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Abstract. In the present work, the Immersed Boundary Method (Peskin, 1977) with the Virtual Physical Model-VPM (Lima e Silva et
al., 2003) was employed to simulate incompressible and two-dimensional flows over cylindrical geometries. This methodology uses
two type of grids, one Eulerian-Cartesian to represent the flow and one Lagrangean to represent the immersed body. The first grid
is fixed and the second can move. Simulations were carried out over stationary and rotating cylinders at different Reynolds numbers
and for several values of specific rotation. The Smagorinsky turbulence model and a smooth function were used in order to have a
numerically stable methodology. The drag and the lift coefficients, the Strouhal number and surfaces of vorticity were obtained and
compared with others authors.
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1. Introduction

The immersed boundary methodology, developed by Peskin (1977), was used in the present work. Several authors
have used and developed this methodology to simulate flows over different kind of immersed bodies. Fogelson and
Peskin (1988) studied the phenomena of plaquet aggregation during the blood flow. The numerical method developed
was an extension of the Peskin’s method. Goldstein et al. (1993) used the spectral method to simulate flows over
cylinders at low Reynolds number. The model presented by authors to calculate the force field in the Lagrangean grid,
has two adjustable constants. Saiki and Biringen (1996) used the immersed boundary methodology to simulate flows
over mobile and stationary cylinders at low Reynolds number (Re ≤ 400). The authors used the model proposed by
Goldstein et al. (1993), to calculate the force field inherent to this methodology. Lima e Silva (2002) and Lima e Silva
et al. (2003) developed the Virtual Physical Model to calculate the Lagrangean interfacial force. This model is based in
the Navier-Stokes equations for fluid volumes centered in the Lagrangean points, which are placed over fluid-solid
interface.

Attention of many authors has been given to control the shedding vortex behind cylinders. Koopmann (1967)
investigated experimentally the effect of the forced vibration induced by the fluid over a circular cylinder, to low
Reynolds numbers. Tuszynski e Lönher (1998) analyzed by numerical simulations, the effect of rotation of a circular
cylinder in the drag force. Carvalho (2003) has investigated experimentally flows over rotating cylinder.

The group of fluid dynamics LTCM/UFU (Laboratory of Heat and Mass Transfer and Fluid Dynamic) has been
worked to develop the immersed boundary methodology for flows over complex and mobile geometries. In the present
work the authors present the development and application of this methodology to stationary and rotating cylinders. In
the first case (stationary cylinders), vortices are formed behind the cylinders to Reynolds numbers greater than the
critical value. In the second case (rotating cylinders), the vortices are displaced with respect to the symmetry plane. The
results of the present work were compared with results of other authors.

2. Mathematical Model

The Immersed Boundary Method uses the Navier-Stokes equations and mass conservation to simulate
incompressible and two-dimensional flow over stationary and rotating cylinders. The Navier-Stokes equations can be
written as follow:
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where ρ  and ν  are the fluid density and the fluid cinematic viscosity, respectively, p  is the pressure and iu  is the i
component of the velocity. The Eulerian force field if , in the Eq. (1), models the immersed boundary. This force is

calculated by the distribution of the Lagrangean force components, ( )t,xF k
rr

, by equation:

( ) ( ) ( ) ( )∑ −=
k

k
2

kkij xsxFxxDxf
rrrrrrr

∆ , (3)

where x
r

 and kx
r

 are the position vectors of the Eulerian and Lagrangean points, ( )kxs
r

∆  is the length between two

Lagrangean points, ijD  is a interpolation/distribution function and the ( )kxF
rr

 is the interfacial force calculated by the
Virtual Physical Model (VPM) presented as follow:
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where the terms of Eq. (4) are denominated as acceleration force aF
r

, inertial force iF
r

, viscous force vF
r

 and pressure

force pF
r

, respectively. After the determination of the Lagrangean force, it is distributed to Eulerian grid by Eq. (3).
In order to simulate high Reynolds numbers, the Navier-Stokes equation are filtered using a box filter imposed by

the numerical grid used to the discretization process (Silveira-Neto, 2003). The formal filtered Navier-Stokes equations
are written as follow:
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Defining a global sub-grid stress tensor, as proposed by Germano (1991), we rewrite Eq. (5) as the turbulence
global equations:
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where ( )jijiij uuuu −−=τ  is the sub-grid Reynolds stress tensor. Details of this filtering process can be found in
Silveira-Neto et al. (2002) and Silveira-Neto (2003). The Smagorinsky (1963) sub-grid scale turbulence model was
employed, in which the turbulent viscosity is calculated using the relation ( ) ijij

2
St SS2C l=ν . The Smagorinsky

constant was fixed as 18.0Cs =  and yx∆∆=l .

