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Abstract.  A kinematic controller in Cartesian coordinates is proposed in this paper for application in mobile robot with differential 
driving. Lyapunov-like analysis is employed in the control system stability proof. Real time implementations and simulations results 
are also presented and discussed for the trajectory tracking and point stabilization cases. The performance of the controller is 
evaluated and compared with kinematic controller proposed by Kanayama. 
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1. Introduction  
 

Recently, mobile robot control has attracted increasing interesting due to several potential applications in industry 
automation and other non-holonomic systems. This work considers trajectory tracking and point stabilization for mobile 
robot. In trajectory tracking, the robot should follow a reference trajectory with a specified velocity, while in point 
stabilization it should reach a specified point, following the shortest trajectory possible.   

The usual approach in the literature consists in representing the real system by the kinematic model.  This is a 
simplified model, which supposes perfect velocity tracking, i.e., robot dynamic, movement restrictions and external 
perturbations are not considered. In Kanayama et al. (1990), it is proposed a kinematic control law in cartesian 
coordinates for solving the trajectory tracking problem. In Souza (2000) a kinematic control law in polar coordinates 
was proposed. Convergence of the tracking error was shown for the case in which the distance between the guidance 
point and the symmetry point is null. When this distance is different from zero, only a local stability proof was 
presented. This control law is better suited for solving  the point stabilization problem. 

The goals of this paper are: 
• Proposition of a kinematic control law in cartesian coordinates that should be able to solve the trajectory 

tracking and point stabilization problems, with stability proof of control system via the Lyapunov-like 
analysis (Slotine and Li, 1991). 

• Performance comparison between the proposed control law and the that in Kanayama et al. (1990) by 
simulations using the Magellan-ISR mobile robot parameters. 

• Real time performance evaluation of the proposed control law, by using the Magellan-ISR mobile robot,  
in both trajectory tracking and point stabilization cases. 

This paper is organized as follows: In Section 2, the kinematic model in Cartesian coordinates is described and the 
control law proposed by Kanayama et al. (1990) is presented. The control law proposed in this work is deduced and the 
stability proof is presented using the Lyapunov-like analysis (Slotine and Li, 1991). In Section 3, simulations and real 
time results are presented and discussed. Finally, in Section 4, the conclusions are presented. 
 
2. Kinematic control 
 

Consider the Figure (1), in which the mobile robot C is represented by the coordinates p=[xc  yc θ ]T of the center of 
mass, moving over a plane with linear velocity v and angular velocity ω. The matrix equation that describes the 
kinematic model of mobile robot is given by 

 
p& = Sη                                                                         (1) 
 

or, 
 
























 −
=

















ω
θθ
θθ

θ

v
d.cossin
d.sincos

y
x

c

c

10
)()(
)(   )(

&

&

&

            (2) 

 
 
 

jokamoto


                             ABCM Symposium Series in Mechatronics - Vol. 1 - pp.48-57
                             Copyright © 2004 by ABCM



  

θ

d C
P

2r
2R

passive
wheel

X0

Y0

Y
c

X
c

 
 
 
Figure 1. Mobile robot and system coordinates. 
 
where the parameter d is defined as the distance between the guidance point C (center of mass) and the symmetry point 
P, η represents the velocity vector of robot and S, the matrix of kinematic model. 

The kinematic control is defined by the vector  
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supposing  a null velocity error. The Figure (2) shows the diagram of the kinematic control in cartesian coordinates. 
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Figure 2. Diagram of kinematic control. 
 
2.1. Kinematic Controller I 
 

Consider the Figure (3), which the robot C, described in Fig.(1) by the coordinates p=[ xc  yc θ ]T of the center of 
mass and by the velocity vector η, should track the reference robot R, also described by the Eq. (1), moving with linear 
velocity vr and angular velocity ωr, which position is given by the coordinates pr =[ xr  yr θr]T. 

Let’s define the posture tracking error vector ep expressed in the basis of frame {C,Xc,Yc} as 
 

pe =R(θ)(pr–p)                                                                (4) 

 
or 
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Figure 3. Mobile robot and reference robot. 
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 is the rotation matrix. 

