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Abstract.In this paper we present a hybrid architecture that combines deliberative motion plan, local reactive behaviors
and human-initiated inputs. The deliberative motion plan is described by an approximated navigational function created
over a map of the environment. This function has a unique global minimum at a desired goal destination, and by using
this function the robot can navigate autonomously to the goal. While navigating the robot senses the world and detects
unpredicted obstacles along the way, and by using local reactive behaviors the robot avoids obstacles without disregarding
the motion plan. At any point, the user can give inputs that are incorporated into the system. We combine these three
distinct and at times conflicting control inputs in a proper way. We implemented this architecture on a robotic wheelchair
and we show some experimental results. In our experiments the user uses a joystick to provide inputs to the system.
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1. Introduction

Mobile robots can help humans on a variety of tasks, such as, material handling, transport, surveillance, demining,
assistance to people with disabilities, housekeeping, etc. In order to perform such tasks the robot should have some degree
of autonomy. But at the same time, a completely autonomous system is not necessarily suitable for all application domains.
In fact, some applications, such as, robotic wheelchairs and manned robotic vehicles, may require intensive human-robot
interaction. Whatever is the case, the robot should have an intelligent control system allowing the robot to operate in
dynamic and unpredictable environments. This system is responsible for taking decisions based on previously acquired
global knowledge of the environment and/or on-the-spot sensed local information in order to successfully accomplish the
task. If the application requires interaction with the user, this intelligent control system should integrate the user’s input
in a proper way.

Mobile robot architectures provide a guideline to build intelligent control systems for robots. An architecture describes
what components or building blocks the system should have, how these components are organized to form the system,
and how they interact with each other giving the control system its functionality.

Mobile robot architecture can be classified according to the relationship between sensing, planning and acting com-
ponents inside the architecture. Based on this, there are three types of architectures: deliberative, reactive and hybrid
(deliberative/reactive).

In deliberative architectures, there is a planning step in between sensing and acting. This planning is based on a
map of the environment acquired by the sensors, and no action can be took without planning. Reactive architectures are
composed by a set of reactive behaviors and there is no planning based on a global map or model of the environment. In
these reactive behaviors sensing is directly associated with acting. Hybrid architectures combine elements from the other
two architectures, i.e., they combine deliberative motion plans with reactive behaviors.

When we compare deliberative architectures with reactive architectures we observe that deliberative architectures
work in a more predictable way, have a high dependency of a precise and complete model of the world, and they can
generate optimized trajectories for the robot. On the other end, reactive architectures have a faster response to dynamic
changes in the environment, can work without a model of the world, and are computationally much simpler. Finally,
hybrid architectures try to present the best characteristics of the other two architectures.

In most assistive devices, such as robotic wheelchairs, the operator and the robot must share the control of the system.
On this type of application, the robotic system is able to increase precision of the movements, assure the user’s safety,
and help to decrease the user’s fatigue. But also the user should be able to interact with the robotic system at any time to
express his or her will.

Wheelchair researchers have taken different approaches to incorporate human inputs into the control loop. One strategy
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is to allow the user to command directions to the chair directly and use the autonomous system for ensuring safety by
avoiding obstacles (Miller and Slack, 1995). Another is to have the wheelchair perform specified behaviors, such as
following a person or tracking a line (Simpson and Levine, 1999), (Borgolte et al., 1998). At an even higher level, it is
beneficial to be able to automatically navigate to locations on a map (Bourhis and Agostini, 1998).At this level, landmarks
or known targets are used to navigate to the desired location (Gomi and Griffith, 1998), (Crisman and Cleary, 1998).

In previous work we presented a control framework developed to combine the user’s input with a deliberative motion
plan and reactive obstacle avoidance behavior (Parikh et al., 2004). We also presented an usability study conducted with a
robotic wheelchair running the developed control framework (Parikh et al., 2005). Here our main contribution is to define
a hybrid (deliberative/reactive) mobile robot architecture that allows the user to interact with the system at the different
levels mentioned before. This architecture was developed to be applied on a robotic wheelchair but we believe it can also
be applied to other mobile robotic applications where human-robot interaction is required. We describe in this paper each
one of the components of the developed architecture and how they are integrated in the whole system.

In section 2, we describe our architecture. We discuss the motion planner, reactive behaviors, human inputs and how
the inputs provided by these three components are coordinated. In section 3 we present some experimental results. Finally,
in section 4 we conclude discussing some aspects of the developed architecture.

