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Abstract. This paper deals with the stability analysis of fuzzy logic control (FLC) systems. The output characteristic of this class of 
controllers is nonlinear, thus it is necessary to use stability analysis methods for nonlinear systems. Here we use the Popov 
criterion. The systems analysed have a FLC with two input variables and one output variable, resulting in a surface as the nonlinear 
output characteristic. Using algebraic and graphic manipulation of the control system state equations and of the nonlinear output 
characteristic of the FLC, we can apply the Popov criterion to systems with this configuration. 
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1. Introduction  
 

The concept of a fuzzy set was introduced by Lotfi A. Zadeh (University of Califórnia, Berkeley), in 1965. He 
observed that the available technological resources were insufficient to automate the activities related to the problems of 
industrial, biological or chemical nature, that includes ambiguous situations. 

Fuzzy set theory provides a method of translating verbal, imprecise and qualitative expressions, common in human 
communication, in numerical values. Thus, we can express human knowledge in a way that the computers can process. 
Therefore, systems that use fuzzy set theory are called by intelligent, because they emulate some aspects of human 
intelligence. 

When fuzzy set theory is used in the logic context, for example in knowledge based systems, it is known as fuzzy 
logic. 

The fuzzy logic controller designer needs a large knowledge of the imprecision and the uncertainties in industrial 
processes and plants and how they affect the usual applications of modern control theory (Shaw et all, 1999). 

The techniques of fuzzy control originated with the research of E. H. Mamdani (1974), of Queen Mary College, 
London University. In 1974 he controlled a steam machine using fuzzy reasoning. 

To enhance the power of the framework of fuzzy control, it is desirable to demonstrate the stability of fuzzy 
systems, but this may not be straightforward. In this paper we are concerned with a stability analysis tool for a particular 
class of fuzzy systems. 

When we have the mathematical model of the control system, we can make the stability analysis. The output 
characteristic of fuzzy logic controllers is nonlinear. In very specific cases it can be linear. Therefore, we need to use 
stability analysis methods for nonlinear systems. The stability analysis tool discussed here is based on Popov criterion. 
It is applied to fuzzy logic controllers (FLC) with two inputs and Mamdani implication. Thus we present and we 
discuss a modification of the Popov criterion introduced by Bühler (1994). 
 
2. Popov criterion 
 

Consider a closed loop system composed by a nonlinearity (NL) without memory in cascade with a linear plant (L). 
The stability of this system can be determined based on its frequency response, using the Popov criterion (Tomovic, 
1966): 
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Figure 1. Basic structure for the application of the Popov criterion. 
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where A is the state matrix, b is the input vector, C is the output matrix, u is the controller’s output, x is the state vector 
and y is the system’s output. Suppose that A is Hurwitz, (A, b ) is controllable, (A, C) is observable and f ( ⋅ ) is a time-
invariant nonlinearity that satisfies the condition (Santana Jr, 2003): 
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where K is a positive definite symmetric matrix. Consider a Lyapunov function candidate of the Lure-type: 
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where η ≥0. Using the Kalman-Yakubovitch lemma (Yoneyama et al, 2002), we can show that an enough condition for 
stability is the existence of q > 0 such that: 
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where G(jω) is the frequency response of the system. This condition can be represented graphically. 
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Therefore, for absolute stability, the Eq. (4) can be expressed by: 
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The Eq. (6) is a straight line equation, with slope 1/q and passing through the point –1/k. This straight line is called 
Popov’s line. The Eq. (4) is satisfied if the Popov plot G*(jω) lies entirely to the right of this line. The slope q can take 
any real, positive value. 
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Figure 2. Geometrical interpretation of the Popov criterion. 
 

Thus, it is possible to find the factor k, which defines, according to the Fig. (3), the sector of absolute stability: 
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Figure 3. Zone  containing the nonlinear characteristic . ( ) ekef0 ⋅<< f(e)u =
 
 



3. Modification of the Popov criterion 
 

To use the Popov criterion in the stability analysis of a fuzzy control system, it is of advantage to modify this 
criterion slightly: 
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Figure 4. Modified structure for application of the Popov criterion. 
 

We change the position of the linear (L) and nonlinear (NL) blocks of Fig. (1), and we obtain the outline shown in 
Fig. (4). Thus, we analyse the control error  belonging to block L, and we determine a new block, which is 
called L

yre −=

e. Therefore, its transfer function becomes: 
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Because of the signal inversion, the Popov criterion given by Eq. (6) is then defined by: 
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The Popov’s line is given by: 
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Thus, for stability assurance, the Popov plot  must be placed to the left of Popov’s line, as it is shown in 
Fig. (5): 
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Figure 5. Geometric interpretation of the modified Popov criterion. 
 
