
Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 

 

DEVELOPMENT OF AN OPEN DISTRIBUTED APPROACH FOR 
BUILDING AUTOMATION  

 
Gladys Bastidas  
University of São Paulo, Escola Politécnica, Brazil 
gladysbg@usp.br 
 
Paulo Eigi Miyagi 
University of São Paulo, Escola Politécnica, Brazil 
pemiyagi@usp.br 
 
Israel Benítez Pina 
University of Amazonas State, Escola Superior de Tecnologia, Brazil/ University of Oriente, Cuba  
ipina@uea.edu.br 
 
Abstract. The demand for more efficient, reliable and safe systems has beneficed the development of new concepts for 
buildings automation. These features can be achieved through an effective building systems integration. However, 
considering that each building system has unique characteristics, the requirements specification, verification, 
validation and implementation of an integrated solution are complex tasks, possibly leading to an unreliable 
automation system. Thus, an adequate approach for treat these systems, is fundamental to manage them and to assure 
effectively its integration. On the other hand, treat the building system integration with characteristics of open 
distributed systems can provide solutions for many problems related to aspects such as flexibility, investment 
preservation, connectivity and interoperability. Then, in this paper Open Distributed Processing - ODP is introduced 
as a general framework upon which open distributed system can be modeled through the viewpoint concept and the use 
of an object oriented language (Unified Modeling Language UML). The Petri net (PN) is also considered because it 
could provide a effective model analysis. In this context, the purpose of this work is to introduce an open distributed 
approach for building automation based on the merging of ODP framework, UML and PN.  
 
Keywords: building automation, ODP, UML, Petri Nets 

 
1. Introduction 
 

In the context of building automation, the functional and operational improvement of building systems is an 
imperious necessity. The purpose of this kind of automation is to allow an efficient management of resources and to 
minimize cost through the integration of its systems (Callaghan 2000). Furthermore, the integration among these 
systems should increase the productivity of the building occupants and improves comfort, management of resources, 
energy conservation and reduces costs. Therefore, the benefits of building automation lie on the selection of the most 
suitable systems to fulfill specific goals and in the integration of the various building systems in order to achieve these, 
both efficiently and economically (Wong et al.,2005, Wang and Xie, 2002).  

Considering these characteristics, building automation design can be seen as a task involving techniques and 
methods of several areas. Thus, a mechatronics approach can help to treat the integration among building systems and 
improve the performance of the building automation.  

In system automation, the development of open distributed control systems can provide solutions for many problems 
related to aspects such as flexibility, investment preservation, connectivity, interoperability with other systems and 
portability (Faroqui et al. 1995). Regarding building automation, these advantages are particularly desired once that 
allows the integration of building systems.  

Concerning the open distributed systems, the reference model of Open Distributed Processing (ODP) offers a 
general framework upon which open distributed systems can be development (Gazpos, 1996).  

In this context, the purpose of this work is to introduce a novel approach for building automation design based on 
the ODP and the utilization of object-oriented concepts through Unified Modelling Language (UML) and formal 
models such as Petri nets (PN). The PN model is used throughout the process in order to guarantee the coherence 
among the UML models from requirement analysis to implementation. Furthermore, the Petri net model allows formal 
verification of behavior properties of the automation system before implementation and testing phases, reducing costs 
and time.  

This paper is organized as follows:  Section 2 describes open distributed systems. Section 3 describes the synergetic 
merging of ODP, UML and Petri nets. In section 4 the proposed approach is introduced through an example. Finally, 
section 5 draws some conclusions and outlines future works. 

 
 
 

jokamoto
                        ABCM Symposium Series in Mechatronics - Vol. 2 - pp.150-157                        Copyright © 2006 by ABCM



2. Open Distributed Systems 
 

An open distributed system provides capabilities that enable properly implemented applications to run on a variety 
of platforms from multiple vendors and inter-operate with other systems applications. Therefore, the main motivations 
for the adoption of open distributed systems are interoperability, portability, scalability and interchange ability 
(Pianegiane, 2002; Katchabaw et al., 1999).  

