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Abstract. Despite its highly nonlinear behavior, the high-speed milling is one of the most common processes in modern 
manufacturing. As other complex processes, a suitable condition monitoring system is needed to guarantee the 
minimization of chatter problems. From a pattern classification perspective, the monitoring systems can be 
decomposed into three general tasks: data acquisition, feature extraction, and condition classification. 
The goal of this work is verify the relation between characteristics of stability and some cutting parameters regarding 
transient and steady state conditions. In this sense, techniques of digital signal processing and artificial intelligence 
are used. The wavelet transform approach combined with a neural network is used for feature extraction and 
classification. The analysis assumes a limited number of operation states, i.e. variations of the cutting speed, different 
tool geometries and tool engagement.  
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1. Introduction  
 

High-speed cutting (HSC) exploits intensively the dynamic behavior of the machine-tool-workpiece system. The 
results of this type of process depend on the amplitudes of the relative vibrations between workpiece and tool, which 
arise during the operation. Eventually, these amplitudes can achieve unacceptable levels leading to a deteriorated 
surface finish and a reduction of the tool life. To avoid this situation, some cutting parameters are selected in order to 
keep the process in stable conditions (free of chatter). It must be noticed that inappropriate parameters may lead to the 
underutilizing of the machine functionalities, eventually decreasing the milling process speed.  

Once several parameters must be adjusted in the milling process, the goal of this work is analyze some operation 
characteristics related to stable and unstable conditions. Notice that the analysis described in this work is considered 
initial in the sense of a development process that can provide a suitable parameter selection for stable end milling 
operations. 

In this work, digital signal processing (DSP) techniques and pattern recognition concepts are used to analyze 
acoustic signals correlated to vibration signals that determine the surface finish. According to Smith and Tlusty (1976) 
microphone sensors supply suitable signals for the detection and vibration control in milling machines. The fast Fourier 
transform (FFT) is used to examine the steady state portion of the signal while the Wavelet transform (WT) is used for 
the transient portion. The difference between FFT and WT is the resolution of the analysis in low and high frequencies. 
Unlike FFT, in high frequencies the WT presents reliable results (Galli and Heydt, 1996). 

The Fourier-based analysis of the acoustic signals was explored in Weingaertner et al. (2003) and Polly (2005), it 
must be stressed that the aim of this work is verify and extend some results considering the advantages of the WT in the 
transient portion of the signal. Also, we present an example of how a neural network could be used to classify the 
acoustic signals related to stability and instability conditions by means of a wavelet decomposition procedure as feature 
extractor of the complete signal (transient and stationary states). 

jokamoto
                        ABCM Symposium Series in Mechatronics - Vol. 2 - pp.121-128                        Copyright © 2006 by ABCM



The frequency signal based techniques used in this work are described in section 2. The section 3 presents the 
pattern recognition basic concepts and a neural network as a classification system. Analysis and results are presented in 
section 4. The concluding remarks are presented in section 5. 
 
2. Time-Frequency Analysis of Acoustic and Vibration Signals 
 

Since the use of High Speed Machinery technology has become more relevant in industrial systems, a rapidly 
identifier of stability behavior is required in order to improve productivity. Measurements that provide this information 
may be performed prior to (off line) or during (on line) machining. Several analytical methods were developed to 
determine the stability properties of the milling process, Minis and Yanushevsky (1993). Numerical simulation may 
also serve to provide a satisfactory result for this purpose, Balachandran (2001). In spite of all these research efforts, the 
identification of the critical chatter frequencies at the loss of stability is not a trivial task either experimentally or 
theoretically. The power spectra of the signals show several peaks of complicated structure. Some of them refer to the 
tooth pass excitation effect, others refer to the regenerative effect and the natural frequency (fn) of the tool also appears. 

In the following subsections, three signal processing techniques are described toward the rapid detect and 
classification of stable and unstable behavior of the milling process. The well-known Fourier transform approach is 
presented in section 2.1 with a briefly a description of how this technique is used as a design tool for milling operation 
monitoring systems.  In section 2.2 quite promissory signal analysis techniques is described, more precisely, the 
Wavelet transform is introduced.  
 
2.1. Fourier-Based Analysis 
 

If a signal contains frequency components emerging and vanishing in certain time intervals, then a time as well as 
frequency localization is required. The traditional method proposed for such an analysis is the Short Time Fourier 
Transform (STFT). The STFT enables the time localization of a certain sinusoidal frequency but with an inherent 
limitation of the Heisenberg’s uncertainty principle, which states that resolution in time and frequency cannot be 
arbitrarily small, because their product is lower bounded by ( )π4/1≥∆∆ ft . 

