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Abstract. It is necessary to consider the robot dynamic model in order to design a biped walking machine in the dynamic locomotion 
form. To project a high-performance control system is a very difficult task, which arises from the complexity of the dynamic model 
of the biped walking machine. Nevertheless, the robot abilities can be improved by employing a dynamic locomotion gait similar to 
the walk of a human being. The main objective of this paper is investigate a high-performance control system for a biped walking 
machine, by employing techniques developed for linear systems, applied to the highly non-linear robot mathematical model. We 
have emulated some unknown non-linearities by using RBF neural network, whose radial base function vector is fixed and with the 
vector weight tuned by an adaptive law. The strategic control law employed could ensure the closed-loop stability in the Lyapunov 
sense, even with the presence of neural network approximation errors. We tested a strategic control by using the experimental data 
of a MIMO biped walking machine. The computer simulation results proved to be very good. 
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1. Introduction 
 

There are three major research areas for the control of a biped walking machine. The first considers static gait planning 
problems, the second considers quasi-dynamic biped locomotion problems, and finally, the third area considers dynamic biped 
locomotion problems. The gait of a biped walking machine is statically stable if the gravity line of its center of mass (or projection of 
its center of mass on the ground, GCoM) falls within the convex hull of the foot-support area, called “support polygon” (Goswami, 
1999.) If the GCoM goes beyond the limits of the support polygon, a quasi-dynamic locomotion is considered; in this case the robot 
feet are smaller then the robot feet in the first area. When a robot does not have feet, dynamic locomotion is considered; they are just 
points that touch the superficies. This paper explored the quasi-dynamic locomotion problem and the robot dynamic to design a high-
performance control system for a biped walking machine, nevertheless the complexity of its dynamic model. Equation (1) – just for 
simplification, we omitted time dependence – is a simultaneous system of n highly coupled non-linear differential equations for an n-
axis robot.  

 
( ) ( ) ( ) ( ) uGFCM =ϕ+ϕϕ+ϕϕϕ+ϕϕ &&&&& ,,            (1) 

 
where: 
 

( )ϕM  Inertial matrix ∈ Rn×n, assumed to be non-singular; 
( )ϕϕ &,C  Centrifugal and Coriolis forces matrix ∈ Rn×n; 

( )ϕϕ &,F  Friction vector ∈ Rn; 
( )ϕG  Gravitational forces vector ∈ Rn; 

u   Control law vector ∈ Rn; 
ϕ   Absolute angle vector of the joints ∈ Rn; 

ϕ&   The first derivative of the ϕ  vector. 
 
Equation (2) shows a relationship between absolute vector angles ϕ and relative vector angles q (see figure 1.) 
 

ϕΚ=q                (2) 
 

where: 
 

Κ  Matrix for the transformation from absolute angles coordinates to relative ones. 
 
One of the most complex terms in Eq. (1) is the velocity coupling term, generated by centrifugal and Coriolis forces ( )ϕϕ &,C . If 

the speed of the robot machine increases, the effects of the velocity term become larger in comparison with the terms that do not 
depend on velocity. We have used Eq. (3) as an approximated deterministic model for the friction term ( )ϕϕ &,F , which describes the 
interactions of the generalized force applied to the joints of the biped-robot machine (Shilling, 1990.) 
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Equation (3) is composed by a viscous friction bv (coefficient of viscous friction), by a dynamic friction bd and by a static 

friction bs (Coulomb friction.) Sign stands for the sign function, and γ is a small positive parameter. If the speed of the biped walking 
machine is reduced, the relative effects of static friction become more pronounced, as shown in Eq. (3). Otherwise, if the biped 
walking machine speed increases, the viscous friction term become larger, in comparison with the other friction terms. 

The main objective here is to investigate and to project a high-performance control system for a biped walking machine by 
employing techniques developed for linear systems, even with the high non-linearity of the robot mathematical model. To prevent the 
uncertainties of the system, the control law has three terms: the first gives a model-based control, the second gives the model-
reference type control, and the last one is a robust term (slide mode) to ensure the closed-loop stability in the presence of neural 
network approximation errors (Zhihong, et al., 1998.) 
 