In this context, when approaching the building automation systems as open distributed system all the characteristics 
of these systems should be able to allow a complete integration and an efficient management of resources and costs. For 
modeling open distributed systems, a reference model named Open Distributed Processing (ODP) has been used  
 
2.1. Reference Model ODP (Open Distributed Processing) 
 

The reference model for open distributed processing (ISO/IEC 1995) is a joint effort of the International 
Standardisation Organisation (ISO) and the International Telecommunication Union (ITU). The objective is to provide a 
unifying architectural framework for the standardisation and construction of open distributive systems (Gazpos 1996).  

This reference model address issues associated with the development of large-scale, heterogeneous, distributed 
systems in a multi-vendor environment. It provides a framework for the specification and the development of open 
distributed systems according to five different viewpoints (ISO/IEC 1995). Each ODP viewpoint provides a different 
abstraction of the systems focusing on a particular area of interest.  

The ODP identifies five well-defined viewpoints: enterprise, information, computational, engineering and 
technology:  

Enterprise viewpoint: focuses on purpose, scope, policy and boundaries of a specified system. The main concepts of 
the enterprise viewpoint are roles, communities and objectives;  

Information viewpoint: is concerned with the information and the information processing function of the system. 
How the information is structured, how it changes, information flows, and the logical divisions between independent 
functions within the system; 

Computational viewpoint: focuses on functional decomposition of the system into objects, which interact by their 
interfaces;  

Engineering viewpoint: focuses on how distributed interaction between system objects is supported (infrastructure 
required to support distributed processing);  

Technology viewpoint: concentrates on the individual hardware and software components, which make up the 
system (suitable technologies to support distributed processing).  
 
3. ODP, UML and Petri Net: A sinergetic association 

 
The ODP defines concepts and structuring rules for specifying open distributed systems. In particular ODP deals 

with the separation of concerns needed to specify different facets of a system through five viewpoints.  
It is important to observe that the ODP does not define the way of representing each viewpoint, although it imposes 

an object-oriented modeling. In the present work are used the UML diagrams. Following this trend, this work proposes 
an approach for building automation design where Petri net models and UML diagrams are alternately used, guided by 
the ODP viewpoints. On the one hand, Petri net models are a “link” among UML diagrams. On the other hand, UML 
complements Petri net models especially for object oriented aspects and systematize the analysis procedures. In the 
context of object-oriented modeling, the UML has been adopted increasingly as a pattern. Among its advantages, there 
is the ability to represent different perspectives (structural/static and behavior/dynamic) of the system and with different 
levels of details. Briefly, the UML could be described as a language that, starting from a set of basic elements (such as 
classes, use cases, interactions, states, etc) and the possible relationship among these elements (such as composition, 
inheritance, etc.), defines a set of diagrams for representing different views of the same system (OMG, 2003, Booch et 
al. 1999).  

Although its advantages, the UML has still some points to be improved (Giese et al. 1999). Among the problems are 
the system behavior description and issues concerning parallelisms, synchronism and concurrency among processes. In 
order to improve the behaviour description of the discrete aspects, some works has been development trying to merge 
UML and Petri nets (Giese et al. 1999, Baresi and Pezze 1999). The main advantage of Petri net is its effective 
formalism for representing and analysis of sequence, conflicts, resource sharing, parallelism, synchronization and 
causality process. These features make them a promising tool for describing and analyzing concurrent and real-time 
systems. In addition to their modeling power, Petri net is both a graphical tool and a mathematical formalism. As a 
graphical tool, they provide a visual tool for the modeler to describe complex system and present it to users. As a 
mathematical formalism, a Petri net model can be represented by a matrix notation, which allows the formal verification 
of behavior and structural properties.  

Following this trend, this work proposes an approach for building automation design where Petri net models and 
UML diagrams are alternately used, guided by the ODP viewpoints.   



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 

 

4. Proposed Approach 
 
The proposed approach for building automation design is based in the application of the ODP viewpoints through of 

use UML and Petri net aiming the modeling and the system analysis.  
To introduce the main features of the proposed approach, the modeling and analysis of the building system of a 

hospital is used as example. In this example are considered the following buildings systems: the security system (access 
control), fire system, HVAC (Heating, Ventilation and Air Conditioning) system, and lighting system  

The proposed approach encourages iterative development, by allowing the various activities to provide input to each 
other. Three major complementary activities are defined, which are refined forward. Figure 1 shows the high-level 
development activities and how they relate to ODP.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Details of the proposed approach 
 
4.1. Domain Modeling 

 
The domain modeling concerns business process and identification of goals and requirements. The results of this 

activity are related to “enterprise viewpoint” and defines an overview of the system.  
During the business process analysis, domains systems are identified. Here is represented the functionality of the 

building automation system in a higher level of abstraction.  
The “enterprise viewpoint” defines the purpose, scope and actors of the building automation system being 

developed. This viewpoint provides the most abstract description of the system being modeled. The information 
captured in the enterprise viewpoint is used to communicate with the user of the systems being developed and to serve 
as the basis for delimiting the systems with respect to their environment.  