The Fourier analysis uses the propriety of how a signal can be decomposed into sine and cosine waves. The goal of 
decomposition is to end up with something easier to deal with than the original signal. The component sine and cosine 
waves are simpler than the original signal because they have a property that the original signal does not have: sinusoidal 
fidelity, i. e., a sinusoidal input to a system is guaranteed to produce a sinusoidal output. Only the amplitude and phase 
of the signal can change; the frequency and wave shape must remain the same. Sinusoids are the only waveform that 
has this useful property.  

Minis and Yanushevsky (1993) examined stability of milling via Fourier analysis and basic properties of the 
parametric transfer functions of linear periodic systems. An infinite-order characteristic equation with constant 
coefficients was obtained and truncated to approximately determine system stability. Altintas and Budak (1995) 
introduced an alternate method to solve the stability problem in milling. They first derived the Fourier series expansion 
of the time-varying force coefficients and then used the first or first few expansion coefficients in the characteristic 
equation to compute the stability limit. For the high-speed cases they studied, this method achieves good results with 
only the first (average) Fourier term; nevertheless, this is an approximate solution. 
 
2.2. Wavelet Analysis 
 
Wavelet transforms do not consider a single set of basis functions (family of functions) like the Fourier transform, 
which utilizes just the sine and cosine functions. Using an infinite set of possible basis functions wavelet analysis 
provides immediate access to information that can be hidden by other time-frequency methods that don’t provide any 
resolution in real space (for time series it means the time resolution). On the non-stationary signal analysis, the 
Wavelets locality properties lead us to their advantages over the Fourier Transform.  

The wavelets functions compose an orthonormal system that can separate the local characteristics of a signal in 
different scales. Also, by means of translations, they cover all studied signal. Temporal analysis is performed with a 
contracted, high-frequency version of the mother wavelet, while frequency analysis is performed with a dilated, low-
frequency version of the same wavelet.  

In wavelet analysis, a signal can be decomposed in many levels of approximations and details. Approximations are 
the high-scale, low-frequency components of the signal, and the details are the low-scale, high-frequency components. 
A suitable level of decomposition is selected according to the signal and the task to be performed.  

The original signal may be considered as the approximation at level 0, denoted by A0. The first step is to build the 
approximation A1 at level 1 and the detail D1 at level 1, Misity et al. (1996). The words approximation and detail are 
justified by the fact that A1 is an approximation of A0 taking into account the low frequencies of A0, whereas the detail 
D1 corresponds to the high frequency correction. Therefore, at each level j, the j-level approximation Aj (or 
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approximation at level j) and a deviation signal called the j-level detail Dj (or detail at level j) are built, as shown in 
figure 1. 
 

 
 

Figure 1. Three-level wavelet decomposition 
 

Because the original signal or function can be represented in terms of a wavelet expansion (using coefficients in a 
linear combination of the wavelet functions), data operations can be performed using just the corresponding wavelet 
coefficients. The sparse coding shown in figure 1, makes wavelets an excellent tool in the field of data compression. 
 
3. Pattern Recognition 
 

Four steps basically compose a pattern recognition system: data acquisition, pre-processing, feature extraction and 
classification. An important task, when designing a pattern recognition system, is to identify which attributes are most 
relevant for decision making. In the feature extraction process, the features that hold the most relevant data information 
are identified and extracted. Hence, a feature measurement vector is constructed and the data pattern is determined. 
Once the patterns are presented to the system, it must be able to identify the pattern class. Bayesian classifier, Euclidean 
distance, neural networks and fuzzy systems are largely used as classifier system (Bishop, 1995). 

In this work, a neural network is used to classify milling process acoustic vibration signals. Neural network is a form 
of multiprocessor computer system, with simple processing elements, a high degree of interconnection, simple scalar 
messages and adaptive interaction between elements. A neural network is a device with many inputs and N outputs, 
where N is the number of classes to be identified. The network has two modes of operation: the training mode and the 
testing mode. In the training mode, input patterns are presented to the neural network in order to create its 
generalization ability. In the testing mode, other input patterns are presented to verify the network’s performance in 
pattern classification. 

