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Abstract. The aim of this paper is to design and evaluate the performance of a feedback H∞ controller to suppress vibration of a
flexible cantilever beam provided with strain actuator and sensor. The infinite-dimensional model is used to represent the flexible
beam structure and it is controlled using a collocated piezoelectric PZT actuator-PVDF sensor pair bonded to the beam surface.
For control design purposes, the infinite-dimensional model is simplified by removing higher modes which lie out of the bandwidth
of interest. The truncation can considerably perturb the zeros of the truncated model. For outline this problem, this paper applies
the method of minimizing the effect of removed higher order modes on the low-frequency dynamics of the truncated model by adding
a zero frequency term to the low order model of the system. This corrected model is then used to design the H∞ robust controller in a
way that minimizes the effect of disturbances over the entire beam. The recent approach for the control of flexible structures -
spatial H∞ control framework - is used to construct the controller that guarantees a level of disturbance rejection over the entire
structure. The final process of this approach is reduced to an ordinary H∞ control problem that, in turn, is solved using standard
software (Robust Matlab Toolbox). The final controller is numerically implemented and the results illustrate the robust control
performance of a cantilever beam type structure.
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1. Introduction

A single piezoelectric element called a self-sensing actuator combines actuator and sensing capabilities for
collocated control (Dosh et al, 1992). The use of piezoelectric actuator/sensor pairs has been widely used in many
vibration control applications of flexible structures (Dimitriadis et al, 1991; Fuller et al, 1996).

Piezoelectricity was discovered in 1880 by the French scientists Pierre and Paul-Jacques Curie. The piezoelectric
effect is observed in many crystalline materials, which strain when exposed to a voltage and produce a voltage when
strained. In other words, these materials are capable of transforming mechanical energy into electrical energy and vice
versa. Piezoelectric actuators and sensors are bonded to flexible structures such as beams and plates, forming the so-
called smart structures.

Different methodologies have been used for modeling smart structures, however the most promising technique is
the finite element method, as first presented for piezo-mechanical systems by Allik and Hughes (1970). Later this
formulation was extended for different structural elements. Crawley and de Luis (1987) studied the modeling of one-
dimensional piezoelectric patches embedded into the body of beams and formulated the moment generated by a voltage
applied to the piezoceramics. Tzou and Tzeng (1990) presented a piezoelectric finite element approach aiming at
applications devoted to distributed dynamic measurement and control of advanced structures. The assumed modes
approach or infinite-dimensional model has been extensively used throughout the literature to model the dynamics of
distributed systems such as flexible beams and plates (Meirovitch, 1997). This approach is used in this paper for
modeling the flexible beam.

In control design problems, one is often interested in designing a controller for a particular frequency range. In such
situations, it is common practice to remove the modes that correspond to frequencies that lie out of the bandwidth of
interest and keep only the modes that directly contribute to the low frequency dynamics of the system. Moheimani
(1999) suggested that the effect of higher frequency modes on the low frequency dynamics of the system can be
captured by adding a zero frequency term to the truncated model to account for the compliance of the ignored modes.
Such model can then be used in designing Spatial Controllers as noted in Halim and Moheimani (2002).

The concept of Spatial Control is concerned with using the spatial information embedded in the dynamical models
of structures. If a controller is designed with a view to minimizing structural vibrations at a limited number of points, it
could have negative effects on the vibration profile of the rest of the structure. In this paper, a recent design
methodology (Hallim and Moheimani, 2002), the so-called Spatial H∞ Control approach is presented. The idea behind
this technique is to first formulate the problem as a spatial H∞ minimization problem and then design a controller that
minimizes cost functions similar to the ones arising in the standard H∞ control problems. However, in this design, the
elastic deflection or the total energy of the entire structure is to be minimized. The resultant spatial controller is of the
same dimensions as that of the dynamical system.

To demonstrate the proposed controller, an SISO (Single Input, Single Output) Spatial H∞ controller is designed for
a piezoelectric laminate cantilever beam to suppress the vibration of the first three five modes of the structure.
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2. Electro-mechanical model of a beam containing piezoelectric sensors and actuators

In this section, a model for a piezoelectric laminate beam with an actuator-sensor pair is obtained by using modal
analysis techniques.

Figure 1 (a) shows a flexible structure with an attached piezoelectric actuator-sensor pair. The piezoelectric patch
on the upper side of the beam is used as an actuator, while the film on the bottom side serves as a sensor. The voltage
that is applied to the actuator patch is represented by Va(t) and the voltage that is induced to the sensor film is
represented by Vs(t) (see Fig. 1 - b).