One of the important characteristics of the “enterprise viewpoint” is its relative independence from the target 
application. The information present at this level is mainly domain specific, it is common to several applications in this 
domain.  

This activity is separated in two sub activities:  
1. Requirements  

The requirements concern identification goals and expectations, areas of concern and identification of them.  
In a hospital building the most important requirements related to building automation are integration, flexibility, 

safeness, interoperability, reliability, adaptation to environment (specially lighting system and HVAC systems) and 
management.  

2. Definition of system domains and use case modeling 
In this activity concepts specific about the system domain and the required functionality of the system are described. 

UML use case diagrams are used to describe this functionality.  
The hospital incorporates four domains that interact among themselves: administration, building systems (lighting, 

fire, HVAC, security), users (patients, visitors or employees) and service companies (supply water, energy, 
telecommunications and gas). The model in UML is illustrated in Figure 2 (a). Considering specifically the hospital 
building systems, each system is a domain with specific control functions that interacting in order to achieve their goals. 
Figure 2(b) presents the hospital building systems and their interaction.  
 
 

1. Domain 
Modeling 

2. Modeling of 
relationships 
and services 
of the system 

3. Dynamic 
Modeling and 
Formal analysis

Enterprise 
Viewpoint 

Information and 
Computational 
Viewpoint 

Activity 1.1: Requirements 

Activity 1.2: Definition of 
system domains and use 
case modelling  

Activity 2.1: Abstraction of 
the relationship and 
interactions through Petri 

Activity 2.2: Definition and 
construction of class 
diagram 

Activity 3.1: System 
Modelling through Petri nets 

Activity 3.2: Formal Analysis 



 
 
 
 
 
 
 
 
 
 
 
 

 (a) Interaction between objects enterprise viewpoint;   (b). Hospital building system interaction 
Figure 2. UML package diagrams of systems domains  

 
Considering the hospital building systems, the interactions between actors and theirs systems should be identified. 

This is a way for defining the responsibilities for each system (Figure 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. UML Use-Case diagram of building systems 
 

The UML use-case diagram in Figure 4 can be detailed. Thus, the use-case ‘request service’ include all functionality 
of the buildings systems like: heat, cool, ventilation, increase or decrease lighting, authorize entry, detect and control 
fire, etc.  

Specifically taking by example the fire and HVAC system. The fire systems has as its main purposes to detect fire 
and act on the building systems in order to minimize the potential damage of the fire. Some of its functions are:  

- Detect fire by monitoring a set of sensors (temperature sensor, fire sensor, smoke sensor, etc).  
- In case of fire, act on sprinklers, insufflators, etc. 
- In case of fire, communicate other building systems, such as HVAC system, lighting system, and access control 

system. 
- In case of fire, communicate the fire brigade. 
- Provide routines and functions for the test of fire equipment and fire strategies. 
Considering these functions, an example of fire system UML use-case diagram is presented in Figure 4 
 

Fire system
operator

Fire System

Turn on fire
system

Test fire
equipment

Detect fire and
control it

Fire brigade
Building
systems

Communicate
fire detectionuse

 
Figure 4. UML Use-Case Diagram of Fire system 

 
The HVAC system has as its main purposes to keep environmental control. Some of its functions are: 

- To provide heating, cooling and ventilation facilities. 
- Change the ventilation system according to fire system information. 
- Provide routines and functions for the test of HVAC equipment. 