Neural networks presents several advantages (Bishop, 1995): capability of creating its own organization or 
representation of the information received during learning time; its computations may be carried out in parallel, and 
special hardware devices are being designed and manufactured with the advantage of this capability; they are universal 
approximators in the sense that they can theoretically approximate any continuous input-output mapping to any desired 
degree of accuracy; they have the ability to capture the underlying nonlinearity for the generation of incoming data. 

In particular, neural networks are nonlinear. For many years linear modeling has been the commonly used technique 
in most modeling domains since linear models have well-known optimization strategies. Where the linear 
approximation is not valid (a frequently case) the models suffer accordingly. Neural networks also consider the curse of 
dimensionality problem that damage the attempts to model nonlinear functions with large numbers of variables. 
Regarding the inherently nonlinear characteristics of the milling process, the neural network becomes a suitable 
classification system to be used relating vibration acoustic signals with the milling stability and instability conditions. 
 
4. DSP-based Stability Analysis 
 

Since Tlusty (1965) and Tobias (1965) presented the first theoretical treatment in 1950s, chatter vibrations have 
been studied extensively and significant research has been reported on the dynamics high speed milling operations. 
Chatter vibrations continue to constrain high material removal rates and surface quality in end and face milling 
operations. This type of vibrations can be avoided by increasing the stiffness of machine tool-part structures, reducing 
the spindle speed to increase process damping, or selecting a spindle speed from stability charts. In particular, for HSC 
operation is not possible to increase the machine tool stiffness once the part geometry may not allow design 
modifications for higher stiffness. On the other hand, reducing spindle speed lowers the material removal rate, i.e. 
productivity. A practical solution would be to select a spindle speed and other cutting parameters from a stability 
analysis regarding the machine and material characteristics. In this sense, several methods were proposed regarding the 
chatter attenuation by tuning the process parameters using physical modeling and simulation analysis (Altintas and 



Budak, 1995). This work presents an alternative path to identify stability conditions by means of time-frequency digital 
signal processing concepts and vibration sampled acoustic signals. 

In the analysis of a high-speed end milling system, presented in Polly (2005), are identified suitable stability 
conditions when the harmonics of the tooth passing frequency (fd) are distant from the system natural frequency. The 
stability evaluation, also used in this work, was based on the sound pressure analysis and a workpiece texture test was 
made in order to verify the milling quality. figure 2 presents the setup configuration used to sample the acoustic signal 
in all the tests. 

 
 

Figure 2. Experimental setup for the acoustic signal detection system 
 

A microphone power supply (preamplifier type 2801 - Brüel and Kjaer, Copenhagen) and a unidirectional 
microphone (affixed to the turret machine) were used for acoustic vibration signal capture. The microphone bandwidth 
is 20 kHz; the amplifier gain was set to 20. All the sampled data were obtained of a 5 axes High Speed Hermle Machine 
(Model C6000) in the Center of Competence in Manufacture – CCM (Technological Institute of Aeronautics). 

One of the main contributions of this work, by means of a transient and steady state analysis, is the verification and 
extension of some conclusive observations presented in Polly (2005) and Weingaertner et al. (2003). Instead of using 
the Fourier transform to analyze the characteristics frequencies of the steady state portion of the acoustic signal, in 
section 4.1 a short-time Fourier Transform is used to produce a time-frequency plot (spectrogram or Fourier power 
spectrum) representative of both transient and steady state portions of the sampled data. Additionally, the wavelet 
transform was introduced to overcome the resolutions problems usually identified when analyzing transient signals 
when using Fourier Transform. A suitable choice of a “basis function” to structure more reliable time-frequency 
representation turn the Wavelet transform a reliable option for power spectrum analysis. A total of 84 tests were 
accomplished in order to analyze the Wavelet decomposition technique in the end-milling process, a group of 4 tests are 
presented in section 4.2. In section 4.3 a Kohonen self-organizing map (neural network) is used to evidence the suitable 
properties of the decomposed signals to classify stability or instability conditions of the system and a group of 12 tests 
results are presented. 

In order to describe the stability characteristics of the end-milling system under different operation conditions, the 
spectrum analysis (obtained by means of the Fourier Transform) of the sampled acoustic signal is presented in figure 3. 
Stability and instability conditions were verified using a threshold value of 0.8 µm in the surface roughness test (Ra). A 
four flute with 12 mm of diameter end mill tool was used in the following cutting tests and the dynamic characteristics 
of each test are presented in table 1. 