2. Hybrid Deliberative/Reactive Architecture

The developed hybrid architecture for human-robot interaction is composed by the following main components: sens-
ing modules, mapping and localization modules, motion planner, reactive behaviors, input coordinator, and actuator
modules. The user interact with the system through the available interfaces. The mapping module generates a map of
the environment that can be made available to the user. This map is also used by the motion planner to generate a global
deliberative motion plan when the user gives a destination goal for the robot. Figure 1 shows a representation of this
architecture.
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Figure 1. Diagram of the developed architecture.

In this architecture three sources of control input are coordinated and brought together resulting on a single control
input that is sent to the actuators. These three control inputs comes from the deliberative motion pjatinereactive
behavior,u,, and the user’s inputsy,. Each of these is & x 1 vector function,u(t), which appears in Eqg. 3. These
three sources are independent and parallel from each other and they do not necessarily occur together all the time. For
example, if the motion planner is not activated, the robot can be driven using only the user’s input together with the
reactive behaviors. The available control inputs goes to the input coordinator module that applies the heuristic that is
presented in this paper to find a suitable control input for the actuators. We will see that at every instant, each vector will
define a half-space it?, which we will denote byJ, or U,. We will compute a feasible sef, as the intersection of the
appropriate half spaces. The input coordinator will make use of this feasible set to find the control input to be sent to the
robot’s actuators.

In the remaining of this section, we present the model used for the robot, each one of the components of the architec-
ture, and more details of how the three inputs are coordinated.

2.1 System Model

Here we model the robot as a two-wheeled, nonholonomic cart-like robot. The governing equations are well-known
(Ma, KoSecka and Sastry, 1999):
& = vcos(0)
Y = vsin(6) @)

b=uw,
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wherev = [v,w]T, consists of the forward velocity, and angular velocityy, while (x,y) are the coordinates of the
center of the wheel axle in an inertial franteis the angle that the robot coordinate system forms with the inertial frame.
As seen in Fig. 2, generally, we describe features (obstacles, targets, et¢;) 4y, wheref; is the angle of the feature
relative to the robot ang; is the corresponding range.

Figure 2. Model of the systenfz, y) is the coordinate of the midpoint of the axle while., y.) is the point that is being
controlled.

In what follows, we consider a simplified two-dimensional configuration space giverbj.., y.]”, the coordinates
of a reference point on the wheelchair. From Eq. (1), we can write:

. Zo\ _ [cosf —dsinf) (v
1= (yc) o (sin0 dcos@) (w) = Jv. 2)

Because/ is always invertible iid is nonzero, we can consider the linear decoupled model:

q=(}) ?)u. @)

Any input vectoru can be mapped to.

We approximate the robot’s shape as being a circle of radaentered at the control poifit., y.). When necessary,
we grow obstacles in the environment byo plan safe trajectories. Our goal in the next section is to synthesize feedback
controllers,u(g, s(t), h(t)), wheres(t) = [f1, z1, fa, 22, ..., [p, 2p) IS information about features in the environment
while h(t) is a2 x 1 input vector that is obtained from the operator’s joystick. We will assume that the robot has a perfect
estimator for the state of the vehicle and therefore. of

2.2 Motion Planning

One way the user can interact with the system is by selecting on a map a position to where the user wants the robot
navigates. By selecting this goal, a deliberative motion plan for the robot is created.

In order to obtain this deliberative motion plan, we would like to use a global navigation function as described by
Rimon and Koditschek (1992). However, it is difficult to compute this function instantaneously, so instead, we compute
an approximate navigation function by using dynamic programming on an occupancy grid. The occupancy grid is based
on known obstacles, such as walls and tables, from a map of the environment. Since this function does not satisfy all
the properties of a navigation function, it is called a potential function. However, it does have a unique global minimum
at the desired goal. The scalar potential field or navigation function is denotedghy Because the construction of
this function assumes a nominal map of the environment, we call this resulting controller a deliberative behavior. This
contrasts to other works where potential field controllers are called reactive because they do not assume a map of the
environment. These reactive potential field controllers are simply based on the sum of repulsive and attractive potential
fields and can present many local minimum.

