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Abstract: In this paper, experimental tests concerning the deflection by eccentric buckling of a flexible beam using Ti-Ni shape 
memory alloy (SMA) wires are described and discussed illustrating the potentiality of these actuators generating forces and 
displacements. In order to determine these capacities, a simple structure composed of an aluminum beam (25x1x240mm) 
clamped at one end and free at the other was designed and implemented. The beam can be loaded by weights for different 
eccentricity values while its deflection is monitored at a specific point located at 75mm from the clamped end using a LVDT 
displacement sensor. Experimental results for the obtained deflection by applying weights between 0 and 2 kg have 
demonstrated a good agreement with theoretical previsions. After this characterization, the Ti-Ni-Cu SMA wires (0,29mm in 
diameter) were trained by a thermal cycling under constant load procedure before its insertion on the beam. The contraction 
of the SMA wire actuator under 150MPa was of the order of 4,5% while after the training procedure and in the absence of 
external loads this contraction was reduced for 2,5%.  A single trained SMA wire actuator was introduced in different 
eccentricities of the flexible beam and electrically heated by an AC power source. The results show that forces as higher as 
20N can appear in the free end of the beam when an electric power of 0,9W is applied on the extremities of the single trained 
SMA wire actuator.  
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1. Introduction 
 

In the last years an increasing attention has been done to the application of induced strain actuators in smart structure 
technologies (Srinivasan and McFarland, 2001). A variety of these actuators are disposable today, but the more promising are 
the ones based on the shape memory effect (SME) of metallic alloys and piezoelectric effect (PZE) of some ceramic materials. 
An overview of the state of the art and engineering research in smart structures and materials was presented recently by Flatau 
and Chong (2002). Previously strained shape memory alloy (SMA) actuator recover its original shape when heated above a 
critical temperature. In the case of SMA wire actuators under uniaxial tensile mechanical load, this shape recovery corresponds 
to a contraction and the actuator provides a useful external mechanical work. However, the thermoelastic martensitic 
transformation at the origin of this SME phenomenon is characterized by four transformation temperatures (Ms, Mf, As e Af, 
typically in raising order) describing a hysteresis loop between two crystalline structures (Otsuka and Wayman, 1998). 
Investigations into structural control applications utilizing induced strain actuation mechanisms have largely focused on 
vibration and noise suppression and to a lesser degree on altering structural shapes for improved performance (Loughlan et al., 
2002). For application of SMA linear actuators in active structures aiming improves active vibration suppression and /or shape 
control, SMA wires can be incorporated internal or externally to the structure. In the first case, the developed structure 
corresponds to smart composites (beams, plates or panels) and activation of SMA wire actuators allow to improve static 
deflection and modal characteristics of the composite (Flatau and Chong, 2002; Sun et al., 2002; Lau et al., 2002; Thompson 
and Loughlan, 2001; Sun et al., 2000; Ostachowicz et al., 2000). However, external actuators have better control authority 
since the actuator can be placed at different offset distances from the beam. The moment, caused by the actuation force from 
the externally line actuator, is much greater than that in a composite beam with an embedded line actuator along the beam and 
with the same magnitude of the actuation force (Shu et al., 1997). Such a configuration also allows the introduction of fast 
convection cooling, which is very important in shape control applications that require a high-frequency response of SMA 
actuators. Rediniotis et al. (2002) have employed this configuration to develop an active hydrofoil actuated by SMA line 
actuators. There are some reported cases of using similar configurations of externally attached SMA wire actuators (Shu et al., 
1997; Baz et al., 1995; Chaudry and Rogers, 1991), but it are not numerous comparing with embedded SMA actuator cases.  

In this paper, a mainly experimental study concerning deflection of elastic beams by eccentric buckling using an externally 
placed single SMA actuator wire is performed. The SMA wire is previously trained by a thermal cycling under constant loading 
procedure before attachment along the beam. The magnitude of the forces appearing at the free end of the beam is estimated 
comparing deflection produced by electrical heating of the SMA wire with the one measured by applying growing dead weights 
on the beam.  
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2. Experimental procedure 
 
2.1. Mechanical structure of the test bench 
 

Figure 1 shows the design and a picture of the mechanical structure developed to test flexible beams actuated by SMA wire 
actuators. This test platform is essentially composed by a rigid frame (1) with a system to adjust eccentricity (2) and a special 
rail (3) for positioning the LVDT displacement sensor accommodated in a mobile support (4). The flexible aluminum beam (5) 
having dimensions 25x1x240mm is rigidly clamped on the frame (1). For the displacement versus load characterization, 
eccentric load is applied using a dead weight connected by a thin nylon wire passing through the eccentricity adjustment system 
(2) until the free end of the beam (5). To activate the beam electrically, without external loads (dead weights), the nylon wire is 
replaced by the SMA wire actuator attached between the free end and the clamped one.  

