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Abstract. The main goal of this work is to provide a functional performance analysis of laws of the wall, for velocity
and temperature, applied in numerical modelling of turbulent wall �ows, which may su�er density variations due to the
presence of temperature variations, and boundary layer separation due to low intensity pressure gradients or to sudden
expansion. The analysis is based on comparing the experimental data and results from other numerical simulations
with those obtained from the numerical simulations of the test cases of Ng (1981), Tsuji and Nagano (1988), Buice
and Eaton (1996) and Vogel and Eaton (1984) using the velocity wall functions of Cruz and Silva Freire (1998),
Nakayama and Koyama (1984), Mellor (1966) and the classic logarithmic law, associated with the temperature laws
of the wall of Cruz and Silva Freire (1998) and Cheng and Ng (1982). The mean equations of conservation of mass,
momentum and energy are obtained using the κ− ε model of Jones and Launder (1972), based on Favre's averaging
(1965). Spacial discretization is done by P1/isoP2 �nite element method and temporal discretization is implemented
using a semi-implicit sequential scheme of �nite di�erence. The coupling pressure-velocity is numerically solved by
a variation of Uzawa's algorithm. To �lter the numerical noises, originated by the symmetric treatment used by
Galerkin method to the convective �uxes, it is adopted the balance dissipation method proposed by Huges and Brooks
(1979) and Kelly et al. (1980). The remaining non-linearities, due to laws of wall, are treated by minimal residual
method proposed by Fontoura Rodrigues (1991).
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1. Introduction

In the simulation of parietal turbulent �ows in which the density is a function of of temperature gradients, it
is necessary the simultaneous resolution of the conservative equations of mass, momentum and energy, as well
as equations of state capable of representing the variation of some thermodynamic properties of the �uid with
temperature gradients. When the use of wall functions is the choice to model the near wall region, it is also
needed the simultaneous employment of wall functions for velocity and temperature in the system of equations
to be solved.

The objective of this work is to analyze the numerical performance of wall laws for velocity and for temper-
ature in cases of con�ned �ows under adverse pressure gradient, with thermal variation due to the presence of
a heated wall and in combined heat transfer and detaching boundary layer �ows. The analyzed wall functions
were the velocity laws of the wall of Cruz and Silva Freire (1998), Nakayama and Koyama (1984), Mellor (1966)
and the classic logarithmic law, and the temperature laws of the wall of Cruz and Silva Freire (1998) and Cheng
and Ng (1982).

The algorithm to be tested, Turbo 2D, is a combination of the numerical simulation methodology using �nite
elements of strongly heated wall �ows, proposed by Brun (1988), with an error minimization method adapted
to a �nite elements, for the simulation of turbulent wall �ows with non-linear boundary conditions, proposed
by Fontoura Rodrigues (1990) e (1991), using the classicκ− ε turbulence model of Jones and Launder (1972).
By applying Galerkin's method for �nite elements to the calculation of convection dominant �ows, numerical
oscillations without physical meaning can appear. This fact occurs due to the usage of Galerkin's method, that
gives a symmetric treatment to the �ow modelling, which is a non symmetric physical phenomenon. To lower
the tendency of numerical oscillation, a balancing dissipation method, proposed by Huges and Brooks (1979)
and Kelly et al. (1980) and implemented by Brun (1988), is used in Turbo 2D.

To accomplish the test of performance of laws of the wall, four test cases were selected. To evaluate the
performance of the temperature wall laws, the turbulent �ow over a heated wall of Ng (1981) and the turbulent
natural convective boundary layer �ow along a vertical heated plate of Tsuji and Nagano (1988) were chosen, to
evaluate the performance of the velocity laws of the wall, the test case of the turbulent �ow in the asymmetric
plane di�user of Buice and Eaton (1996) was selected, and �nally, to evaluate both e�ects simultaneously, the
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turbulent �ow of the thermal backward-facing step of Vogel and Eaton (1984), which combines the e�ects of the
simultaneous presence of an adverse pressure gradient and a thermal �eld, was chosen. Results were compared
with the experimental data available of each selected test case and with some results from other numerical
simulations.

