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Abstract. For understanding and simulating the behavior of microsystems it is necessary to analize several physical domains.
Analytical solutions for coupled-field problems are hard to be obtained and numerical modeling tools are needed. The coupling
between domains can be caused by imposed boundary conditions or when there is a superposition of different domains. These
coupling mechanisms are identified as coupling by surface and by volume, respectively. In this work, attention is given to
electromechanical devices where the existing coupling is by surface and occurs by the interaction between a structure and the
electrostatic forces generated on it by the existence of an electric field. The solution methodology involves a sequential strategy
where the two domains are modeled separately and the interaction is done by inserting the results of one domain analysis into the
other. The process is executed iteratively until convergence. The Finite Element Method is used for the numerical modeling and its
implementation is done in an object oriented code written in C++. The equations governing the mechanical and electrical domains
are presented and the coupling mechanism is explained. The case study of a silicon microbeam subjected to an electric potential
difference is done. Results for static analysis are shown, and mesh managing strategies are tested and discussed.

Keywords. Coupled-field problems, microsystems, finite element method.
1. Introduction

The study of microsystems is related to the engineering area known as microengineering. Microengineering refers
to the development of technologies to design and fabricate structures and devices with dimensions in the order of
micrometers. One of its main goals is to integrate microelectronics together with microstructures to produce completely
integrated systems. Because of the possibility of batch manufacturing and reduction of mass and size, the
miniaturization of components and devices enables a very low cost of production. The number of applications involving
microsystems is already large and tends to increase in the following years. Current examples are: components for rigid
disks drives for data storage (Temesvary, 1995), inkjet print heads (Lee et all, 1999), micro pumps (Saif et all, 1999),
sensors for endoscopes and medical equipment used in minimally invasive surgery (Dargahi et all, 2000 and Peirs et all,
2001), drug delivery systems (Cao et all, 2001), microrockets (Rossi et all, 2002), and sensors and actuators in general
(Bhailis et all, 2000 and Johnson and Warne, 1995).

The design of microsystems is based on multi-physics simulation, i.e., it is necessary to deal with several physical
domains. Usual domains appearing are electrical, mechanical, fluidic and thermal. The focus of this work is the analysis
and simulation of microsystems with electrostatic actuation. Although the electrostatic actuation is not generally used
for traditional applications (e.g. motors) (Trimmer,1988), at the micrometer level it is advantageously employed. In
microscale the electrostatic surface forces are dominant (high surface to volume ratio) (Fujita and Omodaka, 1987) and
large enough to move or deform parts of a system. In addition, the actuation is simply driven by voltage application. For
the design of microsystems with electrostatic actuation it is necessary to analyze and simulate two domains: the
mechanical (structural) and the electrical. Analytical solutions for coupled-field problems are hard to be obtained and
then numerical modeling tools are needed. Common numerical methods used for simulating the behavior of
microelectromechanical systems are the Finite Element Method (FEM) (Malkus, 1989 and Silvester, 1990) and the
Boundary Element Method (BEM) (Kane, 1994).

The coupling between domains can be caused by imposed boundary conditions or when there is a superposition of
different domains (Zienkiewicz, 1984). These coupling mechanisms are identified as coupling by surface and coupling
by volume, respectively. In this work attention is given to electromechanical devices where the existing coupling is by
surface and occurs by the interaction between a structure and the electrostatic pressures generated on it by the existence
of an electric field. Such coupling can be found in electromechanical filters, resonant sensors, oscillators and in general
microsensors and microactuators. The solution methodology implemented involves a sequential strategy where the two
domains are modeled separately and the interaction between them is done by inserting the results of one domain
analysis into the other until convergence is reached. The electromechanical analysis is difficult because the electrostatic
pressures are non-uniform and change as the structure deforms.
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This work concerns to our first efforts towards the construction of a FEM-based numerical tool to solve and
optimize the coupled-field problem encountered in microelectromechanical systems. The numerical method together
with the coupled-field solution algorithm is being programmed in our own software Meflab++. The Meflab++ is an
oriented object code written in C++ where numerical modeling methods and strategies for solving engineering problems
are inserted.