3. Numerical methodology

The fractional step method with staggered grid was used to coupling pressure and velocity fields. The spatial
discretization was performed with the central difference method and the time discretization with the second order
Adams-Bashforth scheme. The discretization of the Navier-Stokes equations was made explicitly to velocity component
and a linear system was solved, at each iteration, to the pressure correction. This method consists to estimate the
velocity field, based in the fields of pressure, velocity and force of the previous iteration. In the next step the pressure
field correction is determined and the new field of velocity, that satisfy the mass conservation, is finally calculated. The



velocity field is calculated explicitly while the pressure field is calculated solving a linear system of equations. The MSI
solver (Schneider and Zedan, 1981) is used.

The Adams-Bashforth second order scheme is used in this paper for the time evolution and the details about this
scheme can be found in Silva (2004).

4. Results

Results for stationary cylinder will be firstly presented. The simulations were carried out at different Reynolds
number, using a grid of 125 x 250 points. The flow develops in the ascendant direction. Figure (1) shows the domain
and the geometrical parameters used in the present simulations.
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Figure 1. Illustrating scheme of the calculation domain.

4.1. Simulations with stationary cylinder

Figure 2 shows the flow visualization for different values of Reynolds number. The vorticity surfaces are
visualized. The second order Adams-Bashforth scheme was used. In these simulations, no sub-grid turbulence model
was used.

  
(a)    (b)       (c)       (d)

Figure 2. Surfaces of vorticity: (a) Re = 100; (b) Re = 300; (c) Re = 1000. and (d) Re = 10000



Note that as the Reynolds number increases, numerical instabilities appear in the flow, as can be visualized in Figs.
(2c) and (2d). These instabilities are expected once these simulations were performed without turbulence model. The
spatial discretization (central difference scheme) has no numerical diffusion, and then it is natural that the simulation
diverges.

Figure 3 shows the time evolution of the drag coefficient at Reynolds numbers equals to 100, 300, 1000 and 10000,
where the instabilities can be clearly visualized for Re equal to 1000 and 10000.

The turbulence model (Smagorinsky, 1963) was used to control these instabilities. Figure 4, shows the flow
visualization by surfaces of vorticity. The Reynolds number is equals to 1000 and 10000. The same Cartesian grid was
used.

Comparing Figs. (2c) and (4a) we see that the flow becomes more stable with the use of turbulence model.
Nevertheless, for Reynolds number equal to 10000 (Fig. 4b), these instabilities appear again. Our numerical
experiments show that the use of a smoothing function (Souza et al., 2000) together with the turbulence model gives
more stable results, as will be shown in the next section.
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Figure 3. Time evolution of drag coefficient at Reynolds number equals to 100, 300, 1000 and 10000 – calculations
without turbulence model.

            
(a)   (b)

Figure 4. Surfaces of vorticity at Reynolds number equal to (a) 1000 and (b) 10000, both with turbulence model.



Figure 5 shows the Cd time distribution for Re=1000 and Re=10000, with and without turbulence model. We see
that both time distributions without turbulence models present excessive oscillations showing numerical divergence.
Otherwise, both time distributions, with turbulence model, are stable and very regular. This shows that, nevertheless the
numerical oscillations shown in Fig. 4 (b), the drag coefficient is well calculated.

Figure 6a shows that the vortex wake that is formed behind the cylinder is not aligned over the vertical symmetry
plan, as expected. It is clearly that at the outlet of the domain there is a numerical instability with mass being
transported inside of the domain. In order to control this kind of instability a smoothing function has been used to dump
the vortex at the outlet of the domain. This function is well described at Silva (2004). The simulations shown in Figs.
(6b) and (6c) were performed using the turbulence model and the smoothing function. We see that the numerical
instability are better controlled and that, in both cases, the vortex streets are aligned in the vertical direction.
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Figure 5. Time evolution of drag coefficient at Re = 1000 and Re = 10000, 125 x 250 points.

 
(a)            (b)          (c)

Figure 6. Surfaces of vorticity: (a) Re=1000, without smoothing function, (b) Re=1000, and (c) Re=10000 both with
smoothing function.