Administration 

Hospital Building 

Service 
Companies  

Water
Energy 

Telecom. 
Gas 

Users 
 

Patients 
Visitors 

Employees 

Lighting
HVAC 
Access 

Fire 

Building systems

 Hospital Building Systems

Access
System 

 

HVAC 
System 

 
Fire 

System 

 
Lighting 
System 

Supervisory  
System 

Patients 

Users 

Manager 

Employee 

Building systems

Visitors Employees

Request 
service

Realize 
maintenance 

Management 
services 

Supervision
Monitoring 



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 

 

The example presented in this paper considers only cooling and ventilation facility in order not to overcharge the 
models and to focus on the proposed approach 

Considering these functions, an example of HVAC system UML Use-Case Diagram is presented in Figure 5 
 

HVAC system
operator

HVAC System

Turn on HVAC
system

Test HVAC
equipment

Ventilation
User

Building
systems

Cooling

 
Figure 5. UML Use-Case Diagram of HVAC system 

 
4.2. Modelling of Relationships and Service of the System 

 
In this activity, two main aspects of the system modeling are concurrently focus: objects and information flow. This 

activity concerns to information viewpoint and computational viewpoint.  
This activity is divided in two sub activities:  

1. Abstraction of the relationship and interactions through Petri nets 
This sub activity drives the descriptions of the information that are changed among the hospital building systems. 

The specification of the information is generated from the component identified in the enterprise viewpoint. The 
information that the system considers is modeled in accordance with the behavior of the system. Here the information 
elements, the information structures and the requirements for information handling among objects of the building 
systems are identifying. For the information modeling each system is detailed by defining what is the information that 
need to be modeled and how it is processed.  

The information considered for the example is supply for each hospital building system. The information of the fire 
system is share with the HVAC system, lighting system (signalize escaping routes) and access system (number of 
people in zones with fire and unlock entrances). This information allows that this system can perform their fire strategy. 
Specifically considering the information of the fire system share with the HVAC system the propose is to help the 
smoke removing and preventing smoke to spread throughout the building.  

Some of the activities in the HVAC system fire strategy are: 
- Turn on ventilators in places with fire. 
- The mixing box is set to take 100% of outside air. 
- Valve controllers are turned off in order to avoid an eventual unbalance of the systems due to the great demand 

of cold water. 
Based on this description, the modeling of the information interchange is realized using a Condition/ Event (C/E) 

Petri net (Figure 6).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Petri Net model of information in fire and other building systems 
 

Detect High Temperature
(Temperature sensor) 

Detect Smoke
(Smoke sensor) 

Detect fire
(Fire Detector) 

Turn on alarm 
(Alarm) 

Turn on Pump  
(Pump) 

Turn on Sprinklers 
(Sprinklers)   

Turn on Insufflators
(Information HVAC 

system)   Turn on 
Emergency Lights

(Information 
Lighting system)  

Unlock entrances 
(Information 

Access system)   
 

Number of people in zones with 
fire (Information Access 

system)   



2. Definition and construction of class diagram 
This sub activity is concerned with the functional decomposition of systems into objects and the identification of the 

relationships, allowing those applications and their components to be structured in a transparent way. Nevertheless, it 
identifies the candidate boundaries for the physical distribution, without addressing specific communication 
mechanisms.  

For the modeling in the computational viewpoint, each building system needs to be modeled. The UML class 
diagram of the hospital building systems is presented Figure 7.  
 
 
 
 
 
 
 
 

Figure 7. UML class diagram of building systems  
 

An example of UML class diagram of fire system is illustrated in figure 8.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. UML Class Diagram of fire system 

 
An example of UML class diagram of HVAC system is illustrated in figure 9.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. UML Class Diagram of HVAC system 

 
4.3. Dynamic Modelling and Formal Analysis 
 

This activity is divided in two sub activities:  
1. System Modeling through Petri nets  

In this sub activity, the behavior each UML class is modeled through a Petri net. For this purpose it is introduced a 
new net called: Object based Modular Colored Petri Nets (OMCPN) that considered the features of open distributed 
systems.  

The OMCPN manage abstraction, modularization and encapsulation principles. For modeling it is considered that a 
complex systems can be treated like the module composition and its co-operation. In this way, the system is modeled 
through modules and its interface communication. Each module is an object with its own state and behavior. OMCPN 
modules provide a set of services or operations named methods that can be invoked by other modules of the system 

An OMCPN is composed by: behavioral unit and an interface module. 