To reach the desired goal, the robot must follow a motion plan that satisfies the conitait 0. This constraint is
satisfied when the robot moves along the negative gradient of the poterfial,g). Thus, the preferred controller used
in this method is:

q=ug =—-Ve(q). (4)

In fact, —V¢(q) is not the only control input that moves the robot to the goal. Any control input in the same half space
of —V¢(q) is a feasible controller (Esposito and Kumar, 2002). So, as seen in Fig. 3 {lgfi3, the half space which
contains all velocity vectors that the robot can follow that satisfy “the potential field constraint.” This is exploited in the
following sections to combine reactive behaviors and human inputs with a deliberative motion plan.
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2.3 Reactive Behaviors

The set of reactive behaviors that should be implemented in an intelligent control system depends on the robot's
application domain. Some examples of reactive behaviors are: follow a person, keep a desired formation with other
robots, navigate on the middle of a hallway, navigate through a doorway, dock by a table or desk, avoid obstacles, stop
when the robot is too close to an obstacle, etc.

Here we are mainly interested on navigation tasks. For this reason in what follow we show how to combine the
deliberative motion plan with local reactive obstacle avoidance behavior. We assume that the robot has a map of the
environment that includes static obstacles. However, the robot haspnori knowledge of unmodeled or dynamic
obstacles that it may encounter while heading towards the goal.

If obstacles are detected within a specified minimum distance around the robot, the obstacle avoidance algorithm may
need to be activated. The detection of objects can be done by any of the available sensors. The distance between the robot
and an object measured by the sensorisand the angle of the object relative to the roboffis If § is a minimum
distance that is required between the robot and an obstacle, japid«if J, the robot will switch to an obstacle avoidance
behavior. In this case, the robot moves away from the obstacle while driving towards the desired target given by the
deliberative plan. The obstacle acts as a constraint to our deliberative plan, which is representedjbly;, fi, q¢). We
defineg; so that, ag; increasesg; < 0. In order not to violate the constraint, we need an input that mgkes0, where

dila(t) = 2 . (5)

The simple controly, = —Vg(¢) guarantees that; < 0. Accordingly we define a half spack,, that contains a set of

robot configurations which will not collide into the obstacle. The feasible set is the intersection of the half plane given by
the potential field[/,, and the half plane given by the obstacle constrdigt, As seen in Fig. 3F' = U, N U, and the

goal is to select an input that makes< 0 (decrease the distance to the goal) as wel;as 0 (increase the distance to

the obstacle). Any. which exists in the sef’ is a feasible controller. So whenewey is not in the feasible spadg, we
projectu, onto the boundary of the feasible spdce

safety boundary

A

7777 ] ¢: const
Figure 3.U, is the half plane consistent with the deliberative motion plan (left). On the right, the feasible region is the
intersection of/; and the half-space given by the obstacle-free configuration space.

2.4 Human Inputs

As mentioned before, the user can interact with the system at a high level by specifying a goal destination on a map.
Independently if a goal destination is set or not, at any moment the user can also give a low level input to the system.
These low level inputs can be manual velocity commands, and the user could use a joystick like interface to input these
type of commands.

We define a hierarchical, prioritized framework to combine human inputs with deliberative plans and reactive behav-
iors. In this framework, safety is obviously the highest priority. So we would like the human user to maintain control of
the system, while keeping our first priority of safety. Only in safe situations when the human user is not providing any
input information can autonomous behaviors be invoked.

When the human user manually inputs a command, we have various methods for handling the input. In the simplest
case, when there is not a desired goal select, we can allow the user to have complete control of the wheelchair. In this
situation,uy, is the human input vector and the controller is simply defined asuy,.

However, since safety is one of our top priorities, it is important to combine user-initiated inputs with local obstacle
avoidance. If the user is manually driving the wheelchair and comes across an obstacle, there are two methods that will
allow us to avoid a collision: either drive around it or stop. Before either of these are done, the first step is to check if
the user’s inputyuy,, will result in a collision. As seen in Fig. 4 (left), if the human input is in the feasible half plane,