 
  

 
Figure 1 – Mechanical structure of the test platform. (a) AUTOCAD design. (b) Laboratory construction.  (1) Frame; (2) system 

for eccentricity adjustment; (3) rail; (4) mobile LVDT support; (5) aluminum beam.  
  
 
2.2. SMA actuators and training procedure 
 

The actuators used in this study are Ti-Ni-Cu SMA wires (0,29mm in diameter), supplied by Advanced Materials 
Technologies Inc. (De Araújo, 1999). The transformation temperatures measured with a DSC Mettler TA3000 calorimeter are: 
Mf = 28,0 oC, Ms = 39,4 oC, As = 46,5 oC and Af = 58,0 oC. The SMA wire to be inserted eccentrically in the elastic beam was 
previously trained to stabilize its displacement response by electrical heating (contraction). This training procedure consists in 
100 heating/cooling cycles with the SMA wire actuator under a dead weight of the order of 10N. In this case, heating is carried 
out using an AC power source and cooling is due to natural convection in surrounding air. During training, the measured 
contraction was 4,5% and after that, contraction by electrical heating was reduced to 2,5% in absence of external loads.  

 
 

3. Results and discussions 
 
3.1. Characterization of the elastic beam and theoretical analysis 
 

Figure 2 illustrates the method used to measure the load versus deflection behavior by eccentric buckling of the beam and 
the experimental obtained results. In figure 2(a), it can be observed that the dead weight P is applied on the beam using a thin 
nylon wire, which passes trough two fixed acrylic plates. For all cases, the beam deflection y(x) is measured at the specific 
position x = 75mm as a function of eccentricity e. The response of the beam is shown in figure 2(b). For the theoretical analysis 
of figure 2(a), the general equation for beam-column-type situations without lateral loading (Benham et al., 1996) was 
employed: 
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where E is the elasticity modulus, I is the least second moment of area of the cross-section and P is the applied load.  The 
standard solution for equation (1) is 
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where 
EI
Pk = and A, B and C are constants related to the boundary conditions. 

  
The equation (1) was solved by Chaudry and Rogers (1991) for a case identical to the one described in figure 2(a). The 

analytical solution found was 
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Theoretical results obtained by applying equation (3) are plotted in figure 2(b) together with experimental ones and a 

relative good agreement can be observed. As expected, an identical load causes larger deflection by increasing eccentricity.  
 

 
 

 
 

Figure 2 – Load versus deflection in elastic beams. (a) Method for application of the constant load on the beam. (b) Theoretical 
and experimental deflection response of the beam as a function of the load and eccentricity.  

 
3.2. Activation by SMA actuator wires 
 

After the experimental characterization of the flexible beam described in figure 2, a single trained SMA actuator wire was 
assembled between the acrylic plates to obtain deflection of the beam by electrical activation. Figure 3 shows a typical 
deflected aspect of the flexible aluminum beam during electrical heating of the SMA wire.  The heat transfer between SMA 
wire and surrounding air is done by 
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where V, A and R are the volume, the surface area and the electrical resistance of the SMA wire, respectively. The specific mass 
ρ and the specific heat cp are intrinsic properties of the material and h is the convective heat transfer coefficient between the 
wire and its surroundings at temperature T∞. The steady-state value of the wire temperature, for a step current I when dT/dt = 0 
is 
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The electrical current (I) and voltage (U) through the SMA wire was measured for the steady-state and the electrical power 

(Pot) was obtained by 
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thus, equation (5) becomes 
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Figure 3 – Deflectio
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x10-4 m2, As = 46,5 oC and T∞ = 28 oC, the estimated h is 30,9 W/m2.oC. 
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 As expected from figure 4, a linear relationship is confirmed in figure 5, 
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Figure 4 – Deflection of the elastic beam by 
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eccentric buckling. (a) Deflection by application of a dead weight as illustrated in 
n by electrical heating of the SMA wire as shown in figure 3. 
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can appear in the free end of the beam when electric power in the range 0,8 - 0,9 W is applied on the extremities of the single 
trained SMA wire actuator.  
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