This paper is organized as follows. In Section 2, the mathematical formulation for the electromechanical coupled
problem is presented. The mathematical models are shown separately for each domain and the way the coupling
happens is explained. In Section 3, discussions about different approaches to treat coupled-field problems and the use of
the FEM or BEM as numerical modeling tools for microsystems are done. The solution algorithm is also described. In
section 4, the case study of a microbeam with an applied voltage is done and details of the implemented algorithm are
provided. Conclusions are given in Section 5.

2. Mathematical formulation

The governing equations for the mechanical and electrical domains are presented in this section. The coupling
mechanism between the domains is also explained.

2.1. Electric domain

Consider a number m of conductors within a lossless dielectric medium, Fig. (1). The electrostatic potential in the
exterior region satisfies the Laplace Equation (Eq. (2.1.1)). On the conductors an electric potential ¢y is applied. In Fig.
(1), I'y, Ty, ..., T, are the boundaries of the conductors and T, is a far-field boundary or reference plane. Q. is the
electrical domain.

[

Figure 1. Electrostatic system with conductors embedded in a uniform lossless dielectric medium.

The electrostatic problem for the system in Fig. (1) can be written as:

V=0 in Qg (2.1.1)
=0y onl'y, [, ..., Ty (2.1.2)
o=9,

or onl, (2.1.3)
0.

where n represents the outward normal direction.
After the application of a voltage, electric charges are induced on the surface of each conductor. The charge density
v on a conductor surface satisfies (Griffiths, 1998)

Yk = _ged):n (2 1 4)

where €, is the dielectric constant of the medium.
The potential in the normal direction is

¢>n=¢>ini (215)
where n; are the components of the unit normal vector. The index i goes from 1 to 3 and represents the x, y and z
directions.

Once the charge density is know, it is possible to determinate the electrostatic surface force (pressure) acting on a
conductor through the equation

N S (2.1.6)



2.2. Mechanical domain

Consider a mechanical (structural) domain Q.. with boundaries I'yee; and I'eer. There are body forces, Dirichlet
boundary conditions in I'e; and traction in I'en. This problem is described by the following equations (Gould, 1983):

oji; —psl; =K in Qe (2.2.1)
u=u, on l—'mccl (222)
ojn; =f; on [ipeez (2.2.3)

where oj; is the stress tensor, p, the specific mass, F; the body forces, f; the traction vector acting on the surface and v is
the displacement. The indexes i and j are 1,2 and 3.
In a static case, Eq. (2.2.1) becomes

o;,j=F in Qe 2.2.4)

To solve the elastic problem two other sets of equations are needed. Relating displacements and deformations
(Gould, 1983),

1
& :E(Ui,j*'uj,i) (2.2.5)
where g;; is the deformation tensor. The constitutive law for a linear elastic solid is (Gould, 1983)

1
&= E[(l + v)csij - Vsijckk )] (2.2.6)

where v is the coefficient of Poisson and E is the elasticity or Young modulus.
Equations (2.2.1) to (2.2.6), plus the compatibility relations, form the basis of the Theory of Elasticity.

2.3. Coupling between the electrical and mechanical domain

The coupling mechanism involving the electrical and mechanical domains can be better understood looking at the
system in Fig. (2). When a voltage is applied between the cantilever beam and ground, electrostatic charges are induced
on the surfaces of the conductors, Fig. (2a). These electrostatic charges are responsible for the appearance of
electrostatic pressures acting in a direction normal (outward) to the surface. The electrostatic pressures deform the beam
and then a redistribution of the charges, Fig. (2b), takes place. The charge redistribution results in a change in the
electrostatic pressures and consequently new deformations occur. The process goes on until the equilibrium state is
reached. The equilibrium happens when the electrostatic forces are balanced by the elastic restoring forces of the
structure. The dependence of the electrostatic pressures on the charge distribution can be seen in the Eq. (2.1.6).

(a) (b)
Figure 2. Electromechanical system: (a) applied voltage causing charge distribution and (b) deformed structure
with redistributed charges.

