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Abstract. This abstract presents simulation of turbulent heat transfer in a porous medium using an array of square rods and low 
Reynolds ε−k  turbulence model and a numerical determination of interfacial convective heat transfer coefficient in two-energy 
equation model for convection in porous media, which is needed when the local thermal equilibrium between the fluid and solid 
phases breaks down. The literature has documented proposals for macroscopic energy equation modeling for porous media 
considering the local thermal equilibrium hypothesis and laminar flow. In addition, two-energy equation models have been 
proposed for conduction and laminar convection in packed beds. With the aim of contributing to new developments, this work treats 
turbulent heat transport modeling in porous media under the local thermal non-equilibrium assumption. Macroscopic time-average 
equations for continuity, momentum and energy are presented based on the recently established double decomposition concept 
(spatial deviations and temporal fluctuations of flow properties). Interfacial heat transfer coefficients are numerically determined 
for an infinite medium over which the fully developed flow condition prevails. The numerical technique employed for discretizing the 
governing equations is the control volume method. Turbulent flow results for the macroscopic heat transfer coefficient, between the 
fluid and solid phase in a periodic cell, are presented. 
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1. Introduction 
 
Convection heat transfer in porous media has been extensively investigated due to its many important engineering 

applications. The wide applications available have led to numerous investigations in this area. Such applications can be 
found in solar receiver devices, building thermal insulation, heat exchangers, energy storage units, etc. From the point 
of view of the energy equation there are two different models local thermal equilibrium model and two energy 
approach. The first model assumes that the solid temperature is equal to the fluid temperature, thus local thermal 
equilibrium between the fluid and the solid-phases is achieved at any location in the porous media. This model 
simplifies theoretical and numerical research, but the assumption of local thermal equilibrium between the fluid and the 
solid is inadequate for a number of problems. In recent years more attention has been paid to the local thermal non-
equilibrium model and its use has increased in theoretical and numerical research for convection heat transfer processes 
in porous media.  

Kuwahara et. al (2001) proposed a numerical procedure to determine macroscopic transport coefficients from a 
theoretical basis without any empiricism. They used a single unit cell and determined the interfacial heat transfer 
coefficient for the asymptotic case of infinite conductivity of the solid phase. Nakayama et. al (2001) extended the 
conduction model of Hsu (1999) for treating also convection in porous media. Having established the macroscopic 
energy equations for both phases, useful exact solutions were obtained for two fundamental heat transfer processes 
associated with porous media, namely, steady conduction in a porous slab with internal heat generation within the solid, 
and also, thermally developing flow through a semi-infinite porous medium. 

Saito & de Lemos (2004) considered local thermal non-equilibrium and obtained the interfacial heat transfer 
coefficient for laminar flow using a single unit cell with local instantaneous transport equations.  

In all of the above, only laminar flow has been considered. When treating turbulent flow in porous media, however, 
difficulties arise due to the fact that the flow fluctuates with time and a volumetric average is applied Gray & Lee 
(1977). For handling such situations, a new concept called double decomposition has been proposed for developing a 
macroscopic model for turbulent transport in porous media (Pedras & de Lemos (2000), Pedras & de Lemos (2001a), 
Pedras & de Lemos (2001c), Pedras & de Lemos (2001b), Pedras & de Lemos (2003)). This methodology has been 
extended to non-buoyant heat transfer Rocamora & de Lemos (2000), buoyant flows by de Lemos & Braga (2003) and 
mass transfer by de Lemos & Mesquita (2003). Based on this same concept, de Lemos & Rocamora (2002) have 
developed a macroscopic turbulent energy equation for a homogeneous, rigid and saturated porous medium, considering 
local thermal equilibrium between the fluid and solid matrix. A general classification of all methodologies for treating 
turbulent flow and heat transfer in porous media has been recently published de Lemos & Pedras (2001). 

This study focuses an turbulent flow through a packed bed where represents an important configuration for efficient 
heat and mass transfer and suggests the use of equations governing thermal non-equilibrium involving distinct energy 
balances for both the solid and fluid phases. Accordingly, the use of such two-energy equation model requires an extra 
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parameter to be determined, namely the heat transfer coefficient between the fluid and the solid material (Kuznetsov 
(1998)). 

This work proposes a macroscopic heat transfer analysis using a two-energy equation model for conduction and 
convection mechanisms in porous media. The contribution herein consists in extending the numerical model used in 
Saito & de Lemos (2004) for calculating the heat transfer coefficient considering now turbulent flow. 