4. Fuzzy logic control system and the Popov criterion application 

 
4.1. General relationships 
 

The Fig. (6) presents the fuzzy control system base structure with the linear system. This linear system is called S, 
and the fuzzy logic controller is represented by the block FLC: 
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Figure 6. Fuzzy system base structure. 

 
The linear system can be described by the following state equation: 

 
ubxAx ⋅+⋅=&                                                                                                                                                            (10) 

 
where the state vector x has the dimension n. The output variables are in the vector y and they are given by: 
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They are applied to the FLC inputs with the reference r. The state vector x is given by: 
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The states xs1 and xs2 are used to compose the FLC inputs. The vector xs3 contains all the other states. 
The state vector x e composes the input variable of the FLC and the state equation of the system to control is given 

by: 
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where u is changed by the FLC output x R
*. So, we need to apply the following linear transformations:  
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The matrix T is determined so that the tangent plane in the origin of the characteristic of the FLC attributes the 

same output signal of x R
* in the domains of x and x e. This tangent plane corresponds to the output characteristic of the 

feedback state controller (Bühler, 1994). 
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where r - x s1 corresponds to the error of the state feedback control. The line vector k s
T is defined from (15): 
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In the FLC base system, the control error e = r – y 1 is formed from y1 and together with the other element y2, it 
becomes the vector x e, with dimension n e = 2. So, we use the following linear transformation (Bühler, 1994): 
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For the matrix Te, there is the following condition (Bühler, 1994): 
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There is also the introduction of the vector e e

T, with dimension n e = n s = 2: 
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We can see that the first element has a negative signal, because x e1 is proportional to the control error. So, the 
matrix Te becomes: 
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With the vector x e, we can modify the control system base structure, as shown in Fig. (7). The reference r does not 

appear clearly. Therefore, the control system is autonomous. 
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Figure 7. Modified structure of the FLC system (first modification). 
 
4.2. Nonlinear function of FLC 
 

The FLC output x R
* is a nonlinear function of the input vector x e, given by: 
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The nonlinear function f(.) must respect some conditions: 
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Finally, for small values of the vector x e, it is necessary that the nonlinear function approaches of a linear 

relationship defined as (Bühler, 1994): 
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Thus, at the limit of the origin, the nonlinear characteristic of the FLC behaves as a feedback control. The nonlinear 

functions of the FLC respect those conditions, as well as it happens with the feedback control (Bühler, 1994). 
 
4.3. Nonlinear transformation of the input variables of the FLC 
 

To use the Popov criterion with a FLC with two inputs (n  e = 2), we need to introduce a linear transformation to the 
vector x e. We promote a rotation of 45º in the axes of the output characteristic of the FLC. Thus we obtain new axes x t1 
and x t2 and we change the their scales. The method is illustrated by the Fig. (8): 
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Figure 8. Linear transformation of the FLC input. 
 

There are the following general relationships between the vectors x e = [x e1 x e2]T e x t = [x t1 x t2]T (Bühler, 1994): 
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Therefore, the transformation matrix must be: 
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Thus, the behavior at the limit x e → 0 (origin) of the nonlinear characteristic, according to Eq. (23), it becomes: 
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that is, the slope of the tangent in the origin of the characteristic, in relation to the axis x t1, is given by: 
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We can observe that the behavior at the limit (x t → 0) does not depend of the variable x t1. Continuing the 

computation of the nonlinear characteristic xR
*
 = f(x e) = f(x t), we introduce the following relationship (Bühler, 1994): 
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where k R is a nonlinear function of x t, given by: 
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The value k R does not depend only of x t1, but it also depends on the other elements of vector x t. According to the 

nonlinear characteristic given this factor changes among rights limits which determine a sector where this characteristic 
must be located. 

The value k R indicates the slope of the hyperplane, which cross the origin of the space (x t , x R
* ). This hyperplane 

has the same coordinates that the nonlinear function at the operational point. Thus, we need to calculate the values k R 
for all the points, using the Eq. (29). 

 
 
 



4.4. Fuzzy logic control system modified structure 
 

Now we can modify the fuzzy logic control system structure. Thus, we consider that the control system (called now 
by S t) has the variable x t1 as the only output variable. See Fig. (9). However, the variable x t2 also acts on the FLC. 
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Figure 9. Modified structure of the FLC system (second modification). 
 

Thus, we analyse the FLC with two inputs as a FLC with one input. Therefore, his output characteristic is studied 
as a function of the space (x t1 , x R

* ). The state-space equation and the output equation of the  are given by: tS
 

∗⋅+⋅= RxbxAx&                                                                                                                                                             (30) 
 

xc
k
1x T

t
e

t1 ⋅⋅−=                                                                                                                                                            (31) 

 
First of all, we generalize the Eq. (26) to determinate the line vector c t

T (Bühler, 1994): 
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thus we can conclude that: 
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Considering Eq. (24),Eq. (17), Eq. (18) and Eq. (11), we can make successively the following transformations: 
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A comparison with Eq. (31) shows that: 
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4.5. Transfer function of the modified control system and the Popov criterion 
 

By comparison of the Fig. (9) and Fig. (4), we can see that modified system structure of the FLC, according to the 
section IV.4.3, it corresponds to the structure modified by the application of the Popov criterion, according to the 
section IV.3. Thus, we can use the Popov criterion given by Eq. (8), to analyze the stability of the FLC. 