2. Biped Walking Machine 

 
Biped robot machine can be considered a multi-body mechanical system that consists of a series of rigid links, connected by 

revolute joints. Each pair of coupled joint plus a link has one degree-of-freedom, and the total mass is localized in the respective 
center of mass (CoM.) Particularly, a biped walking machine has six revolute joints that connect seven links: two feet, two lower 
legs, two upper legs, and a pelvis. According to Bezerra (2002), Fig. (1) defines a cinematic configuration in the sagittal plane (plane 
YX) adopted in this work, the length of each link, the localization of each center of mass, and the relative joint angles. The global 
system is located between the robot feet (projection of the pelvis center of mass over the ground), by exploring the symmetric of the 
robot. The y-axis points upwards, the x-axis points forward, and the z-axis is the cross product of the x-axis and y-axis. 
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Figure 1 – Sketch of the biped walking machine 
 
2.1. Dynamic Equations 
 

Equation (4) represents the dynamic biped walking machine in the state space form, which does not diverge from the general 
model of industrial robots. 
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where: 
 

 { }TϕϕΩ
∆

&=   State vector ∈ R2n;  

 ( ) ( ) 1−= ϕΩφ
∆

M  



 

 ( ) ( ) ( ) ( ) ( )[ ]ΩΩΩΩφΩη
∆

FGC ++−=  

 nn×0  Null matrix ∈ Rn×n, 

 nn×I  Identity matrix ∈ Rn×n. 
 

2.2. Model Reference 
 

One can consider that the following linear stable reference model (GE, et al., 1998), which represents n linear second-order 
differential equations, gives the desired response for the closed-loop system: 
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τEBzAz zz +=&                  (5) 

 
where: 
 

 { }T
z ΩΩ

∆
&=   State vector ∈ R2n;  

 τ    Input vector ∈ Rm, m ≤ n; 
  E   Compatibility Matrix ∈ Rn×m; 
 nn×α  Diagonal matrix with n undamped natural frequencies ωn; 

 nn×β  Diagonal matrix with n damping ratio ζ.   
 
The transient performance and steady-state tracking error can be guaranteed by adopting convenient n undamped natural 

frequencies ωn and n damping ratio, ζ. For example, one can consider a robot that has just two degree of freedom. This robot may be 
tracking a model reference, according to Eq. (5), which assumes the expanded form of Eq. (6.) The response of the closed-loop 
system must be completely decoupled (GE, et al, 1998.) 
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Considering by hypothesis that in the Eq. (4) the functions φ(Ω) and η(Ω) are known and φ(Ω) is non-singular, the control law 

defined by Eq. (7) must yield a stable closed-loop system for model reference tracking (Yesildirek, et al, 1995; Guardabassi, et. al. 
2001.) 

 
( ) [ ] ( )( )ΩηΩβατΩφ −+= −− EBBu z

11                 (7) 
 
By applying Eq. (7) in Eq. (4), the close-loop equation is derived: 
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τΩΩ EBA zz +=&                  (10) 

 
By taking the difference between equations (5) and (10), the dynamic error signal results as:  

 
 ( )zAz z −=− ΩΩ &&  ↔ eAe z=&          (11) 
 
Thus, the asymptotically tracking is obtained by choosing the locations of the poles in the half-left complex plane. The constants 

ς and ωn design parameters can give fast system responses to abrupt changes in the reference signal. 
 
 
 
 



  

3. RBF Neural Network Model Reference Adaptive Control 
 

Some physical phenomena, e.g. friction forces, are just partially known. The hypothesis that the exactly values of the functions 
φ(Ω) and η(Ω) can be exactly obtained, is not true in the general case. Therefore, it is more convenient to consider them 
“approximately known.” In this context, neural network is an interesting way to emulate the unknown terms. In special, we chose 
neural network type radial base function (RBF) because the weights are adaptively adjust, based on the Lyapunov stability theory, 
when radial base function vector is considered fixed (GE, et. al., 1998.) We employed inverse Hardy’s multiquadric RBF (Eq. 12) for 
each neuron of the network employed in this paper. 

 

( )
( ) ( )µµσ

1µρ
T2 −−+

=−
xx

x            (12) 

 
where: 
 

x  Input vector to the RBF neural network 
σ2  Variance of vector x; 
µ  Center of vector x. 
 
Equation (13) defines the RBF neural network with r inputs and p outputs, by using the mapping g: Rr  Rp (Xiaohong, et al., 

1996.)  
 

( ) ( ) k
M

1
k0k εµρθαθg +−+= ∑

=l
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where:  
 

x  Input vector ∈ Rr; 

lθ     Weight vector ∈ Rm, l = 0, 1, 2, …, M; 
α  Bias value; 
ε Approximation error,∈ R. 
 
According to Eq. (4), one can assume that φ(Ω) function is exactly known and η(Ω) partially known. Equation (14) defines the 

unknown term, ∆η(x) function. 
 

( ) ( ) ( )ΩηΩηΩη∆
∆

−=              (14) 
 
where: 
 

∆η(Ω) Unknown term;  
( )Ωη   Approximation function;  

η(Ω)  Exactly function. 
 
