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Abstract. Modern developments have increased the processing capacity of controllers along with the gradual decrease 
in their price. This has enabled the construction and use of intelligent control elements in embedded applications. 
These elements, such as smart sensors and actuators, not only can pre-process sensorial data using sophisticated 
algorithms but also enables the use of multiple communication protocols linking all the existing devices. The use of 
these control elements leads clearly to the construction of a distributed environment control in which the responsibility 
for processing environment data is divided between the several parts of the system. Moreover, there can be some 
redundancy in the data collected as well as the data collected by some sensors can have a greater priority level or must 
be collected using a shorter update deadline than others. In order to orchestrate this complex communication (which is  
natural on any distributed computing environment) between the elements of such a control system, the figure of a 
network connecting all the devices and a Middleware coordinator are evident. 
This article firstly analyzes the current efforts in developing the software architecture used to support these 
requirements in terms of message coordination and processing. Based on these, a software architecture is then 
proposed in order to enable the easy integration of new control elements dynamically as well as maintaining the real 
time response of the control system. 
 
Keywords: Sensor Networks, Real-Time, AUV, Software Architecture, Embedded 
 
1. Introduction 
 
Autonomous Underwater Vehicles are mission-critical systems which must be controlled by real-time 
embedded software. This fact imposes several additional concerns and costs when developing code which 
controls such a vehicle. Moreover, the design always lead to the implementation of mission specific 
systems, therefore resulting in poor code reuse and, consequently, in higher costs [Pasetti and Pree, 1999]. 
In order to address this difficulty, several approaches have been used, from the development of components 
which enables the creation of modularized architecture which enhances code reuse to the establishment of 
development frameworks, which makes the reuse of code mandatory [Pasetti and Pree, 1999]. 
However, as can be seen on [Newman, Hill et al.] the current proposed models do not take advantage on 
the usage of modern technology and standards such as CAN (Controller Area Network) and the 
establishment of a sensor network. They also are not prepared to deal with modern sensors which acquire 
and process complex data (such as images) which, therefore, have a completely different response time and 
requires the implementation of a completely different control behavior. To end with, the control of such 
vehicles deals only with static positional data which, in the long run, limits the complexity of missions. 
Finally, the existing logical structure is still limited when dealing with a variable number of sensors and 
actuators and this can compromise the fulfillment of a mission, for example, should in the middle of it one 
of these elements break (i.e.: stop working) or fail (i.e.: work improperly) [Newman]. 
The structure of this paper is as it follows: Firstly, the existing software modeling approaches are presented 
in a way to extract from these models their upsides and downsides. A model which tries to integrate the 
best characteristics of all the studied approaches with the new technology is then presented. 
 
2. Analysis of an existing model: MOOS 
 
The MOOS (Mission Oriented Operating Suite) framework was created in 2001 as a way to establish a 
framework upon which mobile robotic software could be developed. It consists of a core database module, 
called the MOOSDB, which is used as a central repository for reading and writing data, and several base 
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‘framework’ classes. These classes provide basic functioning such as logging, navigation and mission 
control functionalities and interface classes through which hardware specific developers could develop 
code to communicate with the central database. The MOOS topology is detailed in the following sub-
section. 
 
2.1. MOOS topology 
 
The MOOS set of applications consists on two different types of modules, according to their functionality: 
• Clients: these modules are the one which really gather data, process it and control the movement of the 

vehicle. They are so called ‘clients’ because their only data source (either for writing or reading) is the 
central module, the database (MOOSDB). 

• Database (MOOSDB): this is the central module in the MOOS system. It acts as a unique common 
data source which must be used by all MOOS modules to store and read data. 

Among the existing clients, there are two different types of applications: 
• Processes: these are applications whose main objective is pure data processing, therefore not dealing 

directly with the vehicle’s sensors and actuators. Examples of this kind of applications are: pHelm, 
which deals with determining the most suitable actuation commands (but not with an actuator per se); 
pNav: which takes data from sensors and provides an estimate of the vehicle’s position and velocity 
and pLogger, which logs all the events and navigation decisions taken. 

• Interface: these are applications which are built to deal with sensors and actuators in a organized way, 
either transforming the logical actuation commands into real actuator commands or gathering only 
relevant sensor data (blocking most of the repeated data and getting only the changes). 

In order to implement a generic communication between any client and the MOOSDB, a common interface 
for data processing, requesting and storing was developed, all of it using a basic communication class 
(CMOOSCommClient) which would handle the operation in a TCP/IP network which connects all the 
clients to the MOOSDB. 
This topology is illustrated in the following picture: 
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Figure 1. MOOS Topology model 

 
The model presented is a simplified one. In the real model, each different sensor would have a 
communication link to the MOOSDB and would be internally classified into one of the following 
categories: Positional, Depth, Rotation and Velocity. In this model, also, all actuators would be linked only 
to the iActuation interface. This interface, in the proposed model, has internally only three different types 



of actuators: Elevator, which regulates the depth of the vehicle, Thrust, which is the general actuator for the 
vehicle’s velocity and Rudder, which is the general actuator for the vehicle’s rotation. 
 