Consider a homogeneous Euler-Bernoulli beam (dimensions: Lb, bb, hb) as shown in Fig. 1 (a)-(b). The piezoelectric
actuator and sensor have dimensions of (xa2 – xa1) × ba × ha and (xs2 – xs1) × bs × hs, respectively (see Fig. 1 - b). The
beam transverse deflection at point x and time t is denoted by w(x,t), assuming the beam as a one-dimensional system.
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Figure 1. (a) Flexible cantilever beam containing piezo-sensor and actuator and (b) Geometrical properties of the
piezoelectric elements.

A model of the structure is obtained through a modal analysis procedure. This approach finds a solution to the
partial differential equation which describes the dynamics of the flexible structure:
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where, ρb, Ab, Eb and Ib represent density, cross-sectional area, Young’s modulus of elasticity, and moment of inertia
about the neutral axis of the beam, respectively.

2.1. Actuator Dynamics

The total distributed load q(x,t) generated by the piezoelectric actuator when it is deformed is given by:
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where R is the generalized location function expressed as:

( ) ( ) ( )21 xxHxxHxR −−−= (2.1)

and the H is the Heaviside function (H) given by (Soutas and Inman, 1999):
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The bending moment acting on the beam (denoted by Max) is given by (Baz and Poh, 1988):
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where d31 is the electric charge constant, Ea is the Young’s modulus and ha is the thickness of the PZT patch as shown
in Fig. 1 (b).

The evaluation of Eq. (3) through Eqs. (3.1) and (3.2) gives the following expression:
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where Ca is a constant which depends on the geometry of the composite system:
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The boundary conditions for the cantilever beam in Fig. 1 (a) are:

( )
( )

( )

( )
0

,

0
,

0
,0

0,0

3

3

2

2

=
∂

∂

=
∂

∂

=
∂

∂
=

x

tLw
IE

x

tLw
IE

x
tw

IE

tw

b
bb

b
bb

bb

                 (6)

To use the assumed mode technique, the function w(x,t) is expanded as an infinite series as follows (Meirovitch,
1997):
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where φ i (x) are the eigenfunctions satisfying the ordinary differential equations resulting from the substitution of Eq.
(7) into Eq. (1) and (6), and ηi(t) are the temporal functions.

The mode shapes for clamped-free boundary conditions, Eq. (6), are assumed to be expressed as (Meirovitch,
1997):
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where the following equations define αi and βi, respectively:
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and the constant Ci is determined by the condition expressed by the following expression:
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Substituting Eqs. (7) and (2) into (1) yields:
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where ( . ) denotes time derivatives and ( ‘ ) represents space derivatives.



Pre-multiplying Eq. (10) by ( )∫
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Substituting Eqs. (9) and (2.1) in Eq. (11), it is possible to obtain:
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The natural frequencies ωni are determined by using Eqs. (12.1) and (8):
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Modal damping (ζi) can be included in Eq. (12), as follows:
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Now, by taking the Laplace transform of Eq. (13), the transfer function of this system is obtained:
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This equation describes the elastic deflection of the flexible beam due to a voltage applied to the actuating
piezoelectric.

2.2. Sensor Dynamics

The net forcing of the beam is equivalent to two equal and opposite moments applied to the beam at the endpoints
of the actuator, as shown in Fig. 2. Due to the piezoelectric effect, a strain-induced voltage appears in the sensors.
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Figure 2.  Piezoelectric distributed sensor-actuator-beam configuration and associated strain distribution.

The electric charge distribution qs(t), i.e., the charge per unit area, is given by (Pota and Alberts, 1995):
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where k31 is the electromechanical coupling factor and g31 is the piezoelectric voltage constant in the X direction. Using
Hooke’s law for the beam deflection in the X direction (see Fig. 2), the expression for the strain in the sensor patch is
obtained as (Fuller et al, 1996):
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The total charge accumulated on the sensing layer can be found by integrating qs(x,t) over the entire length of the
piezoelectric element (Pota and Alberts, 1995):
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Substituting Eq. (7) into (17), yields:
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The piezoelectric sensor is similar to an electric capacitor and the voltage across the two layers is given by the
following formula:
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where Cs is the capacitance per unit area of the piezoelectric sensor and ( )12 sss xxb −  is the surface area of the
piezoelectric element.

Substituting Eq. (18) in Eq. (21), yields:
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Taking the Laplace transform of Eqs. (22) and (13), the expression for Vs(s) in terms of the input voltage Va(s) is
obtained:
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This equation is the transfer function of the circuit, i.e., the relation between the voltage applied to the actuator and
the voltage induced in the piezoelectric sensor.

3. Taking into account out of bandwidth modes

As an infinite number of modes are taken into account in the above formulation, Eqs. (14) and (23) represent
infinite-dimensional transfer functions.