Differentiating the Equation (5), yields 
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 The control law proposed by Kanayama et al. (1990), that provides asymptotic convergence of posture error when 

the parameter d is null, is given by 
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where kx , ky e  kθ  are positive constants defined in the design of kinematic controller. More details about the stability 
proof of this control law can de found in Kanayama et al. (1990). To ensure the stability of this control law, the linear 
reference velocity (vr) should be positive. From Kanayama et al. (1990), the Lyapunov-like (Slotine and Li, 1991) time 
derivate function is given by 
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In the specific case of point stabilization, there is no reference trajectory. So the linear and angular reference 

velocities (vr and ωr) are null. The robot should reach the reference point, following the shortest trajectory possible.   
The control law given by Equation (7) guarantees good performance in the trajectory tracking case. However, in 

point stabilization, it presents serious restrictions. By replacing vr and ωr by zero in Equation (7), yields   
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which has no angular control and it is not able to reduce the component y (ey) of posture error. 



  

In the Section 2.2, it will be proposed another control law in cartesian coordinates that should be able to solve the 
trajectory tracking and point stabilization problem.  
 
2.2. Kinematic Controller II  

 
The controller proposed in this work employs the frame system used in Del Río (1997), where the posture tracking 

error vector ep is calculated in the reference robot frame system. More precisely, ep is expressed in the frame 
{R,XR,YR}in Fig. (4).  
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Figure 4. Mobile robot and reference robot. 
 

pe = R(θr)(p – pr)                                                                       (10) 
 
or, 
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where R(θr) = 















−

100
0)()(
0)()(

rr

rr

θcosθsin
θsinθcos

 is the rotation matrix. 

Differentiating the Equation (11), yields 
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Considering the parameter d null, the asymptotic convergence of posture error can de obtained using the control 

law,   
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where Aθ, ℑxy e ℑθ  are positive constants, defined as controller gains. 

For stability proof via Lyapunov-like analysis (Slotine and Li, 1991), consider the function V   
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which is bounded from below by zero. Differentiating the Equation (14), and using the Eq. (12) and (13), we get 
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which is negative semi-definite.      

From Equation (14) and (15), ex, ey and eθ are bounded. Differentiating the Equation (15), we verify that 
),,( θeeeV yx

&& is also bounded. By using the Barbalat Lemma (Slotine and Li, 1991), it follows that 

),,( θeeeV yx
& converges to zero. Hence, ex and eθ converge to zero. Applying the Barbalat Lemma (Slotine and Li, 1991) 

in Eq. (12) it follows that ey also converges to zero (Silveira, 2003). It should be stressing that the Kanayama et al. 
(1990) ),,( θeeeV yx

& only depends on ex and eθ, whereas in Eq. (15) it also depends the ey. In simulations and real time 
applications, it will be clear the effect of this difference in the convergence behaviour. 

 
3. Real time implementations and simulations results 
 

To illustrate the theoretical results present in the previous Section, it will be evaluated and compared the 
performance of the two control laws for trajectory tracking and point stabilization. The simulations were performed in 
MATLAB 5.3 and the real time applications are implemented in MOBILITY software, version 1.0 (IS Robotics, 2000). 
The distance between the guidance point and symmetry point was calculated experimentally and results in d = 0.02 m.  

The Magellan mobile robot used here for the real time applications is shown in Fig. (5). 
 

 
Figure 5. Magellan mobile robot. 
 

It was considered the same conditions in real time implementations. The Euler method was employed for equation 
integration with time step T=0.1 s. The norm of linear and angular velocity control was limited respectively in |vc| ≤ 1.0 
m/s and |ωc| ≤ 2.0 rad/s. To avoid prohibitive control effort in transient period, it was used a linear saturation in signals 
velocities control with time derivate equal to 0.3 for vc and 0.5 for ωc. 

In simulations algorithms, it was introduced an white noise (τv) modeling by a gaussian distribution with zero mean 
and a specific variance (N(0;σ2)) in velocity signal (v and ω) to reproduce the conditions of real case and verify the 
robustness of each control law. The velocity error is defined as 
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For performance evaluation, 20 realizations were employed for calculating the mean and variance of the control 
signals (vc and ωc). For fair performance comparison of the two kinematics controllers, the gains of each controller were 
adjusted to obtain an equivalent effort control in the transient period. Two different sets of results are considered: a) 
typical realization showing the behaviour of all relevant variables (posture and velocity errors), and b) the statistical 
(mean and variance) of the control signals. In the figures and table the following convention is used: 

• Kinematic controller I – KI. 
• Kinematic controller II – KII.  