3. Numerical modeling and solution algorithm

The need for numerical modeling tools comes from the fact that analytical solutions for coupled-field problems are
difficult to be obtained. The most used numerical methods for microsystem simulation are the FEM and BEM. Usually,
the mechanical domain is modeled by the FEM because many structural members in microsystems have long aspect
ratios that make the BEM inefficient (Shi et all, 1995). For the exterior problem, i.e., the electrical domain, both the
FEM and BEM can be used, existing advantages and disadvantages for each one. The application of the FEM requires
the construction of a mesh for the whole exterior domain. However, in the electromechanical simulation the electrical
domain is constantly changed and it is necessary to modify the mesh for each solution step. This modification makes the
simulation computationally expensive and it is a drawback of the FEM. The BEM avoids constructing a mesh for the



domain and consequently reduces the computational effort (Senturia et all, 1997). The disadvantage of the BEM are the
dense matrices generated by the method (Funk et all, 1997 and Senturia et all, 1997). Efficiency is only achieved when
sparsification algorithms are inserted within the implementation (Senturia et all, 1997 and Cai et all, 1993). The FEM,
in turn, generates sparsely populated matrices that are easy to be solved.

In this work the FEM is used for both the electrical and mechanical domain. The chosen formulation is the
weighted residual with the Galerkin Method and isoparametric elements. Electrostatic and mechanical quadrilaterals
with four nodes and triangles with three nodes are implemented. The degree of freedom (dof) on the nodes of the
electrostatic elements is the electric potential. The mechanical nodes have displacements in the x and y directions. Body
and surface forces and Dirichlet boundary conditions are supported. Through post-processing of the electrical domain,
flux values and electrostatic pressures can be computed. The electrostatic pressures are fundamental because they serve
as input for the simulation of the structural behavior. The post-processing of the mechanical simulation allows
attainment of strain and stress results.

In this context, the discrete finite element equilibrium equations for the coupled problem could be written as
follows:

[K(u)] {u} = {Fstr} + {Felec((b’n )} (3 . 1)
(H(o,w)]{¢} = {F} (3.2)

where [K(u)] is the structural stiffness matrix, {u} is the nodal displacement vector, {F,}is the mechanical load vector,
{Feec(d,n) }is the electrostatic load vector, [H(¢,u)] is the electrical stiffness matrix, {¢}is the nodal electric potential
vector, and {F} is the electrical load vector. Equation (3.1) is for the mechanical problem and Eq. (3.2) for the
electrical. The terms {F.(¢,,)} and [H(¢,u)] show their mutual dependence.

Once the domains are being separately modeled by a numerical method, in this case the FEM, a strategy to deal
with the coupling between them must be chosen. Several authors (Korvink et all, 1994, Schroth et all, 1996, Gerlach
and Klein, 1998, Konig et all, 1999, Wachutka, 1999 and Felippa et all, 2001) indicate approaches to treat coupled-field
problems. In a general sense, three are the methodologies (Felippa et all, 2001): field elimination, monolithic treatment
(simultaneous or direct) and partitioned treatment (sequential). In the field elimination one or more components are
eliminated by techniques such as integral transforms and the remaining components treated by a simultaneous time-
integration scheme. This approach is restricted to special linear problems that permit efficient decoupling and often it
leads to higher order differential systems in time, or to temporal convolutions (Felippa et all, 2001). These problems can
be source of numerical difficulties and then the monolithic and partitioned treatments are more frequently used. In the
simultaneous treatment the whole problem is treated as a monolithic entity and all the components are analyzed
simultaneously. In the partitioned treatment, the domain models are treated as isolated entities that are separately
analyzed for each time step in the transient case or for each equilibrium condition in the static case. The problem is
solved iteratively and the coupling is done by taking the results from one analysis and inserting them as loads in the
other(s).

For problems with coupling by surface, the most common methodology is the partitioned treatment. This approach
is often used with commercially available tools specific for each domain. In Senturia et all (1992) and Gilbert et all
(1995), the ABAQUS finite element code is used for the mechanical analysis and other software based on boundary
elements, FASTCAP, is used for the electrical analysis. Through an iterative algorithm, the solution of one program is
applied in the other, and vice-versa, until the convergence of the results. In a similar way, Schroth et all (1996)
employed ANSY'S for the analysis of the mechanical domain and Pspice for the simulation of the electrical domain. The
Pspice program works through macro models. Funk et all (1997) presented a numerical tool for static analysis of
microsystems of possible different actuating mechanisms (thermomechanics, surface electrostatic forces and
piezoelectric effects). Their solution algorithm employs a sequential strategy and applies the FEM for all the involved
domains. Iterations schemes like Gauss-Seidel, Newton-Raphson and relaxation were used. Hybrid methods with both
FEM and BEM are often used (Shi et all, 1995, Shi et all, 1996 and Aluru and White, 1997).