2. Analytic formulation

Following the procedures of obtaining the governing equations of the turbulent �ows developed in Soares
and Fontoura Rodrigues (2003), some considerations are taken to obtain the governing equations for the one-
phase, homogeneous, bidimensional and at low Mach number turbulent �ows, with density variations performed
exclusively by the presence of thermal �elds.

In the present analysis, the �ows are considered to su�er variations of density and viscosity due to temper-
ature variations of the �uid, according to the ideal gas equation and to the empiric relation for the viscosity as
a function of temperature proposed by Ng (1981), which are, respectively:

ρ =
p

RT
and µ = µ(T ) = aTn , (1)

where R, a and n are material constants for the air, and they are, respectively, 287 J
kg K , 3,68x10-7 m2

s K and
0,685. The implication of the low Mach number of the turbulent �ows studied is that some terms of the energy
equation can be neglected. In dimensionless form, the energy equation is given by:
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with γ being the relation between the speci�c heat coe�cients, at constant pressure,Cp, and volume, Cv, Φ
represents the mechanical energy dissipation rate per �uid volume, due to shear viscosity e�ects, andMa is the
Mach number, de�ned as a function of the reference values of velocity and temperature. Considering that the
�ows of the test cases considered in this work are at low Mach numbers (M0 ≤ 0, 3), the terms multiplied by a
second order Mach number can be neglected.

To proceed with the obtainment of the equations of turbulent �ows, a mean formulation is adopted consid-
ering the solution given by Favre (1965), for �ows with considerable variation of density, that uses the Reynolds
averaging only for density and pressure, while for velocity and temperature, a mass-weighted averaging is
adopted, called the Favre averaging (1965). It is important to note that the Favre averaging is equivalent to
the Reynolds averaging in �ows that does not have variations in density. The closure of the mean equations
is based on Boussinesq's (1877) hypothesis of eddy viscosity, adapted to variable density �ows, by Jones and
McGuirk (1979) for the velocity �uctuation correlation tensor, the Reynolds Stress Tensor, and on the turbu-
lent di�usivity hypothesis for the velocity and temperature �uctuations correlation vector, interpreted as the
turbulent �ux of temperature, respectively:
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and

ρ̄u
′′
i θ = −αt

∂T̃

∂xi
= − µt

Prt

∂T̃

∂xi
, (4)

where µt is the eddy viscosity, κ is the turbulence kinetic energy, T̃ is the mean temperature from Favre's
averaging, θ represents the temperature �uctuations, αt is the turbulent thermal di�usivity and Prt is the
turbulent Prandtl number, considered as a constant of value equal to 0.9 in the present work. In order to
equations (3) and (4) provide a solution to the closure problem of the system of mean equations, it is necessary
to determine the value of the eddy viscosity µt, adopted in this work as a function of the turbulence kinetic
energy κ and the dissipation rate of turbulence kinetic energyε , is using the Prandtl - Kolmogorov relation

µt = Cµρ̄
κ2

ε
=

1
Ret

, (5)

where Cµ is a constant of value 0,09. With the adoption of relation (5), theκ − ε turbulence model relation
imposes the necessity of two supplementary transport equations to the system of mean equations, destined
to evaluation of variables κ and ε. Once de�ned the closure of the system of mean equations, the direction
proposed by Brun (1988) produces the following system of equations:
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with the numbers of Reynolds, Prandtl and Froude, represented byRe, Pr and Fr respectively, de�ned as
functions of the reference values as follows:
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k
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0

g0 L0
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and the constants of the model are given:
Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 . (15)

3. Law of the wall formulation

The κ − ε turbulence model is incapable of properly representing the laminar sub-layer and the transition
regions of the turbulent boundary layer. To solve this inconvenience, the solution adopted in this work is the
use of laws of the wall for temperature and for velocity, capable of properly representing the �ow in the inner
region of the turbulent boundary layer.

The following laws of the wall are the focus of the present analysis, and are implemented on Turbo-2d, the
code that uses the proposed methodology. It is important to note that the log-law of the wall for velocity is
implemented and used in the analysis, but not discussed here once it is of common knowledge.