2.2 MOOS model analysis 
 
It is not very hard to see that the MOOS project has a single point of failure, which is its database module 
(MOOSDB). Therefore, development efforts on optimization and error control had to be fully focused on 
this module’s development. 
It is also easy to see that this centralized development had to occur in order to centralize the actuation 
decisions in only one part of the application, so that every sensor data had to go through an analysis in 
order to determine the vehicle’s current location (pNav process) and how it impacted the mission’s 
objectives before it could result into a actuator’s order (pHelm). This process might not be so quick when 
dealing with sensors whose data needs a quick response, such as when eminent collision is detected. 
From the communication standpoint, the TCP/IP protocol proves not to be the best when dealing with 
control data. This set of protocols is not prepared to deal with priority messaging (TCP implements 
reliability but not different levels of priority between messages) and support for this kind of communication 
can be processor consuming. 
Finally, from the mission standpoint, it is easy to see that the generalization of how sensors and actuators 
affect the system does not correspond to the necessary complexity. Missions are absolute location related 
and, therefore, their definition does not include the need to, eventually, lock the underwater vehicle in a 
position relative to other underwater structure in movement. 
 
3. Proposed solution 
 
The MOOS solution is very complete and works fine when dealing with expected situations and simple 
missions. However, it does not comprise the level of complexity real-life missions might require (such as 
maintaining a position relative to another underwater object) and is limited in terms of the data sensors can 
give and actuators can process (a mechanical arm would be useless). Moreover, it does not implement an 
emergency way in which sensor data can directly interfere in an actuator’s behavior. 
In order to address these necessities, another software architecture is needed as well as another 
communication protocol between controllers, sensors and actuators. These are exposed in the following 
paper subsections. 
 
3.1. The CAN Protocol 
 
The CAN protocol is a de facto communication protocol standard between sensors and controllers which is 
widely used to implement distributed control systems in automobiles and in the industry. It specifies a bus 
topology and implements a CSMA-CA MAC layer protocol. In order to do so, before the message (or, 
payload) is transmitted in the bus, there must be a frame composed of an 11 bit identifier which is used for 
priority messaging and collision avoidance. This protocol works in the following way: 
Every node, when trying to transmit data, listens to (at most) the first 11 bits in the bus to see whether it 
really got to send the data or not. Suppose nodes 1, 2 and 3 are trying to transmit data at the same time, 
node 3 with a higher priority than 1 and 2. 
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Figure 2 CAN priority implementation 
 



When node 2 and 3 transmit 0 and node 1, 1, the bus goes to low and, as node 1 is listening to the bus, it 
knows his message is not top priority and stops transmitting data. The same occurs to node 2 when it tries 
to transmit 1 and the bus keeps in low. 
This characteristic is essential when dealing with sensors whose generated data can or not be of extreme 
importance (such as collision eminence) for the vehicle. This message driven architecture of CAN forms 
the basis for the proposed network topology and, consequently, software architecture. 
 
3.2. The proposed topology  
 
In order to address the difficulties seen in the MOOS model, the following communication model is 
proposed. In this model, all the objects are CAN enabled devices. Each of the devices is uniquely identified 
by a 16 bit header which follows the normal CAN priority header. 
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Figure 3. Proposed topology 

 
The Mission Controller acts as a planning agent responsible, therefore, for planning (and, when necessary, 
re-planning) the necessary steps to take the vehicle to the expected goal position. It is also responsible for 
examining the existing sensors and calculating the mean level of Certainty of the data presented by the 
sensors. This data is used in order to establish a policy spread by a high level message throughout the 
sensors which dictates how CAN priorities must be calculated. 
The Position Controller acts as an ‘instinct’ agent, therefore being responsible for maintain the vehicle’s 
current position. 
For each of the Sensors there is an object of the type CANDirectives. This object is responsible for the 
following actions: 
• Verify the level of certainty of the sensor in question, the priority of the data generated by the sensor 

and translate it into a priority level, according to the policy established by the mission controller. 
• Mount the message (priority and node id) and transmit it over the network, using the correct 

communication class as a basis. 
For each of the Actuators there is a MessageFilter object. This object is responsible for the following 
actions: 
• Verify if the message comes directly from a sensor with high priority or from a Mission Controller 

message (normal priority) or from a Position Controller message (normal priority).  
• If the message comes from a sensor, then it implements the reaction agent behavior, inferring directly 

in the actuator’s settings. 
• If it is a Mission/Position Controller message (normal priority) it verifies if the next 16 bits 

corresponds to the actuators id. If so, then the control message is translated to the actuator. 