 
3.1. Trajectory tracking 
 

For the trajectory tracking case, it was considered a reference trajectory with linear and nonlinear segments, which 
vr = 0.4 m/s, ωr= 0, ± 1.5 rad/s and the initial position of reference trajectory pr=(0.5,0,π/2). The robot starts with initial 
condition p=(0, 0, 0). The controllers gains and the disturbances can be found in Tab. (1). It was defined the mean 
posture error me as 
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where tfinal is the final time of simulation or real time case. Initially, consider the simulation case, whose results are 
presented in Fig. (6), (7) and (8). 
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Figure 6. Robot and reference trajectories for controllers KI and KII.  
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Figure 7. Posture error signals and mean control signals for controllers KI and KII.   
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Figure 8. Covariance of control signals and velocity error signals for controllers KI and KII. 

 



 
Comparing the mean posture error me of two controllers in Tab. (1), we can verify that the performance of the 

controllers KII was slightly better than that of controller KI. From Figure (6), we can verify that the controller KII 
exhibits an improvement in the convergence behaviour due to the influence of the y error component (ey) in time 
derivate of V(ex,ey,eθ) given by Eq. (14). However, from Figure (8), we note that the angular control covariance of 
controller KII is larger than controller KI in the transient period. 

We now consider the real time case. The robot velocities are achieved differentiating the signal position provided 
by odometer. The results are presented in Fig. (9), (10) and (11). 
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Figure 9. Robot and reference trajectories for controllers KI and KII. 
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Figure 10. Posture error signals and velocities control signals for controllers KI and KII.   
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Figure 11. Linear and angular velocities signals and velocities error signals for controllers KI and KII. 
 



  

As in the simulation results, we verify that the mean posture error me of controller KII was slightly smaller than 
controller KI. The controller KII provided an improvement in the convergence process, when compared to controller 
KI. Both controllers had sufficient robustness to compensate the effect of velocity errors and variation in the parameter 
d, which was supposed null in the design of the kinematic controller. 

 
3.2. Point  stabilization  
 

It was considered the reference point pr=(1,1,π/2). The robot starts with initial condition p=(0,0,0). The controllers 
gains and the disturbances can be found in Tab. (1). Initially, consider the simulation, as shown in Fig. (12), (13) and 
(14).  
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Figure 12. Robot trajectories for controllers KI and KII. 
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Figure 13. Posture error signals and mean control signals for controllers KI and KII.   
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Figure 14. Covariance of control signals and velocity error signals for controllers KI and KII. 
 

As expected, from Figure (12) we conclude that the controller KI was not able to reach the reference point, moving 
only along the direction x. On the other hand, the controller KII was able to stabilize in the specified reference point. 

We now consider the real time case, as indicated in Fig. (15), (16) and (17). 
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Figure 15. Robot trajectories for controllers KI and KII. 
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Figure 16. Posture error signals and control signals for controllers KI and KII.   
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Figure 17. Linear and angular velocities signals and velocities error signals for controllers KI and KII. 

 
The results in Figures (15), (16) and (17) are coherent with that obtained in simulations. As expected, the controller 

KI compensates only for the error in the component x. The controller KII can reach the specified point, thereby ensuring 
convergence of posture error. Table (1) contains all the controllers gains, mean posture error and disturbances. 
 
Table 1. Kinematics controllers gains, mean posture error and velocity noise.  

 
Figure 

xyℑ  θℑ  Aθ kx ky kθ vτ  me (KI) me (KII) 

(6) 1.0 1.0 0.4 1.25 3 3 N(0;2.5x10-5) 0.2147 0.2124 
(9) 1.0 1.0 0.4 1.25 3 3 − 0.2451 0.2444 

(12) 1.0 1.2 0.4 1. 3 3 N(0;2.5x10-5) − − 
(15) 1.0 1.29 0.4 1.5 3 3 −  − − 

  
4. Conclusions 
 

A kinematic control law for mobile robots was proposed in this work. Cartesian coordinates were used, and the 
frame system proposed in Del Río (1997) was employed. The stability proof was based on a Lyapunov-like analysis 
(Slotine and Li, 1991). Both simulation and real time results are presented. Moreover, the proposed controller is 
compared with that in Kanayama et al. (1990), for trajectory tracking and point stabilization problems. The controllers 
gains were adjusted experimentally, so as to provide smooth and fast transient response. 

It was verified that both controllers have sufficient robustness to compensate the effect of parameter variation d and 
velocity error ec.  It worth pointing out that the full compensation of the velocity error would require a dynamic 
controller, which is far more complicated than the kinematic controller used here. Hence, this work indicates that when 
the external perturbations and disturbances are not severe, the performance of kinematic controller is satisfactory. 
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