The RBF model can approximate the Eq. (14), by considering each inner element of the ( )Ωη∆  vector, as follows: 
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Thus, Eq. (19) emulates Eq. (14). 
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The control law (Eq. 7) can be redefined to replace the exactly known non-linear term by the approximated term, which is 

defined by Eq. (19), (GE, et. al., 1998), as following: 
 

RTM uuuuuu +≡++= termrobustmodelreferencebasedmodel          (20) 

 
where: 
 

( ) ( ) ( )( ) [ ]{ } modelreferencebasedmodel
11

M uuEBBˆu z +≡−−+−= −− ΩβατΩηΩη∆Ωφ
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  Adaptive control term;   (21) 
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       Robust control term;      (22) 
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∆ Tˆˆ        Estimate of the ∆η(Ω) term;     (23) 

 
ze −≡ Ω         Dynamic error signal;    (24) 

 
QPAPA z −=+T

z             Lyapunov equation, where P is a solution.    (25) 
 
Equation (20) defines two terms: the first gives the model-based control plus the model-reference type control (Eq. 21), and the 

second is a slide mode term (Eq. 22) that ensures the closed-loop stability in the presence of neural network approximation errors. 
The close-loop equation (Eq. 26) results by using Eq. (20) into Eq. (4). To simplify the notation, we neglected the arguments of the 
non-linear functions. 

 
( )RTM uuBBA +++= φηΩΩ&             (26) 

 
Equation (27) and Eq. (28) result by simple manipulation on Eq. (26) and Eq. (21), respectively. 
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Thus, Eq. (31) results by using Eq. (28) into Eq. (27) as following: 
 

( ) [ ] ( )( )τηη∆ΩβαφφηΩΩ EBBBuBuuBBA zMRTM
1ˆ −++−+−+++=&         (29) 
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( )( ) τφηη∆ηΩΩ EBuBBA zz +++−+= RTˆ&             (31) 

 
The error dynamic tracking (Eq. 34) results by subtracting Eq. (5) from Eq. (31), as following: 
 

( ) ( ) RTz uBBzAz φηη∆ηΩΩ +−−+−=− ˆ&&           (32) 
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Approximating the unknown non-linear term of the Eq. (34) by the RBF model (Eq. 19), follows: 
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Therefore, Eq. (37) results by using Eq. (35) into Eq. (34), as following: 
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To prove the close loop stability, the following Lyapunov function (GE, et. al., 1998) can be defined: 
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where:  
 

Πi  Symmetrical positive-definite constant matrix.  
 

Differentiating Eq. (38) with respect to time, results:   
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Considering P a symmetrical positive-definite matrix and using Eq. (37), results: 
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Thus, the close-loop stability can be assured, by assuming the following adaptive law to update the vector weight of the RBF model.   
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One can modify Eq. (40), by using Eq. (41) as follows: 
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Finally, by employing a robust control term (Eq. 22) and the Lyapunov equation (Eq. 25) into Eq. (45), Eq. (46) results: 
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By hypothesis, the non-linear function φ(Ω) is non-singular, and positive definite. If κ is conveniently choosing as follows: 
 

( )EΩφλκ ≥               (47) 

 
where,  λ is a constant that must satisfy the equation ( )Ωφ≤≤ I0 λ . 
 
Thus, for all values of Ω, results: 
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This result in a uniform bound for the dynamic error signal e, and subsequently for i

~
θ . One can conclude that the asymptotical 

tracking was achieved (GE, et. al., 1998.) 
 

4. Choice of a Signitificant Set of RBF Centers 
 

RBF neural network (Eq. 35) has 625 neurons. The weight vector was set to zeroes in the beginning of the simulation and was 
updated by Eq. (41). We used the orthogonal least squares (LS) algorithm (Chen, et. al., 1991) to select N < M radial base function 
centers. This method requires the desired outputs and the regressors. Regressors are identical Eq. (12) when a fixed vector center µj, 
is considered. One can defined desired outputs d(t) (Eq. 49) and regressors p(t) (Eq. 50), as following:  

 

( ) ( ) ( ) ( ){ }Tttttd 621 η∆η∆η∆=
∆
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( ) ( )•=µ−
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llll ρp x   ( l = 1, 2, …., M)          (50) 
 
The main problem is to select a significant set of RBF centers from a given candidate data set. One can consider a candidate data 

set by including all joint angles and excitation, as following:  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } { }M
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∆
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We applied a chirp excitation method to generate a candidate data set and the desired outputs for each degree of freedom in the 

Eq. (4). In this stage, we considered that the parameters of mass are “partially known” (set to 85 percent of true value, shown in 
Table 1). Equation (3) defines the dissipative term considered in this work; Eq. (57) defines the viscous friction term value and other 
frictions terms were set to null. The initial conditions for the biped walking machine were set to q(0) = [π, -π, π/3, π/6, π/4, π/2, π/8]T 
and the velocities were set to null. We have implemented Eq. (35) for all inner elements of the ∆η-vector by considering vector input 
x(t), as following: 
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where:  
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5. Parameters of the Biped Walking Machine 
 
We used the experimental data (Bezerra, 2002) of a MIMO biped walking machine (a prototype namely RB-1) to verify the 

strategic control law defined by Eq. (20.) Table (1) shows the physical parameters of the biped walking machine, according to a 
prototype. 