Finally, the Mission Controller is apt to receive all the sensor messages (including emergency ones) which 
enable it to recalculate the necessary tasks to accomplish a certain mission or even decide for a mission 
abort action. 
Through the use of such a distributed architecture, it is possible to: 
• Control and update dynamically the tasks which accomplish a certain mission; 
• Make a direct bridge between Sensor and Actuator in emergency cases; 
• Enable a priority messaging which enables the use of several Sensors linked to the same bus at the 

same time. 
This topology is made possible by the use, when necessary, of intelligent microcontrollers (such as TINI) 
which allow the quick implementation of complex data structures and data processing logic directly on 
hardware [Eisenrach and DeMuth] using a high-level programming language (such as Java). 
 
3.3. Sensor class modeling  
 
Sensors, from the most primitive ones (whose output signal is analog and, thus, must be capured) to the 
most complex ones (which implements events and numeric output) can have their output processed 
accordingly and, thus, be modeled into several Sensor classes. 
These classes can be abstractly represented by a single sensor interface, which allows generic object 
serialization to happen in the Topology network. The idea is to create classes which are generic enough to 
be carried through the network, but with a level of information good enough to be usable by the Mission 
Controller module. This implementation uses the facade design pattern. 
The Sensor interface defines that at least four properties must be implemented by a Sensor-type class: 
• Certainty: this defines a level of certainty in the information being passed 
• Priority: this defines the level of priority in the information being passed 
• Timestamp: this value defines a timestamp which is used by the controller in order to determine if the 

information passed is still valid or not 
• Value: this represents the value which was measured by the sensor itself 
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Figure 4. Sensor hierarchy classes 

 
The first three properties can be used in order to calculate the level of priority which will be used when 
dealing with the Comm class, should it support priority handling in the link level (such as CAN). The third 
property (Timestamp), though, is essential for the controller in order to know whether the information is 
reliable or not. 
The fourth property is an object (which derives from the derived Sensor classes) which will have to be 
processed accrdingly by the controller in order to take its actions. 
 



3.4. Layer Communication modelling  
 
After modeling the Sensors, it is necessary to establish a way in which sensors and the controller can 
communicate (i.e.: How can sensors deliver their measures). In order to do so, a coherent logical structure 
is made necessary. This logical structure uses the following classes/interfaces: 
• Comm: this class represents a generic communication class, should it implement TCP/IP or CAN 

protocols. It is represented in the original topology as the CANDirectives and the MessageFilter layers. 
• Sensor_Skeleton: this class implements the sensor itself (as it was modeled in the previous part of the 

paper) and is serialized to be transmitted over the network. 
• Sensor: this interface is used by both sides of the network to provide the necessary generalization level 

when transmitting sensor data on the network. 
• Sensor_Stub: this class has both a Comm and a Sensor interface implementation and it is used to 

receive serialized Sensor objects though the network. 
• Sensor_Client: this class represents the Sensor itself in the Mission Controller or Actuator layers. 
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Figure 5. The communication classes 

 
3.5. Implementation 
 
In order to implement this design in a down-to-earth, realistic way, the chosen language was Java. Not only 
it has several ‘real-time’ facilities implemented in its virtual machine, but it also has several 
communications classes already implemented. Moreover, the usage of this language enables the design of 
hardware interfaces using TINI [Eisembach and DeMuth, 2003]. 
The Comm class in the previous diagram can be implemented as an extension to the existing CAN class 
designed to work with TINI. Several issues, though, must be taken care for from the creation of better 
methods for trying (and retrying) to send messages in general to the correct formation of frames and 
enhanced object serialization. 
Initially the implementation of a primitive set of such classes has been done via the usage of TCP classes in 
a test environment (Figure 6). Further work will support the use of CAN and CAN communication 
libraries. 
 



 
Figure 6. Partial implementation of communication classes  

 
3.6. Future work 
 
After having modeled the Sensors and how they communicate with the controller, it is necessary to model 
the Actuators in a similar, generic way. It is obviously necessary, though, to implement a ‘keep alive’ 
mechanism (which may use the exchange of statuses) so that the Actuator can, initially, announce its 
behavior/effect when moving the AUV and, from time to time, literally announce its own state (full, 
degraded performance or broken). Moreover, it must, when taking a reflective action (such as when the 
message transmitted by the sensor is really urgent), communicate the deed to the Mission Controller. 
Secondly, the Mission Controller must be implemented in such a generic way which uses all the 
information given by both sensors and actuators in order to either calculate a new strategy which 
accomplishes the objective or decides for complete mission failure. 
Finally, implementation of the communication classes must be done and a real environment must be used in 
order to produce results. A coherent test environment must be also set, using mock objects representing 
sensors and actuators in order to test the architecture implementation. 
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