 

2. Microscopic Transport Equations 
 
Microscopic transport equations or local time-averaged transport equations for incompressible fluid flow in a rigid 

homogeneous porous medium have been already presented in the literature and for that they are here just presented (e.g. 
reference de Lemos & Rocamora (2002)). Furthermore, for turbulent flows the time averaged transport equations can be 
written as: 

Continuity: 0=⋅∇ u . (1) 
Momentum: ( )[ ] ( )[ ]{ }''.p T

f uuuuuu ρµρ −∇+∇∇+−∇=⋅∇ . (2) 
where the Low Reynolds ε−k  model is used to obtain the eddy viscosity, tµ , whose equations for the turbulent 
kinetic energy per unit mass and for its dissipation rate read: 
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Reynolds stresses and the Eddy viscosity is given by, respectively: 
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where, ρ  is the fluid density, p  is the pressure, µ  represents the fluid viscosity. 
In the above equation set kσ , εσ , 1c , 2c , and µc  are dimensionless constants whereas 2f  and µf  are damping 

functions of the low Re ε−k  turbulence models is justified by the fact that the turbulent flow in porous media occurs 
for Reynolds number relatively low. To account for the low Reynolds effects, the following damping functions were 
adopted. 
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where n  is the coordinate normal to the wall. The turbulent model constants are given as follows, 
090.c =µ , 511 .c = , 912 .c = , 41.k =σ , 31.=εσ . 

Also, the time averaged energy equations become: 
Energy - Fluid Phase: ( ) ( ){ } ( ) ( ) ( ) fffpffffp STcTkTc +′′⋅∇−∇⋅∇=⋅∇ uu ρρ . (9) 

Energy - Solid Phase (Porous Matrix): ( ) 0=+∇⋅∇ sss STk . (10) 
where the subscripts f and s refer to fluid and solid phases, respectively. Here, T  is the temperature fk  is the fluid 
thermal conductivity, sk  is the solid thermal conductivity, pc  is the specific heat and S  is the heat generation term. If 

there is no heat generation either in the solid or in the fluid, one has further 0SS sf == . 
 

3. Decomposition of Flow Variables in Space and Time 
 
Macroscopic transport equations for turbulent flow in a porous medium are obtained through the simultaneous 

application of time and volume average operators over a generic fluid property ϕ  Gray & Lee (1977). Such concepts 
are mathematically defined as, 
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where fV∆  is the volume of the fluid contained in a Representative Elementary Volume (REV) V∆ . 
The double decomposition idea introduced and fully described in Pedras & de Lemos (2000) Pedras & de Lemos 

(2001a) Pedras & de Lemos (2001c) Pedras & de Lemos (2001b) Pedras & de Lemos (2003), combines Eqs. (11)-(12) 
and can be summarized as: 
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     where         ϕϕϕϕϕ iiii −=〉′〈−′=′ . (14) 

Therefore, the quantity ϕ  can be expressed by either, 

ϕϕϕϕϕ ′++
′

〉〈+〉〈= iiii , (15) 
or 

ϕϕϕϕϕ ′+〉′〈++〉〈= iiii . (16) 

The term ϕ′i  can be viewed as either the temporal fluctuation of the spatial deviation or the spatial deviation of the 
temporal fluctuation of the quantityϕ . 

 

4. Macroscopic Flow and Energy Equations 
 
When the average operators (11)-(12) are applied over Eqs. (1)-(2), macroscopic equations for turbulent flow are 

obtained. Volume integration is performed over a Representative Elementary Volume (REV), Gray & Lee (1977) and 
Slattery (1967) resulting in, 

Continuity: 0=⋅∇ Du . (17) 

where, i
D 〉〈= uu φ  and i〉〈u  identifies the intrinsic (liquid) average of the time-averaged velocity vector u . 
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where the last two terms in Eq. (18), represent the Darcy and Forchheimer contributions by Forchheimer (1901). The 
symbol K  is the porous medium permeability, Fc  is the form drag or Forchheimer coefficient, ip〉〈  is the intrinsic 
average pressure of the fluid, and φ  is the porosity of the porous medium. 

The macroscopic Reynolds stress i〉′′〈− uuρφ  appearing in Eq. (18) is given as, 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, and 
φ

µ t , is the 
turbulent viscosity, which is modeled in de Lemos & Pedras (2001) similarly to the case of clear flow, in the form, 
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The intrinsic turbulent kinetic energy per unit mass and its dissipation rate are governed by the following equations, 
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where, kc , 1c , 2c  and µc  are nondimensional constants. 
Similarly, macroscopic energy equations are obtained for both fluid and solid phases by applying time and volume 

average operators to Eqs. (9)- (10). As in the flow case, volume integration is performed over a Representative 
Elementary Volume (REV) resulting in, 
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where i
sT 〉〈  and i

fT 〉〈  denote the intrinsic average temperature of solid and fluid phases, respectively, iA  is the 
interfacial area within the REV and in  is the unit vector normal to the fluid-solid interface, pointing from the fluid 
towards the solid phase. Eqs. (24) and (25) are the macroscopic energy equations for the fluid and the porous matrix 
(solid), respectively. 

