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Abstract. Electrical Impedance Tomography (EIT) is an imaging technique which tries to find conductivity distribution 

inside a section of body. The EIT deals with an inverse problem in which given the measured voltages on electrodes it 
estimates the conductivity distribution by using an image reconstruction algorithm. EIT can be used in several 
applications and, recently, it has been applied for obtaining images in medical applications. Several types of 

reconstruction algorithms have been reported and used. In this work, images of lungs are obtained by applying 
Topology Optimization Method as reconstruction algorithm in EIT. Solution of this optimization problem is obtained 
combining the Finite Element Method and a sequential Linear Programming algorithm (SLP). Since it is an ill-posed 
problem, regularization schemes based on spatial filters and included constraints are used. The SLP allows to include 

easily regularization schemes and to work well even though under high noisy measurements. Reconstruction of some 
2D and 3D examples using numerical and experimental data are shown. 
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1. Introduction 
 

Since the beginning of 90´s years, a technique called Electric Impedance Tomography (EIT) has been studied as an 
interesting alternative for obtaining images on clinical applications. In fact, EIT has been applied to geophysical 
sciences (Parker, 1984; Ramirez et al., 1993) and in non-destructive testing (Santosa, Kaup and Vogelius, 1996; Santosa 
and Vogelius, 1991), however in medical procedures its application is recent (Cheney, Isaacson and Newell, 1999; 
Borcea, 2002). EIT is based on an inverse problem where, given the voltages measured on electrodes positioned on the 
boundary of body, it tries to find the conductivity distribution inside of body, and as a consequence its image. A 
sequence of low intensity electrical currents is applied to the body section, through electrodes positioned around the 
patient’s body and aligned in a plane corresponding to a transverse section of the body (Cheney, Isaacson and Newell, 
1999), as illustrated in Figure 1. 
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Figure 1 – Electrodes positioned around the body. 
 

Technology of EIT is safer and cheaper than other tomography techniques and although it has poor resolution it has 
potential for clinical applications such as monitoring mechanical ventilation of lungs (Amato et al., 1998) and 
monitoring heart function and blood flow (Holder, 1993). Moreover an EIT device is portable which allows its 
installation for continuous monitoring of bedridden patients, which avoids dangerous patient transportation from ICU 
(Intensive Care Unit) to the exam room. In this technique the patient does not have exposition to any type of radiation, 
just to the low electrical current levels that do not cause any harm to the patient (Cheney, Isaacson and Newell, 1999). 

This work presents results obtained from application of Topology Optimization Method (TOM) to EIT image 
reconstruction. TOM tries to find systematically a material distribution inside of a design domain, to extremize an 
objective function requirement, satisfying some specified constraints (Bendsøe and Sigmund, 2003). The topology 
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optimization problem applied to EIT consists on finding a material distribution (or conductivity distribution) of a body 
that minimizes the difference between electrical potentials obtained from electrode measurements at the boundary of the 
body and electrical potentials simulated numerically from a computational model of this body. This optimization 
problem is solved by a computational algorithm that combines Finite Element Method (FEM) with an optimizer called 
Sequential Linear Programming (SLP) (Haftka, Gürdal and Kamat, 1996), which allows us to include easily several 
constraints in optimization problem than other algorithms applied to obtain image in EIT. It is interesting because it 
constrains the solution space avoiding images without clinical meaning on tomography examination. Moreover, it is 
known that SLP provides little numerical error propagation. 

The FEM mesh of domain is not changed during the optimization process. The FEM formulation is generated from 
constitutive equation of the conductive medium, which is given by Poisson’s equation (Muray and Kagawa, 1985). 
Thus, electrical potential distribution in the discretized domain is obtained by the following equilibrium FEM system of 
equations (Bathe, 1996): 

 
K ΦΦΦΦ = I               (1) 
 

where K is the global electric conductivity matrix of FEM model, ΦΦΦΦ is a nodal electric potential vector and I is a nodal 
electric current vector. In this work, the FEM model of the discretized domain uses quadrilateral elements (2D model) 
or tetrahedral elements (3D model) and, in addition, a FEM electrode model, proposed by Hua, et al. (1993), has been 
applied to represent the electrical behavior of the electrode-electrolyte interface layer. Figure 2 shows the electrode 
element that is considered in that model. 
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Figure 2 – Electrode model. 