Uy, then the controller input is simply, = ;. Since the user is not trying to enter a constrained region, we allow him
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or her complete control similar to the case without any obstacles. However, if the user’s input is located in the obstacle
constrained region, then we need to either stop moving or allow the user partial control in a manner that is consistent
with the constraint. In Fig. 4 on the right, the user’s input is located in the constrained region. In the constrained region,
there is a threshold that denotes the stopping region. If the user input is in the constrained region, but outside of the
stopping region, then the user is allowed partial control of the motion. Partial control is given by projecting the human
input onto the boundary of the obstacle constraint. This allows the chair to nominally move in the direction specified by
the user while also avoiding the obstacle. Thus, Eqg. (6) permits the user to keep limited control of the wheelchair without
a collision.

w= (un - )ty = Ilunl| cos(B)E, ®)
where

. (Vg)*

= Vg0 T @

However, if the inputy, is within the stopping region, the human input cannot be modified to make it consistent with the
constraint and is therefore considered unsafe, resulting in the chair being stopped.

Stopping

-v(@ Region

)

sefety boundary U=l cos(B) ¥ sefety boundary

Figure 4. Human input is consistent with half plane given by the obstacle-free configuration space (left). On the right,
although the user’s input is within the constrained region, by projecting the input into the feasible region, we allow the
user to maintain limited control of the wheelchair without a collision.

| Unodified

" p=const

Figure 5. The feasible region is the half plane contairing¢(q) (left). On the right, the human input occurs outside of
the feasible region and is modified to conform with the goal constraint.

Along with combining human inputs with local behaviors, we are also interested in combining user inputs with a
deliberative plan. In this case, the user has selected a desired target that he or she wants to reach. While using a deliberative
plan to reach the goal, the user may decide to deviate from the path to perform a subtask. If the user’s input is consistent
with the goal, i.e.u;, € Uy, then we allow the user to maintain complete control of the wheelchair,us, as seen in
Fig. 5. If the user’s input is not consistent with the goal, then, similar to the obstacle constraint, there are two options
available. The first is to modify the user’s input to conform with the goal. Figure 5 (right) illustrates the case where the
human input is within the goal constrained region and is projected to the boundary of the feasible half plane. This allows
the user to have limited control of the wheelchair while conforming with the potential field controller. The controller:

u = (up - t4)ts (8)

where

©)
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modifies the human inputy;,, by projecting it to the tangent of the potential field line. This keeps the robot motion
consistent withp < 0, which means the goal has not been abandoned. If the user is persistent, i.e. the input is beyond
a threshold, then the goal is disregarded and the human is given complete manual control of the chair. The threshold
corresponds to a cone in the space of velocities as seen in Fig. 5 (right). Note that the plane delineating the liajf-space

is not a hard constraint as is the case with an obstacle. Thus, the user has greater flexibility in this case.

2.5 Input Coordinator

The input coordinator module in the architecture is responsible to apply the rules described so far in order to combine
all the three control inputs (deliberative motion plan, reactive behaviors, and human inputs).

In summary, as long as the user’s input is contained in the feasible space we allow the human to intervene and take
control of the motion. In other words, = u,, if u, € Uy NU,. However when the user’s input is not consistent with either
the goal-oriented deliberative motion plan or the reactive obstacle avoidance, we apply the rules previously described in
this section. If a goal exists, we compare the user’s input with the goal-oriented motion plan. Then we either modify the
user’s input or we drop the goal constraint preserving the user’s input. After that, the resultant input is compared with the
obstacle avoidance constraint. If necessary, the input is again modified to preserve the safety of the user. This allows the
user maximum control while preventing collisions.

Figure 6 shows the algorithm (pseudo-code) used to combine the three control inputs.

uw:=0
if goal is specifiedhen
Ugp = _v¢(Q)
if userinputu, then
© := angle between vectar, and vecton,
if o> 7m/2andp < pmi then
u := projection ofuy, into the half-space defined hy,
else

U= up
end if
else
U= Uy
end if
elseif userinputhen
U= up

end if
if obstacle close and # 0 then
ug = —Vg(q)

~ := angle between vectarand vecton,
if v>n/2andy < yim: then
u := projection ofu into the half-space defined hy,
elseif Y > Viimit then
u:=0
end if
end if
Usew as control input for the wheelchair

Figure 6. Algorithm for combining deliberative plans, reactive behaviors and human inputs.