3.1. Velocity law of the wall of Mellor(1966)

Deduced from the equation of Prandtl for the boundary layer �ow, considering the pressure gradient term for
integration, this wall function is a primary approach to �ows that su�er in�uence of adverse pressure gradients.
Its equations are, respectively, for the laminar and turbulent region
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1
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u∗ =
2
K

(√
1 + p∗y∗ − 1

)
+

1
K

(
4y∗

2 + p∗y∗ + 2
√

1 + p∗y∗

)
+ ξp∗ , (17)

where the asterisk super-index indicates dimensionless quantities of velocityu∗, pressure gradient p∗ and distance
to the wall y∗, as functions of scaling parameters to the near wall region, K is the Von Karman constant, and
ξp∗ is Mellor's integration constant, function of the near-wall dimensionless pressure gradient, determined in his
work of (1966).

The intersection of both regions is considered to be the same as the log law expressions, withy∗ = 11, 64.
The relations between the dimensionless near wall properties and the friction velocityuf are:
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In equation (17) the term ξp∗ is a value obtained from the integration process proposed by Mellor (1966)
and is a function of the dimensionless pressure gradient. Its values are obtained through interpolation of those
obtained experimentally by Mellor, shown in table (1).



Table 1: Mellor's integration constant (1966)

p∗ −0, 01 0, 00 0, 02 0, 05 0, 10 0, 20 0, 25 0, 33 0, 50 1, 00 2, 00 10, 00
ξp∗ 4, 92 4, 90 4, 94 5, 06 5, 26 5, 63 5, 78 6, 03 6, 44 7, 34 8, 49 12, 13

3.2. Velocity law of the wall of Nakayama and Koyama (1984)

In their work, Nakayama and Koyama (1984) proposed a derivation of the mean turbulent kinetic energy
equation, that resulted in an expression to evaluate the velocity near solid boundaries. Using experimental
results and those obtained by Strattford (1959), the derived equation is
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)]
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where K∗ is the expression for the Von Karman constant modi�ed by the presence of adverse pressure gradients,
τ∗ is a dimensionless shear stress, C = 5, 445 is the log-law constant and t, y∗s and ts, a value of t at position
y∗s, are parameters of the function.

3.3. Velocity law of the wall of Cruz and Silva Freire (1998)

Analyzing the asymptotic behavior of the boundary layer �ow under adverse pressure gradients, Cruz and
Silva Freire (1998) derived an expression for the velocity. The solution of the asymptotic approach is
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where the sub-index w indicates the properties at the wall, K is the Von Karman constant,Lc is a length scale
parameter and uR is a reference velocity, evaluated from the highest positive root of the asymptotic relation:

uR
3 − τw

ρ
uR − ν

ρ

∂p
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= 0 . (22)

The proposed equation for the velocity (21) has a behavior similar to the log law far from the separation
and reattachment points, but close to the adverse pressure gradient, it gradually tends to Stratford's equation
(1959). The same process was used to derive the temperature law of the wall by Cruz and Silva Freire (1998).

3.4. Temperature log law of the wall of Cheng and Ng (1982)

For the calculation of the temperature, Cheng and Ng (1982) derived an expression for the near wall tem-
perature similar to the log law of the wall for velocity. For the laminar and turbulent regions, the equations are
respectively

(T0 − T )y

Tf
= y∗ Pr and

(T0 − T )y

Tf
=

1
KNg

ln(y∗) + CNg , (23)

where T0 is the environmental temperature andTf is the friction temperature, as de�ned by Brun (1988). The
intersection of these regions are at y∗ = 15, 96, and the constants KNg and CNg are, respectively, 0,8 and 12,5.