 
For this electrode model, the electric potential on the surface of the metal electrode (nodes 4, 5 and 6 in 2-D model, 

for example) is assumed to be uniform. The electrical conductivity matrix (kel) of the electrode element depends on 
width of an electrode, thickness of the contact interface (electrode-electrolyte) and of resistivity value of the contact 
interface, as demonstrated by Hua, et al. (1993). The product between resistivity and thickness of the contact interface 
is known as contact impedance (or electrode parameter) of electrode elements. Each electrode element matrix kel is 
inserted in the global matrix K in according to its connectivity. 

In TOM, the material in each point of domain (or in each element) can vary from a material “A” to another one “B” 
according to a material model, which allows design variables of optimization problem to go from one material to 
another in a continuous way. For instance, material “A” could be air and material “B” could be the tissue of lungs. In 
this work, the material model applied is known as Density Method (Bendsøe and Sigmund, 1999) that defines the 
conductivity properties (ck) of each element of domain in the following way: 

 

( )k k A k B1p pρ ρ= + −c c c  with k0 1; k 1...Nρ≤ ≤ =              (2) 

 
where cA and cB are the conductivity properties of base materials of the domain, p is a penalization coefficient of 
intermediates materials, and N is number of finite elements. The value of each design variable ρk is defined between 0 
(presence of “B” only) and 1 (presence of “A” only). 

In the next section, the formulation of topology optimization applied to EIT and its numerical implementation are 
presented. In section 3, image reconstruction results using numerical and experimental data are shown. Finally, in 
section 4, some conclusions are given. 
 
2. Optimization Problem Formulation and Its Numerical Implementation 
 

The image reconstruction by EIT using TOM can be interpreted as a problem of finding the material distribution 
inside the domain that reproduces the measured electric potential values at electrodes. Thus, the optimization problem 
could be: 
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Minimize: ( )2
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= −∑∑             (3) 

 
Such that: electrical conductivity equation 
  k0 1 ;   k 1...Nρ≤ ≤ =  
  and additional constraints 
 

where F is the objective function in which φij0 and φij are the measured and simulated electrical potential values, 
respectively. The values φij are obtained by computational model of the domain. The ne and np values are the number of 
applied current load cases and the number of measurement points (electrodes), respectively. The optimization problem 
above is an ill-posed problem, which finds different distributions of conductivities in the domain that yield the same 
voltage values on electrodes. However, TOM allows us to include easily some constraints in the optimization problem, 
restricting the solution space and regularizing the problem. Thus, additional constraints could be included for 
improvements in problem solution. 

The solution of topology optimization problem shown in Eq. (3) is obtained numerically by iterative optimization 
algorithm sketched in Fig. 3. The FEM model of the design domain is supplied to the algorithm as initial data. By 
analysis of the FEM model, the electric potentials (φij) are calculated, allowing us to obtain the objective function and 
constraints values. In the next step, the optimization is done by using the gradients of the objective function and 
constraints, relative to design variables (sensitivity analysis). The optimization is done by using the gradients of the 
objective function and constraints relative to design variables, which are calculated analytically through an adjoint 
method (Cook and Young, 1985; Byun et al., 1999). The optimization algorithm is started with an uniform distribution 
of material for the whole design domain and it supplies a new material distribution (design variables), which is updated 
in the FEM analysis. 
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Figure 3 – Flowchart of the TOM algorithm. 
 
The optimization algorithm above, implemented using C language, is known as Sequential Linear Programming 

(SLP), which has been successfully applied to topology optimization. The SLP allows us to work with a large number 
of design variables and complex objective functions, and solves a non-linear optimization problem considering it as a 
sequence of linear sub-problems, which can be solved with Linear Programming (LP) (Haftka, Gürdal and Kamat, 
1996). The non-linear problem of Eq. (3) can be linearized by writing a Taylor series expansion of the objective 
function and keeping only the terms with first order derivatives. For that approach to be valid it is necessary to limit the 
variation of design variable value in each linear sub-problem by using moving limits (Haftka, Gürdal and Kamat, 1996). 
In each iteration of topology optimization process, the SLP finds the optimum value for the design variables, that it will 
be used in the subsequent iteration as initial value. Thus, this process continues successively, until the convergence for 
the objective function value is achieved. 
 