 
 

       a) Test 1 (fd = 916 Hz)         b) Test 2 (fd = 783.33 Hz)         c) Test 3 (fd = 750 Hz)         d) Test 4, (fd = 666.66 Hz) 
 

Figure 3. Frequency spectrum record for stable (a,b) and unstable (c,d) conditions 
 

As figures 3a) and 3b) shows, the stable conditions tests are characterized by dominant frequency component 
values with a multiple or sub-multiple relation with the tooth passing frequency (fd). As reported in Smith and Tlusty 
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(1990) and verified in Weingaertner et al. (2003), the stability operation condition is related to the fact that the tooth 
passing frequency values are close to the most flexible mode natural frequency. In the other hand, figures 3c) and 3d) 
presents unstable results where the dominant component frequencies, vibration frequencies (fv), are not related to the 
system natural frequency.  
 

Table 1. Dynamic characteristics of the experimental implementation (figures 4-5) 
 

Test Condition fd (Hz) fv(Hz) S(rpm) ap(mm) fz(mm/tooth) L(mm) Ra(µm) 
1 Stable 916  - 13750 0.5 0.1 56.5 0.46 
2 Stable 783.33 - 11750 1 0.1 43 0.75 
3 Unstable 750 1800 11250 0.5 0.1 56.5 1.2 
4 Unstable 666.66 2350 10000 1 0.1 43 1.0 

fd:  tooth passing frequency, fv: vibration frequency, S: spindle angular speed, ap: axial depth, fz: feed rate, Ra: Surface Roughness [µm] (obtained by a  
portable Surftest SJ-201P - MITUYO). End milling operations were performed on aluminum workpiece. 
 
4.1. Acoustic signal spectrum analysis 

 
The discrete Fourier transform and the Wavelet transform are used in this section to extract local-frequency 

information for the signals related to stable (figure 4) and unstable (figure 5) end milling conditions. 

 
a) Test 1 (fd = 916 Hz)   b) Test 2 (fd = 783.33 Hz) 

Figure 4. Fourier and Wavelet power spectrum of stable conditions signals 
 

The feature extraction process begins with the separation of the vibration signal into smaller size different signals. 
Four different parts of the original signal are distinguished: steady state part, rising transient part, falling transient part 
and the idle part. The idle part is neglected because it doesn’t contain information. Considering real time analysis 
systems the signal falling rising part is also out of interest. Considering that region A, in figures 4a) and 4b), involve the 
rising transient behavior of the vibration signals, it can be seen that the largest content of frequencies (denoted by the 
most intense red color region in the power spectrum plots) is stable in the spectrum analysis sense. More precisely, the 
most significant frequencies presented in steady state region are maintained in the transient region A. 

 
a) Test 3 (fd = 750 Hz)   b) Test 4, (fd = 666.66 Hz) 

Figure 5. Fourier and Wavelet power spectrum of unstable conditions signals 



 
Due to its nature, the Fourier spectrum analysis can be applied only onto the steady-state part of a signal because it 

cannot represent small-extent transient vibrations, Haykin and Thomson (1998). Considering, however, that some other 
mechanical characteristics create abrupt variations localized in time, which are more intensely observed in the transient 
interval, motivate the use of wavelet instead of Fourier analysis. In order to expose the advantages of the WT, it is 
useful to compare it with the STFT, which has been extensively used for pre-processing data with localized features. 
The FT is a good method for analyzing stationary data, with the small-scale features (i.e., high frequency) representing 
the detail or noise presented in the signal, and the large-scale features (low frequency) representing the basic shapes. 
However, it has the disadvantage that the frequency information is global, because its basis functions are infinite 
duration sine and cosine functions. This is not satisfactory when searching for localized features. This problem is 
partially avoided by using the STFT or windowed FT, where the signal is analyzed locally. However, the STFT uses a 
fixed size window in its original (time) domain, the same for large and small-scale components of the signal. What is 
really needed is a long window to analyze large-scale components and a narrow one to detect the small-scale features. 
This problem is overcome by WT due to its dilatation and translation characteristics. This is exactly what figures 4 and 
5 presents through the marked regions B. As it can be seen, a “Morlet” Wavelet signal with 8 scales and a resolution of 
0.25 structures a Wavelet spectrum plot with better resolution characteristics in high and low frequencies. 
 