The main advantage of the sequential treatment is the modularity. Additional coupling effects can always be added
to the computational code without having to change significantly what is already working.

Our implementation uses no commercial tools and is done in our own software Meflab++. The Meflab++ is a
simulation environment where numerical methods and strategies for solving engineering problems are inserted. The
software is based on object oriented programming and is written in C++. The software has a general central core from
which the specific tasks are developed.

Figure (3) shows a flow chart with the sequential strategy implemented in the Meflab++. The analysis is static. The
simulation starts with the analysis of the electrical domain. The nodal electric potentials are obtained and with these
results a post-processing is realized. The electrostatic pressures are computed. These pressures are input loads for the
mechanical analysis. As a pre-processing step in the structural simulation, the nodal load vector is computed from the
electrostatic pressures on the conductor’s surfaces. The mechanical problem is then solved. The mesh in the electrical
domain, if altered in a previous iteration, is reset to its original configuration. With the mechanical displacements the
electrical mesh is morphed. Convergence check is performed and when the displacement variations are below 0,5% the
program stops.
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Figure 3. Algorithm for the sequential strategy in Meflab++

Equation (2.1.6) shows the dependence of the electrostatic surface forces on the charge density. Each time the
structure deforms there is a redistribution of charges on the conductor’s surfaces and consequently an alteration of the
electrostatic pressures. These new pressures deform again the structure and naturally other distribution of charges is
obtained. This continued action in the two ways couples the two domains. The fact is that mathematically the charge
distribution is only altered when the Laplace Equation is solved for each configuration of the exterior domain
considering the deformed position of the structure. By this reason, for each solution step it is necessary to modify the
electrical mesh. There are two mechanisms for mesh updating: morphing and remeshing. With the morphing there is no
reconstruction of the mesh but only an update in the nodes position by summing the displacements of each iteration to
the nodes coordinates. The mesh is not reconstructed but just deformed. The remeshing is an action where the whole
mesh is removed and another one is built. The advantage of the morphing is that it requires less computational effort
than the remeshing. However, when displacements start to get too large this technique becomes ineffective and the
remeshing is recommended. The remeshing is computationally expensive because it creates new nodes and elements for
each step solution of the coupled-field problem.

4. Case study

In this section the case study of a silicon microbeam with an applied voltage is done. Details of the solution
algorithm implemented within the Meflab++ are discussed together with the simulation results.

4.1. Problem description
Figure (4) shows the simulated silicon microbeam. The potential difference between the beam and the ground
generates an electric field that induces charges on the surface of the beam. The charges are responsible for the

appearance of electrostatic pressures and these make the structure to deform. The parameters in Fig. (4) used in our
simulations have the following values: &, = 150um, h, = 90um, by, = 2pm, b, = 1,5um, gap = 4.5pm.
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Figure 4. Silicon microbeam subjected to an electric potential difference.

Linear triangular and linear quadrilateral elements were used for the electrical and mechanical domains,
respectively. The initial meshes for solving the coupled-field problem of Fig. (4) are shown in Fig. (5). The mechanical
mesh has 84 nodes and 54 elements and the electrical mesh has 586 nodes and 982 elements. Nonzero electric voltages



are applied to the nodes on the biggest interior boundary of the electrical mesh (common boundary of both domains)
while for the smallest (relative to the ground) the potentials are zero. The mechanical mesh has the three leftmost nodes
with no displacement allowed, and on the exterior surfaces, natural boundary conditions (surface forces) are applied.
The domains are solved iteratively as explained in Section 3, Fig. (3).

(a) (b)

Figure 5. (a) electrical domain mesh and (b) mechanical domain mesh.
4.2. Simulation results and discussion

The simulation was done having as convergence test the displacement of the nodes. When the displacements in all
nodes change less than 0,5% the program stops running. To validate our methodology, comparisons with simulations in
the ANSYS software were done.