3.5. Temperature law of the wall of Cruz and Silva Freire (1998)

Using the same arguments of the velocity law of the wall, Cruz and Silva Freire (1998) derived an expression
for the friction temperature for thermal �ows under adverse pressure gradients. ConsideringQw as the wall
heat �ux and E as a constant of value equal to 9.8, the expressions of the wall law are:
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with the parameters AJ and AX and the friction temperature de�ned as:
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4. Numerical methodology

The numerical solution of the proposed system of governing equations, of a dilatable turbulent �ow, has
as main di�culties: the coupling between all equations; the non-linear behavior resulting of the simultaneous
action of convective and eddy viscosity terms; the explicit calculations of boundary conditions in the solid
boundary; the methodology of use the continuity equation as a manner to link the coupling �elds of velocity
and pressure.

The solution proposed in the present work suggests a temporal discretization of the system of governing
equations with a sequential semi-implicit �nite di�erence algorithm proposed by Brun (1988) and a spatial
discretization using �nite elements of the type P1-isoP2. The temporal and spatial discretization implemented
in Turbo 2D is presented in Soares and Fontoura Rodrigues (2003).

5. Numerical results

Four test cases were simulated to test the performances of the velocity and thermal laws of the wall, being
one turbulent isothermal �ow under adverse pressure gradients, the asymmetric plane di�user of Buice and
Eaton (1996), two turbulent thermal boundary layer �ows, the turbulent �ow over a heated wall of Ng (1981)
as a convective dominant turbulent �ow and the vertical turbulent natural convective boundary layer �ow of
Tsuji and Nagano (1988) as a buoyant driven �ow, and a turbulent �ow with combined e�ects of thermal �elds
and adverse pressure gradients, the thermal backward facing step �ow of Vogel and Eaton (1984). The results
were compared with available experimental and numerical data available via the ERCOFTAC community.

5.1. Isothermal con�ned turbulent �ow under adverse pressure gradient

In order to verify the performance of the velocity laws of the wall implemented on Turbo-2D in solving
isothermal separating �ows due to adverse pressure gradients, the test case chosen was the turbulent �ow in the
asymmetric plane di�user of Buice and Eaton (1996), in which the boundary layer separation is not imposed
by geometry, it occurs due to the presence of a smooth adverse pressure gradient.

The asymmetric plane di�user geometry has an expansion rate equal to 4.7:1 with Reynolds number equal
to 20000 based on the height of the inlet channel. The boundary conditions imposed consist of a fully developed
turbulent channel �ow in the inlet, experimental data for κ and ε, respectively, the turbulent kinetic energy
and its dissipation rate, and ambient pressure at the outlet. The scheme of the case and the meshes used in the
simulations are shown in �gure (1).

Figure 1: Isothermal test case: Buice & Eaton (1996) asymmetric plane di�user

The results are compared with the experimental data and the results from the simulations of NASA's code
WIND, that uses various methodologies and turbulent models. Some velocity and pressure coe�cient pro�les
are shown in �gures (2) and (3).

It is noted that the agreement of the results with experimental data increase with the use of more complex
laws of the wall. This fact is proven by noting that only the wall laws of Nakayama and Koyama (1984) and
Cruz and Silva Freire (1998) could predict the detachment of the boundary layer. Comparing these two, a slight
advantage from Cruz and Silva Freire (1998) can be seen, for it reaches better values at the near wall and at
the maximum velocity regions.

The pro�les of the pressure coe�cient Cp, �gure (3), show that the wall laws of Nakayama and Koyama
(1984) and Cruz and Silva Freire (1998) could predict more precisely the pressure �eld, and as a consequence,
the detachment of the boundary layer.



The use of the laws of the wall of Nakayama and Koyama (1984) and Cruz and Silva Freire (1998) doubled
the computational time of the simulations when compared to the use of the log law of the wall, although only
with the use of these laws one could predict the boundary layer separation and more accurate results of the
pressure distribution on the walls in the case of the di�user.
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Figure 3: Dimensionless pressure coe�cient at (a) upper wall and (b) lower wall

A comparison with results achieved by the code WIND of NASA's NPARC Alliance CFD Group can be seen
at table (2), where xd and xr are respectively the location where the detachment and the reattachment of the
recirculating zone occur, and H is the height of the inlet. The best results of Turbo 2D were achieved using the
law of the wall of Cruz and Silva Freire (1998), and comparing to other low Reynolds models, the results from
Turbo 2D are closer to the experimental value of the recirculating zone, although is presents early separation,
which is a characteristic of the κ− ε model.