According to the structure of the Fig. (9), the control system S t, is described by Eq. (30) and Eq. (31). By the 
existent relationships between the state equations and the transfer function, we can find the following transfer function 
for the modified system: 
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For a concrete case, we can compute the frequency response G t(jω), ( ), and then, we can compute the Popov 

plot G 

jωs =

t
*(jω) of the modified system. 

Thus, we can determinate the Popov’s line, as in the Fig. (5), and we can obtain the factor k, which defines the 
section where the nonlinear characteristic must be located to ensure the absolute stability of the nonlinear closed loop 
system. The nonlinear characteristic of the FLC is given by: 
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As we already explained, the factor k R is a nonlinear function of x t1 e x t2. Thus, there is the situation presented by 

the Fig. (10). The straight line k R.x t1 cross the operation point of the nonlinear function xR
*

 = f(x t). 
The nonlinear control stability is guaranteed if Eq. (36) is satisfied. Then, we have the condition: 
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Figure 10. Nonlinear characteristic of FLC inside a sector . ( ) t1t1R xkxx0 ⋅≤≤ ∗

 
4.6. Discussion on the Popov criterion presented by Bühler (1994)  
 

In the previous sections we showed the description of the Popov criterion, and we saw that it can be applied only to 
a time-invariant nonlinear function. However, when we apply the Popov criterion to a modified fuzzy system, the input 
xe2 is a derivative of the position “y” and so the output of the CN is a nonlinear time-variant function. Then the 
modification presented by Bühler is not appropriate. 

 
5. Results 
 

Here we study the modified Popov criterion application for a linear plant that satisfies all the conditions introduced 
previously. The state-space model of the system is given by: 
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The poles of this system are: s = -0,05 + 0,9987*I e s = -0,05 - 0,9987*i. Every poles have negative real parts and 

the system is controllable and observable. Therefore, the Popov criterion can be applied to this system. 
To control this system, we chosen the function shown below: 
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So this nonlinear function respects all the conditions (22). The nonlinear characteristic and the tangent plane at the 

origin of this characteristic are shown in the Fig. (12): 
 



 
 

Figure 12. The controller’s nonlinear characteristic and his tangent plane. 
 

This plane is obtained from the existent points about the origin of the characteristic. From this plane equation we 
obtain the state line vector ks

T and the nonlinearity parameter: 
 

• ke = 0,9091                       →  nonlinearity parameter (tangent plane’s slope); 
• ks

T = [0,9091  0,9091]      →  line vector of the feedback state controller. 
 

We compute now, point to point, the slope of all the points of th nonlinear characteristic. Thus, we can obtain the 
maximum value of the slope. In this case, the maximum slope is kRmax = 0,9091. 
 

The modified output equations are given by (they are the FLC inputs): 
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From the matrix Ct, from the vector ks

T and from the parameter ke, together with the matrix A and b of the system to 
control, we obtain the transfer function of the modified system Gt(s): 
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From the Gt(s) we can draw the Popov plot and then we can obtain the Popov’s line. The Fig. (13) (a) shows the 

Nyquist plot of the linear system and (b) shows the Popov plot. 
 

 
 
Figure 13. (a) Nyquist plot of the linear system.(b) Popov plot of the modified system. 
 

The inverse of the intersection of Popov’s line with the real axes supplies the value of the slope k of the area of 
stability, in which the nonlinear characteristic must be located. 
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By comparison we see that the value of k is larger than the value of the slope kRmax , because 

, so we can conclude that the system is stable. However, when this system is simulated 
we can observe that this system is unstable. The Fig. (14) (a) shows the simulation diagram (b) shows the position plot. 

,557130k0,9091k Rmax =<=

 

 
 
Figure 14. (a) The blocks diagram.(b) Position plot. 
 
6. Conclusions 

 
In this paper we discuss a methodology to analysis for the Popov criterion application to a FLC with two inputs and 

one output. 
We presented the modified Popov Criterion developed by Bühler. We observe that the developed linear 

transformation is correct and we can apply the analysis over this transformation. However, the stability criterion chosen 
by Bühler is not appropriate. As we shown previously, the Popov criterion can be applied only on nonlinear time-
invariant functions, and the nonlinear characteristic of FLC with two inputs and one output is a time-variant function. 

We used a function that respects the conditions (22) to show that the Popov criterion can not be applied to functions 
like that. So, we need to find other method to analysis to apply over the linear transformations presented above. 
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