
the elements they correspond in the dynamics being modeled and to reproduce the relationships between those elements.

The idea here is to represent the semantic interpretations of facts described by a model. The pattern expressed by
a model represents the relationships between what is represented by its elements. So, from the pattern that constitute
a model and the representation of the semantic interpretation of its elements, one can expect that representations of
the semantic interpretations of facts described by the model can be built. This facts can be expressed by means of the
predicates involving terms and functors that annotates the elements of the model.

With annotations and the specific pattern described by the models, it is possible to derive the predicates describing
semantic aspects os those models. For example, the Petri net in Figure 4 models an assembly operation by a machine M on
a part of type A and another of type B; the parts must be in buffers bufA and bufB before the operation begins; the buffers
can hold one part at most at a time. The predicates on the right side of the figure can be elaborated. The enable predicate
represents the conditions that must be present to enable the begining of the assembly operation (init(assbl(M,pA and
pB))), that is, machine M is free (free(M)) and parts of types A and B in the buffers (functors wait). The cause predicate
indicates what happens as the assembly operation is initiated: the buffers are released (functors free) and assembly is
executed (assbl(M,pA and pB)). The at predicates indicate that, in the initial state, machine M and buffers bufA and
bufB are free. Note that these predicates can be constructed computationally.

3.3 Semantic bindings between different models

There are cases where elements of different models of the same system and dynamics are semantically bound. A no-
torious case is that of the isomorphism between stochastic Petri nets (SPN) and continuous-time Markov chains (CTMC)

Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

m1

m2

s1

s2

s12

s3m3

m12

state12
semantic
binding

reachability graph graph

Markov
state transitionPetri net

wait(p,process(M,p)) process(M,p)

free(M)free(buf)
(1,0,1,0)

(0,1,10)

(1,0,0,1)

(0,1,01)

t3

t3

t1

t2

t1

t2 t3t1

state4

p1

4

p3

p2 p4

(b)(a)

Figure 5. Semantic bindings: SPN-CTMC isomorphism and predicates involving PN annotations and markings

arrival(signal(inspection))

signal(inspection)

process(M,p)

end(process(M,p)
and inspection)

end(process(M,p))wait(p,process(M,p))

free(M) wait(p,process(M,p)) process(M,p)

free(buf)

µ

free(M)

p4

p1 p3

p2

µ = 0.2 part/min

(a) (b)

µ = 0.2 part/min

µi = 0.15 part/min

λs = 0.005 inspection/min

p1

p2

process(M,p)
and inspection

p3

p4
p5

p6

p7

t1

t2
t3

t4

t5

t6

Figure 6. GSPN models

(Molloy, 1980), one consequence of which is that their state transition graphs are topologically identical and the stochastic
timings associated to the transitions have the same exponential distributions. Considering an example of this case and the
predicate elements, one form to represent this binding is to associate both a SPN marking m12 and the isomorphic CTMC
state s12 to a same term, for example, state12, as pictorially described in Figure 5(a). So, references to the term state12
refer to what is modeled by both the SPN marking and the CTMC state. The use of the same term is an expression of
the bindings between these two models and it is a way to ensure the consistency of the representations of the semantic
information relative to SPN markings and CTMC states.

Considering the example in Figure 5(b), a Petri net and its respective reachability graph are shown; also, follow-
ing the guidelines given in the last paragraphs, a term, state4, is used to represent the marking displayed by the Petri
net. With this term and the annotations in the places containing tokens, predicates like at(state4,processing(M,p)) and
at(state4,waiting(p,processing(M,p))) can be elaborated to denote that, in that state, machine M is processing a part p
and a part p is waiting for processing in machine M, describing that particular marking. This is an example of propaga-
tion of elements of the semantic representations from one model to another, what can be seen as a display of intermodel
consistency.

The consideration of semantic bindings is an important element in the representation of integration of models. Such
bindings are also considered in, for example, the hierarchical model composition in the SHARPE system (Trivedi, 2002)
and in the Möbius framework (Sanders et al., 2003) (as formalisms are described in terms of the components defined in
the framework).

4. Examples

The generalized stochastic Petri net (GSPN) (Marsan, 1984) in Figure 6(a) models a service center where a processing
machine M performs jobs on parts, with a buffer that can hold just one part to be processed. Part processing by M ocurr
at rate µ = 0.2 part/min. As soon the buffer is released, a new part gets into it. Inspections are made in the processing
of parts from time to time; an inspection occurs as soon as a processing cycle begin after the inspection signal is set. The
inspected processing has an execution rate of µi, that is smaller than the the uninspected processing rate µ (equal to the
rate of the previous example), due to measurements to be made. The next inspection signal is issued, in average, after an
interval of time given by 1/λs (according to an exponential distribution) since the beginning of the current inspection.

