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Abstract With the development of more efficient structural analysis tools and new construction techniques, modern buildings are 
becoming taller and more flexible in order to satisfy the requirement for more space. At the same time this type of structure becomes  
more vulnerable to excessive vibration caused by natural hazards, such as earthquakes and strong winds, which can cause damage and 
even the collapse of the structure. Structural control offers a promising alternative in protecting structures while maintaining desirable 
dynamic properties. Over the years passive control devices such as tuned mass dampers (TMD) have been successfully studied and 
installed on some civil engineering structures worldwide. Hybrid control strategies have been investigated by many researchers to exploit 
their potential to increase the overall reliability and efficiency of the controlled structure. A hybrid control system is typically defined as 
one that employs a combination of passive and active devices. In this work the hybrid control of a tall building subjected to an harmonic 
loading with random perturbations is studied. Adding to the considered harmonic load a random noise will make the analysis more 
realistic, since most of the civil engineering structures are subjected to random natural loadings. The chosen control mechanism is the so 
called hybrid mass damper (HMD), a combination of a tuned mass damper (TMD) and an active control actuator. The active control 
actuator force is calculated using the linear optimal control algorithm. The HMD behavior and efficiency compared to the passive mass 
damper is analyzed in detail. It is verified that the hybrid control system is more efficient in reducing vibration caused by harmonic 
loading with random perturbation than the passive mass damper, which is traditionally designed considering an harmonic load. 
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1. Introduction 
 

The protection of civil structures against undesirable vibrations, including their material contents and human occupants, 
is without doubt a worldwide priority. These high vibration levels can cause discomfort and, even more, compromise the 
structure safety and integrity. Events which cause the need of such protective measures are earthquakes, waves, winds, 
traffic, human occupation and even deliberate acts, among others. 

An alternative to this problem studied by many researchers in the last years is the structural vibration control. It changes 
structural properties, enhancing damping, stiffness and strength, by installing external devices or applying external forces to 
the structure. There are basically three types of structural control: active, passive and hybrid. 

Hybrid control systems combine active controllers with passive devices. The active portion of an hybrid system 
requires much less power than a similar active system, while providing better structural response than the passive system 
alone. This type of control has been extensively studied in recent years (see, for example, Tzan & Pantelides, 1994; Lee 
Glauser et al, 1997; Riley et al., 1998; Spencer Jr. & Soong, 1999; Nishitani & Inoue, 2001; Avila, 2002; Avila & 
Gonçalves, 2002a). 

A large number of studies on hybrid control analyzes its application for structure protection against earthquakes. Tzan 
& Pantelides (1994) combined viscoelastic dampers with active bracing systems, while Irshick et al (1998) and Riley et al 
(1998) applied hybrid control strategies to base isolation systems. 

An hybrid control device already used in Japan and Taiwan buildings (Nishitani & Inoue, 2001) is the so called hybrid 
mass damper (HMD), a combination of a tuned mass damper (TMD) and an active control actuator (Nagashima et al, 2001; 
Fujinani et al, 2001; Avila & Gonçalves, 2002b). 

In the present work a HMD is used to control the dynamical response of a tall building subjected to an harmonic load 
with random perturbations. Most of civil engineering structures are subjected to random natural loadings and even when 
deterministic loads such as harmonic loads, a random noise is usually present. The mathematical modeling and 
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numerical methodology to obtain the non-deterministic force is described in Santee (1999). The active control actuator force 
is calculated using the linear optimal control algorithm (Meirovitch, 1990). 

The TMD and HMD performances are compared. It is observed that the hybrid control system is more efficient in 
reducing vibration caused by loadings with random perturbations than the passive mass damper, which is traditionally 
designed considering an harmonic loading. 
 
2. Equations of Motion 
 

The equations of motion of a multi degree of freedom (MDOF) system with an HMD are similar to those of a structure 
controlled by a TMD. The difference is the inclusion of the control force u(t), leading to 
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where M, C and K are the mass, damping and stiffness matrices respectively; F(t) is the dynamic loading applied to the 

structure; p(t) = c
.
z (t)+kz(t)-u(t); yi(t) is the displacement of the ith mass relative to the ground; z(t) is the displacement of 

the HMD with respect to the floor where it has been installed; D represents the HMD location vector. The dth component of 
D is given by 
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where i identifies the floor on which the HMD is installed; when the HMD is on the top floor i=N. 