Table 2: Results of recirculating zones length and of boundary layer detachment and reattachment locations

Code and Detachment point Reattachment point Recirculating zone
turbulence model (xd/H) (xr/H) ((xr − xd)/H)

WIND Chien κ− ε 0,7583 20,943 20,185
WIND SST 1,9168 30,6793 28,76
WIND Spalart-Allmaras 4,0377 32,680 28,64
TURBO 2D - Nakayama and Koyama 2,04 22,2 20,16
TURBO 2D - Cruz and Silva Freire 1,06 24,1 23,04
Experimental 6,00 29,5 23,5



5.2. Thermal semi-con�ned turbulent �ows

To verify the performance of the thermal laws of the wall implemented on Turbo 2D, two test cases were
selected, the turbulent �ow over a heated wall of Ng (1981), and the test case of the vertical turbulent natural
convective boundary layer of Tsuji and Nagano (1988). The case of Ng (1981) has Reynolds number equal
to 66460 based on the distance H showed in �gure (4a), and the wall is heated at constant temperature of
1250K. The case of Tsuji and Nagano (1988) has a range of global Grashof number, based on the temperature
di�erence between the wall and environmental ones, from1.553x1010 to 1.797x1011, the wall and environmental
temperatures are, respectively, 600C and 150C, resulting in a Reynolds number of 7564 based on the height of
the wall.

The boundary conditions for the test case of Ng (1981) were based on the experimental data, a fully developed
isothermal turbulent �ow in the inlet and environmental conditions at the other free boundaries. The boundary
conditions for the test case of Tsuji and Nagano were based on experimental data, a experimental pro�le at
the inlet of velocity, temperature, turbulent kinetic energy and its dissipation rate, velocity and temperature
pro�les at the lateral free boundary calculated from the conservation equations, and environmental properties
at the outlet. The scheme of each case and the meshes used in the simulations are shown in �gure (4).

Figure 4: Thermal test cases: (a) Ng (1981) turbulent �ow over a heated wall (b) Tusuji and Nagano (1988)
vertical turbulent natural convective �ow
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Figure 5: Turbulent heated �ow of Ng (1981): (a) velocity and (b) density pro�les at x=125mm and (c) thermal
boundary layer thickness along the wall - (cng) means the Cheng and Ng (1982) temperature law of the wall,
and (csf) means the Cruz and Silva Freire temperature law of the wall

Figures (5a) to (5c) show the results obtained from the simulations with Turbo 2D compared to the exper-
imental data available for the case of Ng (1981), with the results obtained by Soares and Fontoura Rodrigues



(2003) with the industrial code CFX 5.0 using the κ − ε and SST turbulence models, using the same mesh
geometry for both codes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ve
lo

ci
ty

 v
 (

m
/s

)

distance x (m)

(a)

Cheng and Ng
Cruz Silva Freire

Experimental

10

15

20

25

30

35

40

45

50

55

60

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

te
m

pe
ra

tu
re

 T
 (

°C
)

distance x (m)

(b)

Cheng and Ng
Cruz and Silva Freire

Experimental

Figure 6: Turbulent natural convective �ow of Tsuji and Nagano (1988): (a) velocity and (b) temperature
pro�les at y=2.535mm

The results of the case of Ng (1981) show that the results obtained with Turbo 2D are better than those
obtained with CFX, and that the best density pro�le is obtained with the temperature law of the wall of Cruz
and Silva Freire (1998). The prediction made by Cruz and Silva Freire (1998) that their proposed expression
of the temperature law of the wall would tend to the log law approach is true, but a small di�erence can still
be seen. Despite of this small di�erence, both showed good agreement with the experimental data. The CFX
results were taken with the same mesh, which is under re�ned using the SST model, explaining the disagreement
of this result from the experimental data. Also good agreement is seen at the Stanton number plot along the
wall.
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Figure 7: (a) Stanton number pro�le for the case of Ng (1981) and (b) Nusselt - Rayleigh number relation for
the case of Tsuji and Nagano (1988)