3. Results 
 

In this section, some 2D and 3D examples will be presented to illustrate image reconstruction using this software 
with numerical and experimental data. For all examples presented here, electric current load is considered equal to 1 
milliampere, which is applied following an adjacent pattern of electrical excitation, as illustrated in Fig. 4. Moreover, in 
these examples, the topology optimization algorithm uses penalization coefficient value (p) equal to 2. 
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Figure 4 – Adjacent pattern of electrical excitation in EIT. 
 

In this work, to obtain a good quality image for clinical applications in EIT, thirty two 10-mm-wide electrodes are 
uniformly positioned along the boundary of the design domain (Tang et al., 2002). To find the electrical potentials in 
these electrodes a pair of them is excited electrically, following the adjacent pattern (see Fig. 4), where the potential in 
one of them is made to be null (“ground”) and the other receives the low intensity electrical current. The pair of 
electrodes is successively changed until an enough number of observations under different angles is obtained and a high 
quality image is generated. 

 
3.1. 2-D examples 
  

In this section, the performance of the implemented algorithm is evaluated through 2-D examples and by using 
numerical and experimental phantoms. First, image of two objects in the domain is obtained by using numerical data 
and artificial noise. After, the algorithm is applied to obtain an image in a circular domain through using experimental 
data, in which noise measurements are considerable. 

 
3.1.1. Using numerical data to obtain image of two objects in the domain 

 
The desired image is shown in Fig. 5a, where clear and dark regions simulate a material with 1/17 (Ωm)−1 (clear 

region) and 10−6 (Ωm)−1 (dark regions). In practice, this situation would be equivalent to keep some regions with air in a 
saline domain, for instance. A numerical phantom, whose domain is uniformly discretized in 3072 four node 
quadrilateral elements (with thickness equal to 35 millimeters) is considered to simulate accurately the measured 
electrical potentials (φij0). On the other hand, a less refined mesh (1120 elements, see Fig. 5b) is applied for image 
reconstruction. This reduces the computational time to calculate the value of design variables (related to the number of 
mesh elements) and avoids the inverse crime. The images are obtained from an elliptical domain whose larger axis is 
400 millimeters. 

 

   
 

Figure 5 – a) Image to be reconstructed; b) Mesh to obtain image (1120 elements). 
 
In this case, the electrode parameters (see section 1) must also be estimated separately from optimization process. 

Thus, a numerical phantom (3072 elements) containing only one material (without dark regions) and an electrode 
parameter value equal to 100 (Ω.m2)-1 for all electrode elements are adopted to obtain the measured voltages (φij0) of a 
saline medium. Based on these voltages values and the less refined mesh (1120 elements), and considering the electrode 
parameters as design variables, the topology optimization algorithm obtains the optimum electrode parameter values for 
any initial guess. Since two different domain discretizations are used, numerical errors due this are absorbed by 
optimized electrode parameters. Therefore, it is noted that most of optimized electrode parameters were not obtained 
necessarily close to the adopted value of the numerical phantom. In this case, most of them fell in an average error 
about 10% for adjacent pattern, however some of them were obtained close to 50% of the adopted value. 

As mentioned before, the implemented algorithm allows us to include easily some constraint in optimization 
problem. Thus, in this example, a kind of image tuning could be included to improve the estimated conductivity values. 
This constraint is given by the following equation: 

 
N

*
k k

k=1

V Vρ ≥∑               (4) 

 
where Vk is the volume of each element and V* is the material constraint inside of the domain. It is previously known 
that dark regions in Fig. 5a represents 18% (V*) of total volume of elliptical domain. 
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Then, by using this tuning control and the optimized electrode parameters, we obtain the following images and 
corresponding absolute conductivity values of dark region elements. 
 