The analysis of this model is made by generating the timed reachability graph (that describes the tangible markings and
the timed and imediate transtion firings between them), construction of the isomorphic Markov chain and the calculation
of the stedy state probabilities from the chain. Just to simplify the examples, an assumption is made so that only examples
of generalized stochastic Petri nets without conflicts between imediate transitions are considered.

The following examples consider the modeling language presented by Arata and Miyagi (2003). It is a language that
can express the representations of many types of models using some basic (called atomic) types and two complex type

Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

P is atomic; TT is atomic; IT is atomic;
MarkingType is setof (place is P,

MarkedGSPNType is (
tokens is Integer);

Places is setof P,
TimedTransitions is setof TT,
ImediateTransitions is setof IT,
ITT is setof (arc is (place is P,

transition is T),
weight is Integer),

IIT is setof(arc is (place is P,
transition is T),

OTT is setof(arc is (transition is T,
place is P),

weight is Integer),

place is P),

Marking is MarkingType
);

OIT is setof(arc is (transition is T,

weight is Integer),

weight is Integer),

S is atomic;
CTMCType is

(states is setof S,
transitions is
setof (origin is S, end is S, rate is Real)
);

SteadyStateDistribution is
setof (state is S, probability is Real);

(a)

(b)

(c)

(d)

setof (origin is MarkingType,
end is MarkingType,
timedTranstion is TT,

setof (order is Integer,
transition is IT)

TimedReachabilityGraphType is

);

imediateTranstitions is

Figure 7. Metamodels of Marked GSPN, Timed Reachability Graphs, Continuous-Time Markov Chains and Steady-State
Probability Distribution

GSPN model representation
#
gspnmodel →
({p1,p2,p3,p4,p5,p6,p7},
{t1,t2,t3,t4,t5,t6},
{((p1,t1),1),((p3,t3),1),((p7,t6),1)},
{((p2,t2),1),((p4,t2),1),((p4,t5),1),((p5,t2),1),
((p5,t5),1),((p6,t4),1),((p1,t5),1)},

{((t1,p2),1),((t3,p5),1),((t6,p5),1)},
{((t2,p1),1),((t2,p3),1),((t2,p6),1),((t5,p1),1),
((t4,p4),1),((t5,p6),1),((t5,p7),1)},

{(p1,1),(p2,0),(p3,0),(p4,0),
(p5,1),(p6,1),(p7,0)}

);

(m1,m2,t1,{}),
(m2,m3,t6,{(1,t2),(2,t4)}),
(m3,m1,t3,{(1,t5),(2,t4)}),
(m3,m4,t1,{}),
(m4,m3,t3,{(1,t2),(2,t4)})

};

timed reachability graph representation
#
trg → {(m1,m1,t6,{(1,t5)}),

({s1,s2,s3,s4},
{(s1,s2,0.005),(s2,s3,0.150),(s4,s3,0.200),
(s3,s4,0.005),(s3,s1,0.200)}

);

isomorphic CTMC representation
#
isoctmc →

{(s1,0.944),(s2,0.031),
(s3,0.024),(s4,0.001)};

steady state probabilities representation
#
distprob →

marking m1
m2, m3 and m4 omitted
m → {(p1,1),(p2,0),(p3,0),(p4,1),

(p5,0),(p6,0),(p7,1)};

Figure 8. Representations of the models involved in the analysis of the GSPN in Figure 6(a)

building constructs (homogeneous typed sets and tuples). The basic procedure is to, first, define metamodels for the types
to be represented, that can be used as reference of how representations of models of a certain type should be constructed
and to well-formedness checking procedures. Figure 7 presents the metamodels of Petri Net, timed reachability graph,
Markov Chains and steady state probabilities of Markov Chains. For example, Continous-Time Markov Chains are
described by CTMCType, that is a two-element tuple where the first one is the set of states of the chain and the second one
is the set of the state transitions, each represented by a tuple denoting the “origin” state, the “end” state, and the rate of the
transition. In Figure 8, the representations of the models relative to the current example is presented. The representations
of the models, despite their differences, are all expressed using the same lexical and syntatic elements; the differences in
the representations are inherent to the heterogeneity and so they are to meet the well-formedness requirements set by the
mathematical analysis techniques. Then, in Figure 9(a), the predicates relative to the models are presented; in this case,
instead of the heterogeneity of the structures of the representations directed to mathematical analysis, a flatter description
(i.e., without the need to understand the intricacies of each mathematical model) is provided; notice that the consistent
representation of the semantic bindings is important to achieve this flatness.