The global Grashof number and the Stanton number are calculated with relations (26), whereβ is the
thermal expansion coe�cient, α is the thermal di�usivity coe�cient and H is the wall height:

Gr =
gβ∆TH3

ν2
and St =

(
∆T
∆y

)
y=y∗

(
δT

Tw−T∞

)

uf x
α

. (26)

The results of velocity and temperature pro�les of the case of Tsuji and Nagano (1988), in �gures (6a) and
(6b) show good agreement with the experimental data, with advantage with the use of the thermal law of the
wall of Cruz and Silva Freire (1998) when comparing these pro�les in the near wall region. But when comparing
the Nusselt number relation with the Rayleigh number, better agreement is obtained using the thermal log law
of Cheng and Ng (1982).



5.3. Combined e�ects of temperature and adverse pressure gradients

This case was selected with the intention to test the in�uence of the presence of the thermal �eld in a
recirculating zone, and how the thermal law of the wall is capable of predicting the temperature pro�les inside
the recirculating zone.

Figure 8: The thermal backward facing step of Vogel and Eaton (1984)

The Reynolds number of this case is 27.600, based on the reference velocity equal to 11.3 m/s and on the
backward step height of 0,0381 m, both at the inlet. Figure (8) shows a diagram of the case and the �nite
element meshes used in the simulation. The heat �ux is inserted is the domain through the bottom horizontal
wall right after the step, and its value is 270 W/m2. The boundary conditions used are of fully developed
isothermal turbulent �ow in the inlet, wall heating of 270W/m2 on the heated wall and environmental pressure
at the outlet.
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Figure 9: (a) Velocity pro�les at x=4,66h; (b) Temperature pro�les with each velocity wall function and the
thermal log-law of Cheng and Ng (1982)(c) Temperature pro�les with each velocity wall function and the
thermal law by Cruz and Silva Freire (1998)

Table 3: Reattachment length for the thermal backward facing step of Vogel and Eaton (1984)

Model Reattachment location x/h

TURBO 2D - Log 5,15
TURBO 2D - Mellor 5,65
TURBO 2D - Nakayama e Koyama 5,95
TURBO 2D - Cruz e Silva Freire 6,05
Experimental 6,66

In order to perform the test of the thermal law of the wall proposed by Cruz and Silva Freire (1998), several
pro�les were taken, as shown in �gure (9). Figure (9a) shows the velocity pro�le at 4,66 step heights from the
location of the backward facing step. These velocity pro�les show a better agreement with the experimental
data from the simulation with Cruz and Silva Freire (1998) wall function. It must be marked that once the
convective forces are predominant over the buoyancy e�ects, there was no noticeable di�erence in the velocity
�eld by changing the thermal wall function.

In �gures (9b) and (9c) it is made clear the e�ects of the velocity �eld over the temperature pro�le, and it is
noticeable that for the same velocity wall function used, there are two di�erent temperature pro�les, clearly not
proportional one to the other. In other words, this fact can lead to a preliminary conclusion that the temperature



pro�le can assume behaviors that di�er from that one would estimate by using the Reynolds analogy. But this
topic will be better investigated in further researches. Table (3) concludes the analysis presented in this work
by showing that the reattachment length obtained wall function proposed by Cruz and Silva Freire (1998) is a
little closer to the experimental data than the length obtained with the one proposed by Nakayama and Koyama
(1984).

6. Conclusions

This analysis has shown that the velocity law of the wall proposed by Cruz and Silva Freire (1998) is very
robust, as it provided the closer results from the experimental data of all cases analyzed in this work. It was able
not only to predict the separation in the di�user, but also to get the best result for the length of the recirculating
zone of the di�user, accompanied by the results obtained with the velocity law of the wall of Nakayama and
Koyama (1984).