   

a) obtained image   b) convergence curve 
 

Figure 6 – Obtained result with tuning. 
 

From the graph of convergence of the objective function, we observe that it drops quickly to a minimum value, 
however it continues iteration after iteration with a very small oscillation until the best image is found. Absolute 
conductivity values of elements of low conductivity (dark regions) are closer to the expected absolute value adopted in 
this work (10−6 (Ωm)−1). In this case, the conductivity values of dark regions have an average of about 82.4% of 
expected value. 

Now, to verify the robustness of the algorithm to work with noise, we have introduced a random variation with 
standard deviation of about 15% (positive and negative) of the measured electrical potential (φij0) of each electrode 
obtained through numerical phantom. Images in Fig. 7 show that the method can absorb this noise level (artificial) in 
adjacent pattern of electrical excitation. 
 

 

      a) without noise              b) with noise 
 

Figure 7 – Results considering noise from adjacent pattern. 
 
3.1.2. Using experimental data 
 

Here, the software was evaluated by using data obtained from an experimental phantom. The desired image is 
shown in Figure 8a. In this case, the experimental phantom is a cylindrical container whose diameter is equal to 230 
millimeters and it was filled up to 35 millimeters with a saline solution of concentration 0.3 gram/liter of NaCl, which 
conductivity value is equal to 1/17 (Ωm)−1. The dashed line in the phantom (see Fig. 8a) represents presence of a 
immersed glass object, which conductivity value is equal to 10−6 (Ωm)−1. 
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Figure 8 – a) Image to be reconstructed;  b) Mesh to obtain image (576 elements). 
 
In this example, a “coarse” mesh with 576 four node quadrilateral elements (see Fig. 8b) is applied to image 

reconstruction. A two-phase method, proposed by Trigo, Lima and Amato (2004), is adopted as strategy to estimate 
electrode parameters and the conductivity distribution for this case. This strategy considers the problem of estimating 
electrode contact impedances separated from the problem of image estimation. Thus, in an alternation way of the 
successive runs of iterative process, first the implemented algorithm estimates the electrode parameters, considering 
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them as design variables in optimization process, and after that estimates conductivity distribution of the domain with 
the glass object. 

For this example some regularization schemes, based on included constraints, are applied in optimization problem. 
One of them is a spatial filtering scheme based on smooth distribution of the design variables in whole domain (Swan, 
Kosaka and Reuss, 1997; Cardoso and Fonseca, 1999), which makes better the control of variation of the design 
variable values. This filter changes the move limits in the following way (Cardoso and Fonseca, 1999): 
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where Vi is the volume of element i, nv is the number of adjacent elements j adopted around of the element i, Rij is the 
distance between centers of element i and j and Rmax is a radius that accomplishes all adjacent elements j. Here, the 
image is obtained considering a Rmax value that accomplishes at least a number of eight elements j around of a central 
element i. 

The other regularization scheme is a constraint based on weighted distance interpolation, which is given by 
following equation: 

 

kk2 2
k=1 k=1k k

1 1

d d

N N

ρ ρ≥∑ ∑               (6) 

 
where ρ  is average conductivity of the domain and dk is the distance measured from center of each element up to 
center of the domain. This constraint makes the balance of conductivity values of each element in the domain. The 
average conductivity is a parameter of optimization process that can be obtained by considering the domain as a 
resistor, whose resistance value can be calculated through Ohm’s law. 

Thus, next figures show the obtained image and its corresponding convergence curve obtained by using the 
adjacent pattern of electrical excitation. 

 

   

           a) obtained image              b) convergence curve 
 

Figure 9 – Obtained result with spatial filter and weighted distance interpolation scheme. 
 
According to the obtained image (see Fig. 9a) we note that implemented algorithm is able to detect the glass object 

inside of phantom. Following the convergence of objective function (see graph of Fig. 9b), we observe that it fells 
quickly to a minimum value in 20 iterations approximately. However, absolute conductivity values of most elements in 
dark region (that represents the glass object) have an average of about 70% of expected value. 
 