3. Results

We implemented the described control system on a robotic wheelchair equipped with onboard processing and a suite
of sensors. The chair has a omni-directional camera, mounted over the user’'s head, that allows the user to view 360
degrees around the wheelchair. Along with the vision system, there is a laser scanner, which is mounted in the front
of the wheelchair, under the user’s feet. The laser measures distances at every half degree through a 180 degree scan.
Similarly, IR Proximity sensors are placed on the back of the chair to detect any obstacles located behind the wheelchair.
Lastly, encoders on the motors provide a dead reckoning system for the wheelchair. This is augmented, when necessary,
by vision-based localization with landmarks on the ceiling. The wheelchair platform is discussed in greater detail by Rao
et al. (2002).

We run several experiments with the implemented control system. For all the experiments we used odometry to
represent ground truth because simple tests conducted revealed that for the distances traveled during the experiments the
errors in odometry were not significative (Patel et al., 2002).

Figure 7 shows an overhead view of one of the rooms where the experiments were conducted. Overlapped to the map
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is an example of a navigation function that is generated automatically to the specified goal (Latombe, 1991), (Rimon and
Koditschek, 1992). If the wheelchair encounters obstacles on its way to the target, it switches to an obstacle avoidance
behavior to circumvent the obstacle before switching back to the deliberative plan (Esposito and Kumar, 2002).
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Figure 7. Navigation function for the user specified goal.

Figure 8 (left) shows the path followed by the wheelchair when using the autonomous mode. As seen in the figure, the
chair is guided by the potential field lines to the selected location. The chair drives completely autonomously using the
deliberative motion plan in tandem with the sensors on the system. The dashed trajectory is the path the chair would have
taken if the unmodeled obstacle were not present in the environment.

Figure 8 (right) shows a trajectory took by the chair in the semi-autonomous mode, i.e., when the user starts giving
control inputs to the chair while the chair is moving autonomously. In the figure, we point out the different controllers
that are used. It can be seen that the semi-autonomous mode involves a smooth integration of the deliberative plan with
reactive behaviors as well as human inputs.
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Figure 8. Sample trajectory taken by the wheelchair while in the autonomous mode (left). The solid black line shows

when the deliberative controller is invoked. The lighter (green) line segments represent where the activated obstacle

avoidance behavior is composed with the deliberative behavior. The dashed (blue) line is the trajectory that the chair

takes if there are no obstacles. On the right, a sample wheelchair trajectory using a deliberative plan, combined with user

input (semi-autonomous mode). Part(a) represents the deliberative path taken, part(b) represents the user’s input, which
is consistent with the deliberative plan, part(c) represents when the obstacle avoidance behavior is activated.

4. Conclusion

The main focus of this paper is to present an hybrid (deliberative/reactive) architecture developed to allow a human
user to share the control of a robot with the autonomous control system.

In the developed architecture we use an approximated navigation function to describe the deliberative motion plan.
This function defines at every instant a set of control inputs that can be used to take the robot to the specified goal.
Whenever is possible, the system uses the negative gradient of the navigation function as a preferred control input. The
reactive behaviors act as a constraint on the set of possible control inputs. This limites the choice for an appropriate
control input that conciliates the behaviors with the deliberative motion plan. Besides, human inputs are combined with
the reactive behavior and the motion plan. Our hierarchical set of rules gives priority to the user while maintaining safety.
Whenever is appropriate the user’s input is modified so that it can still complies with the goal of the motion planning.

This architecture was implemented on a robotic wheelchair and some experimental results were presented here. The
results showed the user can successfully interact with the robot at any time.

In order to simplify the implementation we use odometry as our ground truth localization and we provide a map of
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the environment to the system. In spite of this, the architecture has space for the implementation of more elaborated
localization and mapping components. In the architecture presented here the map should be represented in a geometric
form such as an occupancy grid. This is important because a navigation function must be defined over such a geometric
map. Localization also should be developed according to the resolution of this map.

The architecture presented here was developed mainly to solve navigation tasks while complying with human inputs.
For this reason only an obstacle avoidance reactive behavior was tested in the implementation. However, other types of
reactive behaviors would also be compatible with this architecture. These behaviors should be described as an inequality
constraint that limits the set of control inputs that solves the deliberative motion plan. Esposito and Kumar (2002), for
example, defines a formation control behavior as such constraint.

For future work we intend to adapt this architecture to be more suitable for general task. We also intend to explore
other kinds of reactive behaviors useful in the context of a robotic wheelchair application and combine these behaviors
with the deliberative motion planning and the user’s initiated inputs. One example of such behaviors could be getting
close to a table and parking there.
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