Figure (6) shows the maximum displacements at the cantilever beam for a range of applied voltages. Although both
curves present a similar behavior, the values of the displacements are not equal. The Meflab++ displacements results
were from 3,26% to 5,57% larger than those obtained by ANSYS.
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Figure 6. Displacement values versus electric potential

The difference between the Meflab++ and ANSYS results occurs due to simplifications adopted in our code. The
first aspect concerns to the transposition of the electrostatic pressures to the mechanical structure. For each
displacement of the structure the electrical domain must be modified so that the electrostatic pressures can be
recomputed. For the application of these pressures on the surfaces of the beam, the structural mesh must also be altered
so that the direction of the forces will be updated. This occurs because by default the pressures are applied on the
surfaces following the direction of the normal of the boundary segments. However, care must be taken because a
distorted structural mesh would generate another stiffness matrix, what would represent a structure dissimilar from the
original one. The stiffness matrix then must be computed for the original beam configuration and used as such for all
the subsequent iterations (i.e., the formulation is Lagrangian). For the calculation of the load vector the last deformed
position should be taken into account so that the pressures would be applied in the right direction, i.e., normal to the
beam surface. The algorithm in the Meflab++ is not updating the structural mesh and as a result the pressures are
always being applied following the normals of the boundary segments in the original structure. The consequence of this,
in the present case study, is that the load vector computed from the electrostatic pressures has always components only
in the y direction. The pressures are being completely transformed into y direction forces when there should be a
distribution through the x and y directions. This increases the vertical forces generating bigger displacements in this
direction. Initially, the influence is not too large since the forces that should be computed in the x direction are small



compared to those in the y direction. The differences are accentuated with greater voltages because the curvature of the
beam grows and the x components of the forces would exert more influence. The non updating structural mesh strategy
is thus effective and low computational cost, with acceptable precision, for small voltages and displacements
configurations.

Considering the same example, the second reason for the distinct simulation results is related to the electrical mesh
updating procedure implemented in Meflab++. The mesh morphing is being done only in the nodes on the boundary of
the electrical mesh. For a complete updating scheme, the morphing should be applied to all nodes or at least to nodes in
several layers of elements surrounding the electrical boundary that follows the deformation of the structure. The
difference in the values enlarges with higher electric potentials because the elements start to deform to a great extent.
As only the node on the boundary moves, it may considerably approximate to the other nodes of the element and
generate a too much distorted element shape.

The morphing procedure programmed in the Meflab++ also affects the convergence of the results. Figure (7) shows
the number of iterations executed by the Meflab++ and by the ANSYS to reach convergence. For electric potentials
until 160v the Meflab++ needed one or two more iterations than the ANSYS to converge. With values above 160v, the
convergence was harder obtained and the Meflab++ needed three or four more iterations than the ANSYS. After 240v
our algorithm failed. The failure is reasoned by the accentuated distortion of the elements’ shapes with large voltage
values. Although the failure occurred at 240v, the distortion of the elements starts to be considerable from 210v and
with values above this the results are not trustworthy anymore. The ANSY'S fails to converge from 230v, even with the
morphing being applied to all the nodes in the electrical mesh.

A last fact to be pointed out is that quadratic triangular elements were used in the ANSYS for the simulation of the
electrical domain.
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Figure 7. Number of iterations versus electric potential

Considering the presented numerical simulations, the efficiency of the simplified mesh morphing and force transfer
approach was shown for configurations where the voltages and displacements are small.

5. Conclusions

This paper has described our first efforts towards the construction of a FEM-based numerical tool for simulating
microsystems with electromechanical coupling. A simplified sequential approach was adopted to lead with the coupled-
field problem. The algorithm was explained and details of its implementation in the code Meflab++ were given.
Discussions about mesh managing and the mechanisms of transition between the electrical and mechanical domains
were done. The case study of a silicon microbeam was shown. Although the implementation was done with simplified
strategies, the achieved results were satisfactory and indicate good perspectives. The morphing can be enhanced and the
transfer of loads from the electrical to the mechanical domain can be refined. These actions can improve the computer
code making it capable to generate better results for larger values of electric potential. The simplified low
computational cost strategy can be specially effective for future implementation of transient analysis algorithms and
topological optimization.
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