3.2. 3-D examples 
  

In the 3-D example only numerical data is used to evaluate the implemented algorithm to obtain image. As an 
alternative to the material model previously presented (and applied in 2-D reconstruction), the algorithm is implemented 
based on the CAMD (Continuous Approximation of Material Distribution) approach where fictitious densities are 
interpolated in each finite element, providing a continuum material distribution in the domain (Matsui and Terada, 
2004). In CAMD, nodal design variables are introduced, and the material model becomes: 

              

k m m A m m B
m 1 m 1

1
p p

nd nd

H Hρ ρ
= =

    = + −    
     
∑ ∑c c c  with m0 1ρ≤ ≤         (7) 

 
where ρm is the mth nodal design variable, Hm is a FEM shape function (Bathe, 1996) and nd is the number of nodes per 
element. 
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The central section of desired image is shown in numerical phantom of Fig. 10b, where clear and dark regions 
simulate a material with high conductivity (1/17 (Ωm)−1) and low conductivity (10−6 (Ωm)−1), respectively. In this case, 
images are obtained from a cylindrical domain of radius 220 millimeters and 35 millimeters high, and the conductivity 
distribution is uniform along the axis of the domain. 

A numerical phantom whose domain is discretized into 34359 four node tetrahedral elements (see Fig. 10a) is 
analyzed through FEM and each electrical potential φij0 is obtained. The image reconstruction is then carried out in a 
less refined mesh with 5548 tetrahedral elements (see Fig. 10c). 

 

          
 
 a) numerical phantom             b) central section of the phantom  c) mesh to obtain image 

 
Figure 10 – a) Numerical phantom (34359 elements) to obtain potentials φij0; b) The central section of phantom and 

image to be reconstructed; c) A less refined mesh (5548 elements) applied to obtain the image. 
 
Here, electrode parameters (see section 2) must also be obtained based on numerical data in an analogous way 

made for 2-D example (see section 3.1.1). Using these optimized electrode parameters, applying the spatial filter and a 
constraint similar to the constraint based on weighted distance interpolation (shown in section 3.1.2), and considering 
the same level of artificial noise described in section 3.1.1, the following image is obtained (see Fig. 11a). For 
simplicity, only the central section is presented (like the phantom, the result is piece-wise uniform along the axis of the 
domain). 

 

    

              a) obtained image          b) convergence curve 
 

Figure 11 – 3-D obtained results with CAMD. 
 
According to the results, the algorithm reduces spatial variation of obtained conductivity distribution. It is mainly 

attributed to the fact that there is a significant difference between the number of design variables and the amount of 
information (electrical potentials) available. Following the convergence of objective function (see Fig. 11b), we observe 
that it fells quickly to a minimum value (1.77). Besides, absolute conductivity values in dark region of the domain have 
an average of about 45% of expected value. 

 
4. Conclusion 
 

A computational algorithm of Topology Optimization Method (TOM) applied to obtain image in Electrical 
Impedance Tomography (EIT) was proposed. This algorithm was implemented in software written in C language. 
According to our results, it is noted that by using numerical and experimental data the software is able to obtain, in few 
iterations and with a certain level of precision, the contact impedance values of interface electrodes-skin and the values 
of absolute conductivity of two materials inside of the domain and consequently the image desired, even if noise is 
introduced. As a future work, other regularization schemes based on included constraints in topology optimization will 
be tested to improve the precision in obtaining absolute conductivity values. 
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The implemented algorithm of TOM could be seized for obtaining images of lungs through an EIT device. The 
TOM allows us to include easily some constraints in the problem of image reconstruction limiting the solution space 
during tomography examination and avoiding images without clinical meaning. Moreover, it becomes easier to limit the 
design domain where presence of air in the lung can occur and, therefore, allows us to work with known areas inside of 
the domain (bone, heart, etc). 
 
5. Acknowledgements 
 

The first and second authors would like to acknowledge the financial support of FAPESP (Fundação de Amparo à 
Pesquisa do Estado de São Paulo), through a doctoral (nr. 02/01625-0) and a master (nr. 02/10574-0) scholarship. All 
authors also thank the national research support CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior). 
 