Figure 7 shows the Cd time distribution for Re=1000 and Re=10000. In this case, the simulations were performed
with turbulence model and with smoothing function. Comparing Fig. (7) to Figs. (3) and (5) we see that the numerical
instability was well controlled. The oscillation that remains at Fig. (7) is of physical nature. To be sure that the mean
value of Cd was well calculated, this parameter was compared with others authors for several values of Reynolds
number. In order to have good agreements, higher resolution calculation (250 x 500) was performed. Table 1 shows the
results compared with others experimental and numerical results.
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Figure 7. Time evolution of drag coefficient at Re = 1000 and Re =10000. Both calculations with smoothing function
and turbulence model.

Table 1. Comparisons of medium values of the drag coefficients.

Cd

Re Present work Braza et al.
(1986)

Henderson

(1997)

Lima e Silva
(2002)

Sucker e Brauer

(1975)

100 1.38 1.36 1.35 1.39 1.45

300 1.22 - - 1.22 1.22

1000 1.16 1.20 1.51 - 0.96

10000 0.91 - - - 1.10

4.2. Simulations with rotating cylinder

The flow dynamics of rotating cylinders is different from that observed in stationary cylinders. The rotation can
eliminate partially or totally the vortices. Vortices are shedding at low values of specific rotation and disappear
completely to α > αL, where αL is the critical specific rotation. This parameter is defined as:

∞
=

U
Rωα , (8)

where R is the cylinder radius and ∞U  is the free stream velocity.
In the present work simulations with rotating cylinders were carried out at Reynolds number 200 and a grid of 300 x

800 points. The domain to these simulations is presented at Fig. 8. The numerical probe shown in this figure is placed at
the same position as that used by Carvalho (2003) in his experiments.
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Figure 8. Illustrating scheme of the domain with a rotating cylinder.

4.2.1. Flow visualization

Calculations were performed using the Virtual Physical Model given by Eq. (4). The Lagrangean force field is
calculated in such way that the fluid particles at the interface have the same velocity as the cylinder surface.

Figure 9 shows the flow visualization by surfaces of vorticity of the present work and that of Carvalho (2003). It
can be observed that the wake is displaced with respect to the vertical symmetry plan as the specific rotation is
increased. The numerical results present good agreement with the experimental results of Carvalho (2003).

4.2.2. Strouhal number

Figure 10 presents the time distribution of the lift coefficient over the cylinder and the time distribution of the
vertical velocity component obtained by the referred numerical probe illustrated at Fig. (8).

The Strouhal number was obtained by the Fast Fourier Transform (FFT) of the lift coefficient signal and by the
velocity that was estoreged by the numerical probe. The results were compared with the numerical results obtained by
Badr et al. (1989) and the experimental results of Carvalho (2003). The Strouhal number calculated in the present work
decreases with the specific rotation. Carvalho’s results show an opposite behavior. Table 2 presents comparisons
between results of the present work with dates of literature. Table 3, shows the Strouhal number obtained by lift
coefficients and the velocity distribution obtained by the numerical probe.

The results of Strouhal number determined using both procedures were similar. Then, the difference observed
between the present work and the Carvalho’s results isn’t due to these methodologies used to calculate the Strouhal
number.

Table 2. Strouhal number versus specific rotation.

Stα

Present work Carvalho (2003) Badr et al. (1989)

0 0.1904 0.2083 -

0.5 0.1866 0.2133 -

1.0 0.1848 0.2166 0.2000

1.5 0.1825 0.2133 -



Table 3. Strouhal number versus specific rotation, obtained using two procedures

α St determined
using Cl(t)

St determined using the
numerical probe u(t)

0.5 0.1866 0.1852

1.0 0.1848 0.1847

1.5 0.1825 0.1821

    

 (a)          (b) (c)

                      

(d)   (e)                  (f)

Figura 9. Flow visualizations for Re=200; present work: (a) α =0.0, (b) α =0.5, (c) α =1.0, Carvalho (2003): (d) α =0.0,
(e) α =0.5 and (f) α  = 1.1
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Figure 10. Time evolution of Cd and vertical component of velocity u for Re = 200: (a) lift coefficient, (b) velocity.

5. Conclusions

The use of second order time scheme together with the spatial central scheme is important to the stability of the
numerical methodology. As Reynolds number increase, the methodology become instable. Thus, it was necessary the
use of turbulence model and the smoothing function. The immersed boundary methodology used in this work is very
promising to model and simulate flows over mobile geometries.
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