In a typical control design scenario, the designer is often interested only in a particular bandwidth. Therefore, an
approximate model of the system that best represents its dynamics in the prescribed frequency range is needed. A
natural choice in this case is to simply ignore the modes which correspond to the frequencies that lie outside of the
bandwidth of interest. Equation (23) is rewritten by limiting the number of modes considered to N.
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where Fi is given by:
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The drawback of this approach is that the truncated higher order modes may contribute to the low frequency
dynamics in the form of distorting zero locations. Moheimani (1999) suggests a way of dealing with this problem. The
idea is to allow for a constant feed through term in Eq. (24) to account for the compliance of omitted higher order
modes of Eq. (23). That is, to approximate Eq. (24) or G(s) by:
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where Kc is a constant that considers the effect of dynamical responses of higher order modes.



Moheimani (1999) found the optimal value of Kc so that the effect of higher order modes on the low frequency
dynamics is minimized in some measure. The optimal value of Kc was found to be:
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where cω  represents the cut-off frequency chosen to lie within the interval: ( )1, +∈ NNc ωωω .

In practice, a finite number of modes (Nt) is used to calculate the feed through term. So, Kc in Eq. (26) is calculated
from 1+= Ni  to tN  with tN  is chosen so that the neglected dynamics in the model can be compensated sufficiently.
However, choosing a large enough tN  is quite reasonable as its effect diminishes when ∞→tN  since the contribution
of higher frequency modes is decreasing.

Similarly, Eq. (14) can be rewritten as:
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To this end, the analysis given here ignores the effect of modal dampings. However, it is a difficult exercise to
determine these values during the modeling phase if the modal analysis is to be used.

4. Spatial H∞ control of a flexible beam containing piezoelectric elements

This section is concerned with the problem of spatial H∞ control for flexible structures. Consider a typical system of
a flexible cantilever beam such as the one shown in Fig. 3. The system consists of only one piezoelectric actuator-sensor
pair. Here, the purpose of the controller is to reduce the effect of disturbance d(t) on the entire structure, using
piezoelectric elements.
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Figure 3. Typical feedback controller implementation for rejection of unwanted disturbance forces.

The problem of the elastic deflection (w) suppression in a flexible structure is the standard H∞ control problem, as
defined in (Doyle and Stein, 1981). The model of a flexible structure has two inputs (a disturbance d and a control aV )
and two outputs (a deformation vector w that should be minimized, and a measurement sV ). The state space equations,
describing the structure with feedback controller can be obtained by using Eq. (13) and the corrected models for Eqs.
(14) and (23) (Eqs. 25 and 27):
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Then, the Spatial Control problem is to design a controller:
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such that the closed-loop system minimizes the spatial cost (Halim and Moheimani, 2002):
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where γ  is called the disturbance attenuation factor (Doyle and Stein, 1981).

Here ( )xQ  is a spatial weighting function that emphasizes the subset of ℜ  over which disturbance rejection is of
importance. It should be clear that the spatial H∞ controller design to meet the performance index (33) a level of
disturbance rejection over the entire ℜ  in an average sense while emphasizing a subset of ℜ  defined by ( )xQ . In this
particular application, ( )xQ  = 1. In other words, the entire beam is weighted equally.

Condition (33) guarantees that a level of disturbance attenuation less than γ  will be achieved over the entire
structure in an average sense.

It can be shown by the method in (Halim and Moheimani, 2002) that the above problem is equivalent to a standard
H∞ control problem for the following system:
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Based on (37) and using the orthogonality property in (9), the matrices Π  and Θ  can be obtained:
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Hence, the system in (34)-(36) can be solved using a standard H∞ control technique (Doyle and Stein, 1981). The
spatial H∞ controller can be regarded as a controller that reduces structural vibration in a spatially averaged sense.

It can be observed that the H∞ control problem associated with the system described in (34)-(36) is nonsingular.
This is due to the existence of feed through terms from the disturbance to the measured output and from the control
signal to the performance output.

Designing a H∞ controller for the system (34)-(36) may result in a very high gain controller (Halim and Moheimani,
2002). This could be attributed to the fact that the term Θ  in (35) does not represent a physical weight on the control
signal. Rather, it represents the effect of truncated modes on the in-bandwidth dynamics of the system, which is
important in ensuring the robustness of the close-loop system. This problem can be fixed by introducing a weight on the
control signal. This can be achieved by rewritten (34)-(36) as:
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where R is a weighting matrix with compatible dimensions.
The matrix R serves as a weighting factor to balance the controller effort with respect to the degree of vibration

reduction that can be achieved. Setting R with smaller value might lead to higher vibration reduction but at the expense
of a higher controller gain. In practice, one has to make a compromise between the level of vibration reduction an
controller gain by choosing a suitable R. The scalar R can then be determined to find a controller with sufficient
damping properties and robustness. Matlab µ -Analysis and Synthesis Toolbox was used to calculated the spatial H∞

controller based on the system in (40)-(42).