The expression proposed by Cruz and Silva Freire (1998) for the thermal law of the wall not only shows
good results, but instigate further research on thermal boundary layers subjected to adverse pressure gradients
and on turbulent �ows driven by or a�ected by buoyancy forces. A more detailed investigation will be the topic
of further works, associated with studies of models for the transport of temperature �uctuations and cases that
can make evident weather this law of the wall can predict a di�erent behavior to the thermal boundary layer.
These results show that the use of wall laws is a reliable way of getting good results while avoiding the use of
very re�ned meshes and heavy calculation.

7. Acknowledgements

We are grateful to the colleagues, professors and students of the Group of Complex Fluid Dynamics - Vortex,
from the Department of Mechanical Engineering of University of Brasília. We also thank the Technology and
Scienti�c Enterprise Foundation - FINATEC, for the material and �nancial support.

8. References

8th ERCOFTAC/IAHR/COST, 1999, "Workshop on re�ned turbulence modelling", Helsinki University of Tech-
nology, Finland.

AFOSR-HTTM, 1980-1981, "Stanford Conference on Complex Fluid Flow", Stanford, USA.
Ataídes, R.S.C. & Fontoura Rodrigues J.L.A., 2002. �Estudo computacional de escoamentos turbulentos com

descolamento de camada limite". 9th ENCIT, Caxambu, Brasil.
Brun, G., 1988. �Develpppement et application d'une methode d'elements �nis pour le calcul des ecoulements

turbulents fortement chau�es ". Tese de Doutorado, Laboratoire de Mécanique des Fluides, E.C. Lyon.
Buice, C. & Eaton, J., 1995. �Experimental investigationof �ow through an asymmetric plane di�user". Annual

Research Briefs - 1995, Center of Turbulence Research, Stanford University/ NASA Ames. 117-120.
Cheng, R.K. & Ng, T.T., 1982. �Some aspects of strongly heated turbulent boundary layer �ow". Physics of

Fluids, vol. 25(8).
Cruz D.O.A. & A.P. Silva Freire. 1998, �On single limits and the asymptotic behaviour of separating turbulent

boundary layers". International Journal of heat and Mass transfer. Vol. 41 , no. 14, pp. 2097-2111.
Cruz D.O.A. & A.P. Silva Freire. 2002, �Note on a thermal law of the wall for separating and recirculating

�ows". International Journal of heat and Mass transfer. Vol. 45 , pp. 1459-1465.
DalBello, T., 2003, �NPARC Alliance - Buice 2D Di�user�, NASA John H. Glenn Research Center.
Favre, A., 1965. �Equations de gaz turbulents compressibles". Journal de mecanique, vol. 3 e vol. 4.
Fontoura Rodrigues, J.L.A., 1991. �Um método de mínimo resíduo adaptado ao cálculo de condições de contorno

não-lineares no escoamento turbulento bidimensional". XI Congresso Brasileiro de Engenharia Mecânica, pp
465-468.

Launder, B.E., Spalding, D.B., 1974. �The numerical computation of turbulent �ows". Computational Methods
Applied to Mechanical Engineering, vol. 3, pp. 269-289.

Mellor, G.L., 1966. �The e�ects of pressure gradients on turbulent �ow near a smooth wall". Journal of Fluid
Mechanics, vol. 24, part 2.

Nakayama, A. & Koyama, H., 1984. �A wall law for turbulent boundary layers in adverse pressure gradients".
AIAA Journal, vol. 22, no 10.

Soares, D. V. , Ataídes, R. S. C. & Fontoura Rodrigues, J. L. A., 2003. �Numerical simulation of a turbulent
�ow over a heated wall". COBEM 2003, 17th International Congress of Mechanical Engineering, November
10-14, 2003, São Paulo, Brasil

Stratford, B.S., 1959. �The prediction of separation of turbulent boundary layer". Journal of �uid mechanics,
vol. 5.

Tsuji, T. & Nagano, Y., 1988. �Turbulence Measurements in a Natural Convection Boundary Layer along a
Vertical Flat Plate.", Int. J. Heat Mass Transfer, Vol. 31, No.10, 2101-2111

Vogel, J. C. & Eaton, J.K., 1985. �Combined heat transfer and �uid dynamic measurements downstream of a
backward facing step". Journal of Heat transfer. Vol. 107, pp. 922-929.