Further, using the double decomposition given by Eq. (13)-(16), Rocamora & de Lemos (2000) have shown that the 
fourth term on the left hand side of Eq. (24) can be expressed as: 
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Therefore, in view of Eq. (26), Eq. (24) can be rewritten as: 
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5. Interfacial Heat Transfer Coefficient  
 
In Eqs. (25) and (27) the heat transferred between the two phases can be modeled by means of a film coefficient ih  

such that, 
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where, ih  is known as the interfacial convective heat transfer coefficient and VAa ii ∆=  is the surface area per unit 
volume and Ai is the interfacial heat transfer area. 

For determining ih , Kuwahara et. al (2001) modeled a porous medium by considering an infinite number of solid 
square rods of size D , arranged in a regular triangular pattern (see Fig. (1)). They numerically solved the governing 
equations in the void region, exploiting to advantage the fact that for an infinite and geometrically ordered medium a 
repetitive cell can be identified. Periodic boundary conditions were then applied for obtaining the temperature 
distribution under fully developed flow conditions. A numerical correlation for the interfacial convective heat transfer 
coefficient was proposed by Kuwahara et. al (2001) for laminar flow as, 

31211
2
1141 /

D
/

f

i PrRe)()(
k

Dh
φ

φ
φ

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+= , valid for 9.02.0 << φ , (29) 

Eq. (29) is based on porosity dependency and is valid for packed beds of particle diameter D . 
Later, Saito & de Lemos (2004) obtained the interfacial heat transfer coefficient for laminar flows though an 

infinite square rod; this same physical model will be used here for obtaining the interfacial heat transfer coefficient ih  
for turbulent flows. 

 



 
6. Periodic Cell and Boundary Conditions 

 
In order to evaluate the numerical tool to be used in the determination of the film coefficient given by Eq. (28), a 

test case was run for obtaining the flow field in a periodic cell, which is here assumed to represent the porous medium. 
Consider a macroscopically uniform flow through an infinite number of square rods of lateral size D , placed in a 
staggered arrangement and maintained at constant temperature Tw. The periodic cell or representative elementary 
volume, V∆ , is schematically showed in Fig. (1) and has dimensions 2H × H. Computations within this cell were 
carried out using a non-uniform grid, as shown in Fig. (2), to ensure that the results were grid independent. The 
Reynolds number µρ /DRe DD u=  was varied from 104 to 105 and the porosity, 21 )H/D(−=φ . 

 
Figure 1. Physical model and coordinate system. 

 

 
Figure 2. Non uniform computational grid. 

 
The numerical method utilized to discretize the flow and energy equations in the unit cell is the Control Volume 

approach. The SIMPLE method of Patankar (1980) was used for handling Eq. (1)-(10) the velocity-pressure coupling. 
Convergence was monitored in terms of the normalized residue for each variable. The maximum residue allowed for 
convergence check was set to 10-9, being the variables normalized by appropriate reference values. 

For fully developed flow in the cell of Fig. (1), the velocity at exit ( 2=H/x ) must be identical to that at the inlet 
( 0=H/x ). Temperature profiles, however, are only identical at both cell exit and inlet if presented in terms of an 
appropriate non-dimensional variable. The situation is analogous to the case of forced convection in a channel with 
isothermal walls; see Saito & de Lemos (2004). Thus, boundary conditions and periodic constraints are given by: 
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where u  and v  are components of u . 
On the periodic boundaries: 
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The bulk mean temperature of the fluid is given by: 
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Computations are based on the Darcy velocity, the length of structural unit H  and the temperature 
difference ( )( )wB TxT − , as references scales. 

 

7. Results and Discussion 

7.1 Periodic Flow 
 
Results for velocity and temperature fields were obtained for different Reynolds numbers. In order to assure that the 

flow is hydrodynamically and thermally developed in the periodic cell of Fig. (1), the governing equations were solved 
repetitively in the cell, taking the outlet profiles for u  and θ  at exit and plugging them back at inlet. In the first run, 
uniform velocity and temperature profiles were set at the cell entrance for 1=Pr  and DRe  = 104, giving θ =1 at x/H=0. 
Then, after convergence of the flow and temperature fields, u  and θ  at x/H=2 were used as inlet profiles for a second 
run, corresponding to solving again the flow for a similar cell beginning in x/H=2. Similarly, a third run was carried out 
and again outlet results, this time corresponding to an axial position x/H=4, were recorded. This procedure was repeated 
several times until u  and θ  did not differ substantially at both inlet and outlet positions. Resulting non-dimensional 
velocity and temperature profiles are shown in Fig. (3) and Fig. (5), respectively, showing that the periodicity 
constraints imposed by Eqs. (32)-(33) was satisfied for x/H > 4. For the entrance region ( 40 << H/x ), θ  profiles 
change with length H/x  being essentially invariable after this distance. Under this condition of constant θ  profile, the 
flow was considered to be macroscopically developed for DRe  up to 105. 