Considering the model in Figure 6(b), it models the same system in a similar operation, except that there is no inspec-
tion. Making the same analysis and generating the same models, the predicates generated are presented in Figure 9(b).
The use of the same predicates and terms as those in the previous example allows to easily visualize the relationships
between different dynamics. In fact, it is also possible to define a common analysis procedure to execute computations
on the both sets of predicates, since, for these examples, they both have the necessary elements to calculate the respective
throughput of the completion of activity denoted by process(M,p).

Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

rate(process(M,p),.2).
rate(process(M,p) and inspecting,.15).
rate(arrival(signal(inspection)),.005).
in(state1,StateSpace_inspection).
in(state2,StateSpace_inspection).
in(state3,StateSpace_inspection).
in(state4,StateSpace_inspection).
at(process(M,p),state1).
at(process(M,p) and inspecting,state2).
at(process(M,p) and inspecting,state3).
at(process(M,p),state4).
prob(state1,.915).
prob(state2,.023).
prob(state3,.030).
prob(state4,.032).

(a)

rate(process(M,p),0.2)
in(state0,StateSpace)
at(process(M,p),state)
prob(state,1)

(b)

Figure 9. Two sets of predicates describing the models generated in experiments involving analysis of the GSPNs in
Figures 6(a) and 6(b) respectively

5. Conclusions

From the set-based description of the interactions between model types and modeling languages, helpful in the visu-
alization of the configurations that these elements can assume, plus the consideration of costs, this work concludes that
comprehensiveness and uniformity are important features in the modeling languages when dealing with heterogeneity of
DEDS models. While these aspects support a coexistence of heterogeneous models within a computational environment,
this work presents descriptions based on the semantics of models as a means to represent (and, so, to take advantage
of) the integration of models: in this case, the main feature to achive is the consistency in the representation of these
descriptions. In short, this paper proposes that these approaches, as long uniformity and consistency are observed, must
be seriously considered in computational environments supporting DEDS modeling and analysis experiments.

6. Acknowledgements

The authors gratefully acknowledge the financial support to the present project of the Brazilian Governmental Agen-
cies CNPq, CAPES and FAPESP. Particularly, the authors would like to thank TIDIA/KyaTera program under which this
work is developed.

7. References

Arata, W.M. and Miyagi, P.E.,2003, "Uniform computational treatment of heterogeneous discrete-event dynamic sys-
tem models", Proceedings of 9th IEEE International Conference on Emerging Technologies and Factory Automa-
tion,Lisbon, Portugal, pp.47-53.

Cardelli, L. and Wegner, P., 1985, “On Understanding Types, Data Abstraction, and Polymorphism”, ACM Computing
Surveys, Vol.17, No. 4, pp.471-522.

Cassandras, C.G., 1993, ‘ ‘Discrete Event Systems: Modeling and Performance Analysis”, Richard D. Irwin Inc., Burr
Ridge, USA.

Deransart, P., Cervoni,L. and Ed-Dbali,A., 1996, “Prolog: the standard: reference manual”, Springer-Verlag, London,
UK.

Kulkarni, V.G., 1995, “Modeling and Analysis of Stochastic Systems”, Chapman & Hall, London, UK.
Marsan, M.A., Conte, G. and Balbo, G., 1984, “A class of generalized stochastic Petri nets for the performance evaluation

of multiprocessor systems”, ACM Transactions on Computer Systems, Vol. 2, No. 2,pp. 93-122.
Molloy, M.K., 1980, “Performance Analysis Using Stochastic Petri Nets”, IEEE Transactions on Computers, Vol. C-31 ,

No. 9, pp. 913-917.
Murata, T., 1989, “Petri Nets: Properties, Analysis and Applications”, Proceedings of IEEE, Vol. 77, No. 4, pp. 541-580.
Sanders, W.H., Courtney, T., Deavours, D., Daly, D., Derisavi, S. and Lam, 2003, “Multi-formalism and Multi-solution-

method Modeling Frameworks: The MÃűbius Approach”, Proceedings of the Symposium on Performance Evaluation
- Stories and Perspectives, Vienna, Austria pp. 241-256.

Trivedi, K.S., 2002, “SHARPE 2002: Symbolic Hierarchical Automated Reliability and Performance Eval-
uator”, Proceedings of2002 International Conference on Dependable Systems and Networks (DSN 2002),
http://csdl.computer.org/comp/proceedings/ dsn/2002/1597/00/15970544.pdf.