Control 
System 

Process 
Interface 

User 
interface 

Building System

Sensor Actuator

Communication

Sprinklers Temperature 
sensor 

Smoke 
sensor

Fire 
Detector 

Fire 
Controller 

Control 
System 

Process 
Interface 

User 
interface 

Fire System

Sensors Actuators

Communication

Pump

Cooling 
controller 

Mixing
Box 

Temperature 
sensor 

CO2 
sensor

Ventilation 
Controller 

Process 
Interface 

User 
interface 

HVAC System

Sensors Actuators

Communication

VentilatorCooling
Coil 

Control 
System 



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 

 

Behavioral Unit (BU): The BU keeps the state and the functionality of the module. The functional description is 
done by means of a Colored Petri net (CPN). Attributes and methods that operate over the attributes are expressed by 
means of a Non-Hierarchical CPN. From the structural viewpoint, the BU of an OMCPN is a strict CPN.  

Interface Module (IM): This is the element responsible for the communication between the BU and the rest of the 
system. To use an OMCPN module is necessary to invoke one of its services. Only through the IM, other components 
of the system may have access to the methods and attributes encapsulated inside the module. Moreover, only through 
the IM, the BU is able to access the services of other BU modules in the system. The IM is an abstract view of the 
module, hiding internal details of it. Inside the IM there are the name of OMCPN module and methods provided and 
used.  

The intuitive interaction model used by OMCPN modules is client-server. Thus, it is expected that after an 
invocation, the system start an activation of the invocated method. In addition, analogously, after every termination, a 
return is expected to occur.  

An example of class model by OMCPN is the Fire detector Class, presented in Figure 10 (a). In this model a token 
in P1 indicates the smoke sensor status (if est = active, then smoke is detected in the building, if est = inactive then no 
smoke is detected). The value of est is defined by the action associated with transitions t1 and t2, that are methods 
called by the Smoke Sensor. Similarly, a token in P2 indicates the status of the temperature (t= normal temperature, t= 
medium temperature, and t= high temperature). A token in P4 indicates the status of the Fire Controller (F= Fire 
Controller in stand by (sb), F= Fire Controller controlling fire).  

Another example of class model by OMCPN is the Ventilation controller, presented in Figure 10 (b). In this model 
color MSG defines the structure of the messages passed between objects. Color ADD is a pair of sender and receiver 
identifiers for the message. In this case the ventilator controller class receive messages from fire detector class (FDC) 
and cooling controller (CC). Fire detector class communicate fire detection (control FD) or normal conditions (sb). 
When fire detection is activated the ventilator controller class increased the ventilator speed. Cooling controller (CC) to 
communicate increased (hspd) or decrease (lspd) of the ventilator speed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 (a) Fire detector Class modeled by OMCPN    (b) Ventilation controller Class modeled by OMCPN 

Figure 10. Class model by OMCPN 
2. Formal Analysis  

In order to use the well-established concepts and powerful analysis methods developed for CPN, it is applyed a 
systematic way to obtain an equivalent CPN for each PN. Thus, it is used the CPN-Tools and Design/CPN tool to 
simulate and analyze the PN system. Basically, the models consider a scenario and they are analyzed using the 
occurrence graph (OG) to study the detection of deadlocks, or forbidden states in the model. An initial marking 
represents the initialization of the execution of an OMCPN with a selected method.  

Fire detector Class (FD) 

BU

Color EST = with active | inactive 
Color TEMP = with normal | medium | high 
Color INC = with sbFD | controlFD 
Var est: EST 
Var t: TEMP 
Var f: INC 

IM

Methods provided  
T1 Smoke detected 
T2 No smoke detected 
T3 Normal temperature detected 
T4 Medium temperature detected 
T5 High temperature detected 

Methods used 
T8 Turn on fire controller
T9 Turn off fire controller
 

EST 

Est = active 
P1 

TEMP 

t = normal P2 

T8

T9

INC

T6 

T7 

T1 

T2 

T3 

T5 

T4 

f est 

INC 
P3 

P4 

P5 
INC 

If est=1 and t ≥ 1 
then f = controlFD

Est = inactive 

t = medium 

t = high 

If est=1 and t = 01 
then f = sbFD 

f 

ff 

f f 

f f 

t 

t 

t 

t 

t 

est 

est 

est 

Ventilation controller Class  

BU

Color MSG = product ADD * DAT 
Color ADD = product ID * ID 
Color ID = with FD | V | CC 
Color DAT= with sb | controlFD | hspd | 
lspd  
Var mes: MSG 

IM

Methods provided 
T10 Turn on ventilation 
controller  
T18 Turn off ventilation 
controller 
 

Methods used  
T11 Turn on ventilator 
T17 Turn off ventilator 
T12 Set ventilator as high speed
T13 Set ventilator as low speed
 

MSG

T10

P6
MSG

MSG 

MSG 

MSG 

MSG MSG 

MSG 

P7

P8
P9 

P10

P11
P12 

P13

T11
1

T12 

T13 

T14

T15 

T16 T17

t18

mes

mes

mes

mes 

mes

mes 

mes



Based on the simulation and the occurrence graph it was verified properties that help the design of the system. An 
example is the verification of the fire strategy of the HVAC system.  