For the low Re model, the node adjacent to the wall requires that 1≤µρτ /nu . To accomplish this requirement, the 
grid needs a great number of points close to the wall leading to computational meshes of large sizes. As a further code 
validation for turbulent flow calculation, which uses ε−k  model, a developing turbulent channel flow has been solved 
for Re = 5x104. Figure (4) shows that the velocity profile obtained in the present study has a good agreement with the 
laminar sub layer and the wall log layer. 
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Figure 3. Dimensionless velocity profile for 1=Pr  and DRe  = 104. 
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Figure 4. Velocity profile in fully developed pipe flow. 

 

 

7.2 Developed Flow and Temperature Fields 
 

Macroscopically developed flow field for Pr = 1 and ReD = 104 is presented in Fig. (3), corresponding to x/D=6 at 
the cell inlet. The expression “macroscopically developed” is used herein to account for the fact that periodic flow has 
been achieved at that axial position. The turbulence kinetic energy is high around the corner where a strong flow 
acceleration takes place, therefore, a strong shear layer is formed downstream of the corners, as shown in Fig. (6). 
Temperature distribution pattern is shown in Fig. (7), also for DRe =104. Colder fluid impinges on the rod left surfaces 
yielding strong temperature gradients on that face. Downstream the obstacles, fluid recirculation smoothes temperature 
gradients and deforms isotherms within the mixing region. When the Reynolds number is sufficiently high (not shown 
here), the thermal boundary layers cover the rod surfaces indicate that convective heat transfer overwhelms thermal 
diffusion. 
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Figure 5. Dimensionless temperature profile for 1=Pr  and DRe  = 104. 



 

 
 

 
 
 

Figure 6. Turbulence kinetic energy. Figure 7. Isotherms for 1=Pr , DRe  = 104 and φ  = 0.65 
 

7.3 Film Coefficient hi 
 
Determination of ih  is here obtained by calculating, for the unit cell of Fig. (1), an expression given as, 
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where Ai = 8D × 1. The overall heat transferred in the cell, Qtotal, is giving by, 
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where Bu  is the bulk mean velocity of the fluid and the logarithm mean temperature difference, ∆Tml is, 
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−−−
=∆  (37) 

Eq. (35) represents an overall heat balance on the entire cell and associates the heat transferred to the fluid to a suitable 
temperature difference mlT∆ . As mentioned earlier, Eqs. (1)-(10) were numerically solved in the unit cell until 
conditions Eqs. (32)-(33) were satisfied. 

Once fully developed flow and temperature fields are achieved, for the fully developed condition ( Hx 6> ), bulk 
temperatures were calculated according to Eq. (34), at both inlet and outlet positions. They were then used to calculate 

ih  using Eqs. (35)-(37). Results for ih  are plotted in Fig. (8) for DRe  up to 105. Also plotted in this figure are results 
computed with correlation (29) using φ = 0.65. The figure seems to indicate that both computations show a reasonable 
agreement for laminar results. The numerical correlation for the interfacial convective heat transfer coefficient was 
proposed by Kuwahara et. al (2001) is used only for laminar flows while for turbulent results a correlation is needed. 
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Figure 8. Effect of DRe  on ih  for 1=Pr  with correlation of Kuwahara et. al (2001). 

 



 
8. Concluding remarks 

 
A computational procedure for determining the convective coefficient of heat exchange between the porous 

substrate and the working fluid for a porous medium was detailed. As a preliminary result, a macroscopically uniform 
laminar and turbulent flow through a periodic cell of isothermal square rods was computed, considering periodical 
velocity and temperature fields. Quantitative agreement was obtained when comparing the preliminary laminar results 
herein with simulations by Kuwahara et. al (2001). Moreover, the numerical correlation for the interfacial convective 
heat transfer coefficient for turbulent flow is needed. Further work will be carried out in order to simulate fully 
turbulent flow high Reynolds and heat transfer in porous media by means of the proposed two-energy equation. 
Ultimately, it is expected that a correlation for the heat transfer coefficient be obtained so that the exchange energy 
between the solid and the fluid can be accounted for. 
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