6. References  
 
Parker, R. L.,1984, “The Inverse Problem of Resistivity Sounding”, Geophysics, Vol.142, pp. 2143-2158. 
Ramirez, A. et al.,1993, “Monitoring an Underground Steam Injection Process Using Electrical Resistance 

Tomography”, Water Resources Res., Vol.29, pp. 73-87. 
Santosa, F., Kaup, P. and Vogelius, M.,1996, “A Method for Imaging Corrosion Damage in Thin Plates from 

Electrostatic Data”, Inverse Problems, Vol.12, pp. 279-293. 
Santosa, F. and Vogelius, M.,1991, “A Computational Algorithm For Determining Cracks From Electrostatic Boundary 

Measurements”, International Journal Eng. Sci., Vol.29, pp. 917-938. 
Cheney, M., Isaacson, D. and Newell, J.C.,1999, “Electrical Impedance Tomography”, SIAM review, Vol.41, No. 1, 

pp. 85-101. 
Borcea, A. L.,2002, “Electrical Impedance Tomography”, Inverse Problems, Vol.18, pp. 99-136. 
Amato, M. B. P. et al.,1998, “Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress 

Syndrome”, Journal of Medicine, New England, 338, pp. 347-354. 
Holder , D.,1993, “Clinical and Physiological Applications of Electrical Impedance Tomography”, UCL, Press, 

London. 
Bendsøe, M. P. and Sigmund, O.,2003, “Topology Optimization: Theory, Methods and Applications”, Springer-Verlag, 

New York. 
Haftka, R. T, Gürdal, Z. and Kamat, M. P.,1996, “Element of Structural Optimization”, Kluwer Academic Publishers, 

Boston. 
Muray, T. and Kagawa, Y.,1985, “Electrical Impedance Computed Tomography Based on a Finite Elements Model”, 

IEEE Trans. on Biomed. Eng., Vol.32, pp. 177-184. 
Bathe, K. J.,1996, “Finite Elements Procedures”, Prentice Hall, New Jersey. 
Hua, P. et al.,1993, “Finite Element Modelling of Electrode-Skin Contact Impedance in Electrical Impedance 

Tomography”, IEEE Trans. on Biomed. Eng., Vol.40, pp. 335-343. 
Bendsøe, M. P. and Sigmund, O.,1999, “Material Interpolations Schemes in Topology Optimization”, Archive of 

Applied Mechanics, Vol.69, pp. 635-654.  
Cook, R. D. and Young, W. C.,1985, “Advanced Mechanics of Materials”, Macmillan, New York. 
Byun, J. K. et al.,1999, “Inverse Problem Application of Topology Optimization Method with Mutual Energy Concept 

and Design Sensitivity”, Proceed. of IEEE Magnetic, pp. 296-300. 
Tang, M. et al.,2002, “The Number of Electrodes and Basis Functions in EIT Image Reconstruction”, Inst. of Physics 

Publishing, Physiol. Meas., Vol.23, pp. 129-140. 
Trigo, F.C., Lima, R.G. and Amato, M. B. P.,2004, “Electrical Impedance Tomography Using the Extended Kalman 

Filter”, IEEE  Transactions on Biomedical Engineering, Vol.51, pp.72-81. 
Swan, C., Kosaka, I. and Reuss, V.,1997, “Topology Optimization for Structures with Linear Elastic Material 

Behaviour”, International Journal of Numerical Methos in Engineering, Vol.40, No.1, pp. 3033-3057.  
Cardoso, E. L. and Fonseca, J. S. O.,1999, “Intermediate Density Reduction and Complexity Control in the Topology 

Optimization”, Anais do Cobem’99, Águas de Lindóia. 
Matsui, K. and Terada, K.,2004, “Continuous Approximation Of Material Distribution for Topology Optimization”, 

International Journal for Numerical Methods In Engineering, Vol.59, No. 14, pp. 1925-1944. 
 
7. Responsibility notice 

 
The authors are the only responsible for the printed material included in this paper. 