5. Numerical Simulations

In order to evaluate the proposed control methodology, a flexible cantilever aluminium beam type structure
containing one set of sensor/actuator PVDF/PZT ceramic piezoelectric elements symmetrically bonded to both sides of
the beam is considered (see Fig. 3). The characteristics of the numerical model1 (dimensions and material properties)
are listed in Table 1.

Table 1. Characteristics of the piezo-structure.

                                                          
1 The damping ratio (ζ ) of 0.3% was assumed for all the modes.

Piezoelectric

Properties Units Sensor Actuator Beam
E (Young’s modulus) Gpa 2 69 65
ρ (density) Kg/m3 1780 7700 2711
d31 (Charge constant) m/V 23×10-12 -179×10-12 ----
g31 (Voltage constant) mV/N 216×10-3 10×10-3 ----
k31 (coupling coef.) ---- 0.12 0.34 ----
b (width) m × 10-3 10 20 30
h (thickness) m × 10-3 0.205 0.254 3
L (Length) m × 10-3 30 50 700



The PZT actuator patch and PVDF sensor film were attached to the beam surface at optimal location points
(xs1 = 0.0 m ; xa1 = 0.0 m), as presented in (Abreu et al, 2003).

In this paper, a SISO controller is designed for the purpose of controlling only the first five vibration modes of the
beam (Eqs. 28-30). Hence, the model is truncated to include only the first five bending modes. The effect of out of
bandwidth modes has to be taken into consideration to correct the locations of the in bandwidth zeros (Moheimani,
1999) of the truncated model as discussed in Section 3. Using Eq. (26), the feed through term is then calculated:

2
21 1016.6 −×−== cKD  (43)

where Nt = 200.
Assuming xd = 0.10 m (see Fig. 3), a robust controller (Eqs. 31 and 32) is designed to minimize the H∞ norm of the

transfer function (see Eq. 33) from the disturbance input to a particular point along the beam (x = 0.3). Using Eq.
(27.1), where 81032.1 −×=xK , Eqs. (28)-(30) are then evaluated to illustrate the performance of the proposed controller

to reduce the transversal vibrations in this specific point (where 71018.7 −×=γ ). The Fig. 4 shows the H∞ norm of the
close-loop system as a function of the beam length.
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Figure 4. The H∞ norm of the disturbance to various locations along the beam.
This controller does not guarantee disturbance reduction at other locations along the beam. One approach to

attenuating the disturbance more evenly along the beam is to increase the number of error outputs in Eq. (29).
Therefore, a new controller is designed for a single input (Va), multiple output system (w). To illustrate this approach,
we assume that:

{ }6.03.0=x  (44)
which results C1 matrix having two rows. As before, the Fig. 5 shows the corresponding H∞ norm as a function of the
beam position (where 61086.1 −×=γ ).
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Figure 5. The H∞ norm of the disturbance to various locations along the beam.
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The special interest in this moment is the problem of guaranteeing a level of disturbance attenuation over the entire
beam. As explained in section 4, the spatial controller can be obtained by using Eqs. (34)-(36). Figure 6 shows the
numerical result of the H∞ norm as a function of the beam position (where 61018.1 −×=γ ).
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Figure 6. The H∞ norm of the disturbance to various locations along the beam.

Figure 6 clearly demonstrates the effect of the proposed spatial H∞ controller in reducing the vibration of the
beam. It is obvious that the H∞ norm of the entire beam has been reduced by the action of the controller in a more
uniform manner (see Figs. 4 and 5). The Figs. 4 and 5 shows the effectiveness of the controller in local reduction of the
H∞ norm, especially at and around x = 0.3 and x = 0.6. This is expected since the purpose of this controller is to
minimize vibration at these points. Comparing Figs. 4 and 5 and Fig. 6, it can be concluded that the spatial H∞ norm as
it minimizes the vibration throughout the entire structure, i.e., the spatial H∞ controller reduces structural vibration in an
average sense.

6. Conclusions

A spatial H∞ controller was design and numerically implemented on a flexible beam type structure containing
piezoelectric sensors and actuators. It was observed that such a controller resulted in suppression of transverse
vibrations of the entire structure by minimizing the spatial H∞ norm of the closed-loop system. The controller was
obtained by solving a standard H∞ control problem for a finite-dimensional system. Feed through terms were added to
correct the locations of in bandwidth zeros of the system. It was shown that the spatial H∞ control has an advantage over
the local reduction in minimizing structural vibration of the entire structure. The spatial H∞ control minimizes the H∞

norm of the entire structure more uniformly, while the other H∞ control minimizes the H∞ norm more locally. It is
important to say that the methodology presented in this paper can be extended to more sophisticated structures, such as
thin plates. The methodology presented here can then be extended to explicitly allow for the residual uncertainty
description in dealing with robustness issue. This work and the experimental tests however, are relegated to the future.
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