In MDOF systems where the natural frequencies are well spaced, such as some high buildings, the structural response 
can be obtained by a reduced model using modal analysis (Soong & Dargush, 1997). The TMD effectiveness is greatest 
when the structure analyzed oscillates around a predominant mode, so the response vector y(t) can be approximately 
represented by a single coordinate yN and a mode shape φ1, i.e., 

 
y = φφ1 yN. (4) 
 
Substituting Eq. (4) into Eq. (2) and pre-multiplying Eq. (2) by φφ1

T, equation (2) becomes 
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where 11
*
1 φφ MTM =  is the modal mass; 11
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1 ωMK = , ξ1 and ω1 being the damping ratio and natural 

frequency of the first mode of the structure; and f(t) is the dynamic excitation. 
 The MDOF system modal representation is exactly the same as a single degree of freedom (SDOF) structure, except 
that the modal mass, stiffness and damping are employed instead of physical parameters. The mass ratio, µ, in this case, is 
defined as µ=m/M1

*. 
 
3. Optimal Control Algorithm 
 

The so-called state space approach is the most used in the formulation and solution of control problems. It describes 
structural systems by a set of simultaneous first-order differential equations of the form 
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is the 2n-dimensional state vector, 
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is the 2n x 2n system matrix, and 
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are 2n x m and 2n x r location matrices specifying, respectively, the location of controllers and external excitations in the 
state-space. 
 In the active/hybrid control system development, one of the most important stages is the determination of an appropriate 
control law. This law is obtained through the use of a chosen control algorithm; in the present work the classical linear 
optimal control algorithm is used (Meirovitch, 1990). 
 The linear optimal control problem consist in finding the control vector u(t) that minimizes the performance index J 
subject to the constraint (6). In structural control, the performance index is usually chosen as a quadratic function in z(t) and 
u(t), as follows 
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where Q is a 2n x 2n positive semi-definite matrix and R is a m x m positive definite matrix. The matrices Q and R are 
referred to as weighting matrices, whose magnitudes are assigned according to the relative importance attached to the state 
variables and to the control forces in the minimization procedure. It is important to notice that HMD devices are single-
input systems, where only one control force is necessary. In this case the location matrix B reduces to 2n x 1 matrix and the 
weighting matrix R reduces to a number. 
 The minimization problem leads to a Riccati differential equation system of the form 
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where P(t) is the Ricatti matrix.  

The control vector u(t) is linear in z(t). In this case, the linear optimal control law is 
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where )(
2

1
)( tt PBRG T1−−=  is the control gain. When z(t) is accessible through measurement, u(t) can be determined 

from Eq. (12). It is known that the feedback determined in this way generates a stable closed-loop system (Soong, 1990).  
 
4. Non-deterministic Force 
 

Consider that the applied load is composed of an harmonic deterministic portion plus a random term, such that 
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where the random term ),;( ΩFtG  depends on the deterministic parameters. 

For the numerical simulation, following Santee (1999), the following hyothesis about G are adopted in the present 
work: 

• A force that varies randomly in time is mathematically a stochastic process. A stochastic process is a random 
variable where the probability distribution depends on a parameter. If the parameter is continuous, the process 



is called continuous. In the present case, this parameter is time. If the statistics of the process (mean and 
variance) are time independent the process is called stationary. 

•  An Ergodic Process is a process where the statistics of the random variable ),;( ΩFtG  are the same as the 
statistics of only a sample of the random process taken along time. An ergodic process is always stationary, but 
a stationary process may not be ergodic. In this work it is assumed that the random portion ),;( ΩFtG  is an 
ergodic process and, consequently stationary. 

Another hypothesis is that G has expected value zero, that is:  
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The description of a stochastic process is usually made in the frequency domain, the hypothesis about the random term 

is that it has a spectral density function given by 
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where 2
GGσ  is the variance of the random force amplitude and 

l
ω  is the random frequency bandwidth. 

 Figure (1) shows the spectral density function of the random portion. Additionally, it is considered that the standard 
deviation of the random force amplitude is proportional to the deterministic force amplitude, thus 
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where a is the proportion value. It is important to emphasize that the random force depends on frequency and amplitude of 
the deterministic term. 
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Figure 1. Spectral density function of the random term 

 
Physically, the random term is a noise that increases with an increase in the applied force. Another point to be 

emphasized is that  the random term depends on two prescribed parameters: the standard deviation proportion a with respect 
to the deterministic force amplitude F, and the frequency bandwidth lω  around the a forcing frequency Ω. 

 
5. Stochastic ergodic process simulation, with expected value zero and specified spectral density function 
 

In the following the theoretical fundaments and methodology used to generate the random force in time domain is 
presented (Santee, 1999; Avila, 2002). 

The idea of an algorithm to the generate a stochastic process sample G(t) comes from the expression of the process 
variance in terms of the spectral density function 
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Assuming that the process is ergodic, the variance can also be calculated in time domain as 
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where T0 is the force duration and  g(t) is a sample of the stochastic process G(t). 
 Based on relations (17) and (18), the variance expressions can be calculated by two different approachs and equaled to 
obtain a relation between the time function g(t) and the spectral density function, as follows 
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Discretizing Eq. (18), one obtains 
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where NTt 0=∆  and 00 2 Tπωω ==∆  
 Parceval Theorem (Pneumont, 1994), which relates the amplitude of a stochastic process in time with the process 
amplitude on frequency domain, states that 
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where )(ωgC  is the Discrete Fourier Transform (DFT) coefficient of the process sample g(t). 