4.2. Acoustic signal wavelet decomposition 
 

WT is a domain transform technique for hierarchically decomposing sequences. It allows a sequence to be 
described in terms of an approximation of the original sequence plus a set of details that range from coarse to fine. One 
property of wavelets is that the broad trend of the input sequence is preserved in the approximation part, whereas 
localized changes are kept in the detail parts. No information is gained or lost during the decomposition process. The 
original signal can be fully reconstructed from the approximation part and the detail parts (Zhang et al. 2004). 

The main objective of the analysis is to extract information from the original signal through this decomposition into 
a series of approximations and details distributed over different frequency bands. The computed coefficients in these 
sequences form the wavelet decomposition of the measured signal s. The coefficients in the sequences D (details) can 
be interpreted as the details of the signal s at coarser resolutions as the decomposition level is increased.  

In this work, wavelet decomposition is used as a feature extractor technique in order to classify acoustic vibration 
signals. Assuming that the signal scale energy is concentrated in a group of few coefficients, it can be used to represent 
the whole signal with low error characteristics and reduce the original data dimension. At each level N, after low-pass 
signal filtering, a down-sampling is made reducing data dimension at ratio 2N. In order to extract the main 
characteristics of the vibration signals, the upper envelope is computed and decomposed in 6 levels and construct the 
feature patterns. In figure 6a), stable and unstable signals with their upper envelopes are presented. 

 

 
         a) Envelope of stable and unstable vibration signals       b) Six-level decomposition of a stable envelope signal 

 
Figure 6. Wavelet decomposition 

 
Considering two classes to be identified and regarding the shape differences between the signals, the selection of a 

6-level approximation is used in order to hold more low-frequency characteristics. In case of signals of different classes 
that present more similarity, a lower level decomposition, or the details coefficients utilization could produce better 
results. A stable signal envelope and its decompositions can be seen in figure 6b). Note that the approximations are the 
high-scale, low-frequency components of the envelope signal, and the details are the low-scale, high-frequency 
components. The energy values or the coefficients themselves, for all or a selected number of levels, are chosen as the 
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essential signal characteristics. Each acoustic vibration signal is decomposed in 6 levels of approximation and details 
and its coefficients built a feature vector as a sample pattern to be presented to a neural network classification system.  
 
4.3. Acoustic signal classification 
 
Neural networks, with their remarkable ability to detect meaning information from imprecise data, can be used to 
extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. 
Due to its nonlinear characteristic, neural network has been extensively used in several application areas as mentioned 
in section 3.  

Due to the acoustic vibration signal shapes, Kohonen’s self-organizing map was selected to signal classification 
once the signal shapes of stable and unstable milling has presented a visible difference. Since a harmony with statistical 
regularities of input data is achieved, the network presents a developed ability to form internal representations in order 
to codify input data characteristics, creating new classes or groups automatically (Bishop 1995).  

As mentioned in the section 4.2, input pattern is constructed through the wavelet decomposition. Since the envelope 
signal is composed by a high number of samples (7040 points), after a 6-level decomposition procedure, the 
approximation signal is reduced to 110 points. Therefore, the network’s input layer is composed by 110 neural 
processors. The output layer presents 6 neural processors although there are only 2 classes to be identified. In this sense, 
the first three processors correspond to stable milling while the last three processors identify instable milling. If the 
activated output processor is one of the first three processors, then the signal represents a stable milling process. 
Otherwise, the signal corresponds to an unstable milling process. The neural network’s configuration can be seen in 
figure 7. 

 
 

Figure 7. Kohonen’s self-organizing map configuration  
 
A set of twelve samples was available to the network containing 4 stable milling samples and 8 unstable milling 

samples. Considering the axial depth values used in the end-milling tests, some difficulties in determining stable milling 
parameters were found and a limited database was constructed. In order to speed up the training time, the connection 
weights were initialized inside signal values range. After training process, tests were carried out evaluating the 
network’s classification. The results are presented in table 2. 

 
Table 2. Kohonen’s self-organizing map results 

 
Acoustic vibration signal  Activated output 

neural processor  
Neural network’s 

response 
Test 1 – unstable milling 4 unstable milling 
Test 2 – unstable milling 4 unstable milling 
Test 3 – unstable milling 4 unstable milling 
Test 4 – unstable milling 4 unstable milling 
Test 5 – unstable milling 4 unstable milling 
Test 6 – unstable milling 4 unstable milling 
Test 7 – unstable milling 4 unstable milling 
Test 8 – unstable milling 4 unstable milling 
Test 9 – stable milling 6 unstable milling 
Test 10 – stable milling 3 stable milling 
Test 11 – stable milling 2 stable milling 
Test 12 – stable milling 2 stable milling 

 
From the above classification results, the Kohonen’s self-organizing map developed in this work has presented 

good generalization capability with just one signal wrongly classified. Since the acoustic vibration signals of stable and 
unstable milling process present visible shape differences, the use of a simple neural network could obtain good results. 