 
Table 1 – Physical parameters of a biped walking machine (RB-1) 
   Center of Mass [m] 

Link Mass [kg] Length in the y-axis direction [m] x-axis y-axis z-axis 
Link-1 (right foot plus ankle) 0.317 0.0495  0.0137 0.0153 -0.057 
Link-2 (right lower leg) 0.325 0.1814 0 0.1404 -0.054 
Link-3 (right upper leg) 0.266 0.1814 0 0.3362 -0.057 
Link-4  (pelvis) 0.496 0.1722 0 0.4485 0 
Link-5 (left upper leg) 0.266 0.1814 0 0.3362 0.0573 
Link-6 (left lower leg) 0.325 0.1814 0 0.1404 0.054 
Link-7 (left foot plus ankle) 0.317 0.0495 -0.0137 0.0153 0.057 
 
In addition, equations (53) to (62) define the dynamic model (Eq. 4.) The constants sij and zij are obtained by using the Lagrange’s 
equation of motion. g is the acceleration of gravity.   
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( )j1j1j qsinzgG ±=               (56) 

 



  





























−
−+−

−+−
−+−

−+−
−+−

−

=

66

6655

5544

4433

3322

2211

11

dd00000
dddd0000
0dddd000
00dddd00
000dddd0
0000dddd
00000dd

D           (57) 

 

2.0dj
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=  Ns/m   j = 1, 2, …, 6                          (58) 

 
Based on Eq. (3), we set the dynamic friction bd, the static friction bs and γ values according to equations (58) to (61), 

respectively, just to prove the adaptive control law of the Eq. (20.) 
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The other terms are: 
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where: 1
∆
=χ  Constant parameter that converts torque to voltage;   

 
6. Simulation on a Biped-Walking-Machine 

 
Figure (3) implements the control law Eq. (20), by using Matlab/Simulink software. 
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Figure 3 – The control adaptive law.   

 



 
Table (2) shows of the project parameters to implements of the Eq. (20).  
 

Table 2 – Project Parameters 
 
Model Reference, Eq. (5) Equation (12) Lyapunov Equation, Eq. (25) Equation (41) Equation (22) 
ζj = 0.3 
ωnj = 20 rad/seg 

( )
N2

maxσ µ
=

 

 
Q = I12×12 

 
∏ = 1.5 

 
κ = 15 

 
Bezerra (2002) obtained a relative vector angles q (reference signals), by considering the following hypotheses: the robot 

movement is restricted in a sagittal plane; the swing foot trajectory is sinusoidal; the swing foot and the pelvis are parallel to the 
ground, during of the movement. Figure (4) defines reference signals for the biped walking machine, whose initial conditions are 
null. 
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Figure 4 – Reference Signals. 
 

Figure (5a) shows the desired joint trajectories (black and red) for all relative angles joints, which were obtained by the reference 
model of Eq. (5), tracking the reference signals, as well as the outputs of the biped walking machine model Eq. (4) (magenta and 
blue), solved by Runge-Kutta method, with sampling interval ∆Τ = 0.001 s. Despite the uncertainty about the features of the dynamic 
robot model, we could verify that RBF control term is capable to settle a significant rule to track desired joint trajectories, by 
adjusting the network weights to fit the true parameter values. To complete the information about adaptive control law, Fig. (5b) 
shows the error between the outputs of the reference model and the robot model. One can verify that the maximum errors are 
bounded around ±2 degree for all joints. 
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Figure 5 – Signals of the biped walking machine. (a) Desired joint trajectories and actual joint trajectories using RBF control law; (b) 
Angular error joint position (degree.) 
 
 



  

5. Comments and Conclusions 
 
In this work a non-linear control system for a biped walking machine was developed. To select the centers of the RBF neural 

network, by employing LS algorithms, we considered “partially known” some terms in the dynamic model of Eq. (4) (friction terms 
and mass parameters.) In this context, the authors investigated and designed an adaptive tracking controller based on the RBF neural 
network. To update the weights of the network, we used an adaptive law that ensured the close-stability in the Lyapunov sense.  

We tested the proposed scheme control simulating with Matlab/Simulink software. We used the robot physical parameters from 
the prototype biped walking machine (RB-1), as well as its reference signals for the revolute joints. Our analysis and results proved 
that the RBF neural network can learn adaptively the uncertainty system and track fast the desired trajectories. The errors between 
the desired trajectories and the robot model outputs are bounded around ±2 degree for all joints. Future works will aim at 
investigating other radial basis function, trying to minimize the control signals, and to extend the scheme control for a biped walking 
machine with a trunk. 
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