 
5. Conclusion 
 

This work proposes an open distributed systems approach for building automation. The innovative point of the 
approach is the synergetic merging of ODP, UML and Petri net. The ODP viewpoints guide the design process. By 
using UML the object-oriented aspects of the system are highlighted through the different diagrams, while a formal 
representation of the system is provided by the use of Petri net.  

The viewpoints considered in this work were enterprise, information and computational. They represent a particular 
abstraction of the system. For modeling the viewpoints, the UML and Petri net were used. The UML was useful to 
structure the modeling process according to the viewpoints and the Petri net were used for formal modeling and analysis 
of system. Thus, the proposed approach is benefit from a graphical notation as well the use of the ODP, allowing a 
better control of the modeling process because the use of different level and views.  

Once the models have been analyzed, the approach should be translated into a programming language code in order 
to be implemented. Future directions of this work must contemplate a complete methodology for the building 
automation design that consider its implementation using engineering and technology ODP viewpoints.  

 
6. Acknowledgements 
 

The authors gratefully acknowledge the financial support to the present project of the Brazilian Governmental 
Agencies CNPq, CAPES, FAPEAM and FAPESP particularly, the authors would like to thank TIDIA / KyaTera 
program under which the works is developed.  

 
7. References 
 
Baresi, L. and Pezzè, M., 1998, “On formalising UML with high-level Petri nets”, Concurrent Object-Oriented 

Programming and Petri Nets, Lecture Notes in Computer Science, pp. 42-55 Springer Verlag, Berlin.  
Booch, G., Rumbaugh, J.and Jacobson, I., 1998, “The Unified Modelling Language User Guide”, Addison-Wesley 

Longman, Inc. Harlow, England.  
Callaghan, V., Clarke, G., Colley, M. and Hagras, H., 2001, “A Soft Computing DAI architecture for intelligent 

buildings”, Journal of Studies in Fuzziness and Soft Computing on Soft Computing Agents. Physica-Verlag-
Springer. Berlin.  

Faroqui, K., Logrippo and L. Meer, J., 1995, “The ISO reference model for open distributes processing: an 
introduction”, Comp. Nets. and ISDN Systems 27, pp.1215-1229.  

Gaspoz, J. P., 1996, “Methodology for the development of distributed telecommunications services”, Journal Systems 
Software 33, pp. 253-271.  

Giese, H., Graf, J. and Wirtz, G., 1999, “Closing the gap between object-oriented modelling of structure and 
behaviour”, Proceedings of the Second International Conference on the Unified Modeling Language, Colorado, 
USA.  

ISO/IEC., 1995, “Open Distributed Processing -Reference Model Part 3: architecture”, International Standard.  
Katchabaw, M.J., Howard, S.L., Lutfiyya, H., Marsahall, A.D., Bauer, M.A., 1999, “Making distributed applications 

manageable through instrumentation”, Journal of Systems and Software 45, pp. 81-97.  
Pianegiani, F., Macii, D., Carbone, P., 2002, “Open distributed control and measurement system based on an abstract 

client-server architecture” Virtual and Intelligent Measurement Systems, VIMS '02. 2002 IEEE International 
Symposium, pp.63 – 69. 

Wang, S. and Xie, J. 2002, “Integrating Building Management System and facilities management on the Internet” 
Automation in Construction, Volume 11, Issue 6, October, pp. 707-715. 

OMG UML 2 2003 Infraestruture Final Adopted Specification. Object Management Group.  
Wong, J.K.W., Li, H and Wang S.W., 2005 “Intelligent building research: a review” Automation in Construction, 

Volume 14, Issue 1, January, pp. 143-159. 
 
8. Responsibility notice 

 
The authors are the only responsible for the printed material included in this paper. 