Nevertheless, in case of similar signals of different classes, more attention and a better study in neural network selection 
and construction must be done.  
 
5. Conclusion 
 

The characteristics of high-speed end-milling process were investigated using two different DSP techniques 
(Fourier and Wavelet transforms). Time-frequency characteristics of the vibrations signal, considering transient and 
stationary states, were analyzed. The main contributions of this work can be summarized as follows: a) A time-
frequency analysis procedure is proposed aiming the study of the rising transient frequency components in vibration 
signals. b) It was verified that Wavelet transform technique is a powerful tool in vibration signals analysis due to its 
better resolution in high and low frequencies and feature extraction capabilities. c) Since the signals generated by the 
milling process are inherently nonlinear and nonstationary, and considering that neural networks can acquire relevant 
nonlinear characteristics of this type of systems, a Kohonen self-organizing map is used to evidence the suitable 
properties of the decomposed signals in order to classify stability or instability conditions. 

Finally, some suggestions for future works related to this article are listed: a) Compute the WT considering only the 
transient state signal of vibration time series objectifying an instability detection system that could avoid the tool or 
material damage. b) Since the acoustic vibration signals of stable and unstable milling process present visible shape 
differences, with a simple neural network good results were obtained. In order to identify new sub-classes originated 
from instability class, a new neural network selection and construction must be studied. 
 
6. Acknowledgements 
 
The authors thank the Product and Application Division of “Texas Instruments Brazil” for the support and hardware 
grant and to Professor Sérgio Frascino Müller for the continuous support and proportionated knowledge. 
 
7. References 
 
Altintas, Y., and Budak, E., 1995, ‘‘Analytical Prediction of Stability Lobes in Milling,’’ CIRP Ann., 44 No.11, pp. 

357-62. 
Balachandran, B., 2001, “Non-Linear Dynamics of Milling process”, Philosophical Transactions of the Royal Society 

359. 
Bishop, C., 1995. “Neural Networks for Pattern Recognition”, Oxford University Press. 
Clark, J.A.,1986, “Private Communication”, University of Michigan, Ann Harbor. 
Galli A. W., Heydt G. T., Ribeiro P. F., 1996, “Exploring the Power of Wavelet Analysis”, IEEE Comput. Applicat. 

Power, pp. 37-41. 
Haykin, S. and Thomson D., 1998. “Signal Detection In A Nonstationary Environment Reformulated As An Adaptive 

Pattern Classification Problem”, Proceedings of the IEEE, Vol. 86, No. 11, pp. 2325-2344. 
Minis, I., and Yanushevsky, R., 1993, “A New Theoretical Approach for the Prediction of Machine Tool Chatter in 

Milling”, ASME J. Eng. Ind., 115, pp. 1-8. 
Misiti M., Misity Y., Oppenheim G., Poggi J.M., 1996, “Wavelet Tool Box” , First Edition, Math Works Inc. 
Polli, M.L., 2005, “Análise De Estabilidade Do Processo De Fresamento A Altas Velocidades De Corte”, Tese de 

Doutorado, Universidade Federal de Santa Catarina (UFSC). 
Smith, S., Tlusty, J., 1990, “Update on High-Speed Milling Dynamics”, Journal of Engineering for Industry, 

Transaction of the ASME, Vol. 112, pp. 142-149. 
Tlusty, J., 1965, "A Method of Analysis of Machine Tool Stability", Proceeding MTDR, pp. 5-14. 
Tobias, S.A., 1965, "Machine Tool Vibration", Blackie and Sons Ltd. 
Weingaertner,W.L., Schroeter,R.B., Polli,M.L., Gomes,J.O., 2003, "Machining Parameters Selection To Avoid Chatter 

In High Speed Milling", 17th International Congress of Mechanical Engineering, COBEM 2003, São Paulo, SP. 
Zhang, H., Ho, T.B. & Lin, M.S., 2004, “A Non-Parametric Wavelet Feature Extractor for Time-Series Classification.”,  

Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Engineering (PAKDD).  
 
8. Responsibility notice 

 
The authors are the only responsible for the printed material included in this paper. 