Substituting (21) on the right hand side of Eq. (20) and remembering that for g(t) to be real it is necessary that 

)2()2( * iNCiNC gg −=+ , Eq. (20) can be rewritten as 
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 The above expression is true if 
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 This expression allows to determine the modulus value of Cg coefficients of a Discrete Fourier Transform sample of the 
stochastic process G(t), in a way that it has a specified spectral density function. Finally, each DFT coefficient of g(t) can be 
calculated from 
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where the phase angles θk are random variables with constant distribution between 0 and 2π. Samples of the random 
variables can be obtained using a random number generator. 
 The basis of a random force generation methodology is Eq. (24), to use this expression the following initial values are 
necessary:  
 



• T0   Random process duration 
• N  Number of points analyzed  on the process 
• ΦGG(ω) Specified spectral density function 
 
6. Numerical Example 

The ten-storey shear building, described in Villaverde & Koyama (1993), is considered in this study. The mass, 
stiffness and damping properties of the building reduced model are, M1 = 589.1 t; K1 = 5.94 x 103 kN/m e C1 = 74.8 KNs/m. 
A mass damper is connected to the top floor. Admitting a mass relation µ = 0.05, the mass damper structural properties 
obtained by Den Hartog´s expressions (Den Hartog, 1956) are: mass md = 29455.0 Kg; stiffness kd = 269150.1 N/m and 
damping coefficient cd = 23796.5 Ns/m. 

Initially consider the mass damper acting passively as a traditional TMD. The dynamic response of the structure 
subjected to an harmonic loading F = F0 sen Ωt (F0 = 1 kN; Ω = 3.174 rad/s) and to a non-deterministic force (Ω = 3.174 
rad/s; ωl = 0.5 and a= 0.3), illustrated in Fig. (2), is analyzed. The equations of motion are solved by the fourth-order 
Runge-Kutta numerical integration technique. 

 

-1.50E+06

-1.00E+06

-5.00E+05

0.00E+00

5.00E+05

1.00E+06

1.50E+06
0.0 10.0 20.0 30.0 40.0 50.0 60.0

t(s)

F
 x

 1
03

 (
N

)

Random Portion Non deterministic force
 

 

Figure 2. Random force sample (Ω = 3.174; ωl = 0.5 and a = 0.3) 

Fig. (3) shows the time evolution of the displacement of the top floor for both loading cases. The maximum and 
root mean square (rms) values for the top floor displacement are summarized in Tab. (1). It can be observed that the 
presence of a random disturbance greatly reduces the TMD effectiveness. 
 

Table 1 – Maximum and rms displacements of the main structure with TMD 

 umax (mm) urms (mm) 

Deterministic Force 0.8704 0.5377 

Non-deterministic Force 1.0560 0.6625 

∆∆(%) 21.3 23.2 
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Figure 3. Displacement time evolution of main structure with TMD 

 
Subsequently, the dynamical response is calculated considering the structure protected by an HMD. The control 

force u(t) is obtained using the following weighting matrices 
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Figure (4) compares the top floor displacement time evolution using a TMD and an HMD, when the structure is 

subjected to the harmonic load with random perturbation. It can be observed that the HMD is more efficient, leading to 
maximum and rms displacement of about 75% less than those obtained with the passive mechanism only (TMD), as 
summarized in Tab. 2. 
 

Table 2 – Maximum and rms displacements of the main structure with TMD or HMD, subjected to  
                non- deterministic loading 
 

 umax (mm) urms (mm) 

TMD 1.0560 0.6625 

HMD 0.2568 0.16949 

∆∆(%) -75.5 -74.4 
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Figure 4 – Displacement time evolution of main structure (TMD x HMD) 

 

The maximum and rms forces calculated for the HMD actuator under non-deterministic load are respectively Fmáx = 
703.4 kN and Frms = 692.6 kN. The maximum value is approximately only 2% higher than the necessary to control the same 
structure subjected to an harmonic load only. The increase in the rms force is about 15%. 

The control force in the HMD actuator improves the effectiveness of the mass damper, makes it more robust in relation 
to changes that can probably occur in the harmonic loading considered in the design of the control system. 
 

7. Conclusion 

In this paper the HMD performance on controlling a high building was compared to the corresponding passive 
mechanism, the TMD. The structure was excited by an harmonic load with random perturbations, this type of load makes 
the analysis more realistic, since civil engineeering structures are often subjected to random natural loadings. It was verified 
that, in this case, the hybrid control is more efficient than the passive one, because the control force makes it more robust to 
changes on the design load. The results also show that the control force does not have a significant increase in its maximum 
magnitude comparing the structure with an HMD subjected to deterministic and non-deterministic loads.  
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