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COMPRESSIBILITY EFFECTS IN
TURBULENT SUPERSONIC CHANNEL FLOW
WITH PASSIVE SCALAR TRANSPORT

R. Friedrich, H. Foysi and J. Sesterhenn
Fachgebiet Stroemungsmechanik
Technische Universitaet Muenchen
Boltzmannstr. 15, 85748 Garching, Germany

Direct numerical simulations of compressible turbulent channel flow including passive scalar
transport have been performed at five Mach numbers, M, ranging from 0.3 to 3.5 and
Reynolds numbers, Reτ, ranging from 181 to 1030. The Prandtl and Schmidt numbers are 0.7
and 1.0, respectively, in all cases. The passive scalar is added to the flow through one
channel wall and removed through the other, leading to an S-shaped mean scalar profile with
non-zero gradient in the channel centre. The paper describes the set of compressible flow
equations which is integrated using high-order numerical schemes in space and time.
Statistical equations are presented for fully developed flow, including budgets for the
Reynolds stresses, the turbulent scalar fluxes and the scalar variance. Results are presented
for second order moments and the terms in the mentioned balance equations. Outer scalings
are found suitable to collapse incompressible and compressible data. The reduction in the
near-wall pressure-strain and pressure-scalar gradient correlations due to compressibility is
explained using a Green-function-based analysis of the fluctuating pressure field. The
similarity observed between the streamwise Reynolds stress and turbulent scalar flux is
underlined by a comparison of the near wall instantaneous fields of  1u ′′  and ξ ′′ .

1. Introduction

Supersonic channel flow is a prototypical example of a high-speed flow which allows for a
systematic study of compressibility effects in wall-bounded turbulence without other
important but distinct features such as streamwise development, shocks, and flow separation.
Coleman et al. (1995) were the first to perform direct numerical simulations (DNS) of channel
flow between cold isothermal walls with Mach numbers up to M = 3. They found that
Morkovin’s hypothesis, “the flow follows an incompressible pattern”, holds for the most part,
and that the Van-Driest log-law is valid. In a companion paper, Huang et al. (1995) observed
that the turbulent stresses, ijRρ , scale with the wall shear stress, wτ , and semi-local scaling is
useful. Lechner et al. (2001), in their study of M = 1.5 channel flow, reported that the
anisotropy of the Reynolds stresses was slightly changed relative to corresponding
incompressible values, but no explanation was given. Morinishi et al. (2003) simulated
supersonic channel flow at M = 1.5 with one wall isothermal and the other wall adiabatic,
finding that the resulting differences of the flow between the two halves of the channel are
significant.
The influence of compressibility on passive scalar transport has not yet been studied so far in
wall-bounded turbulent flows. Kim et al. (1989) performed the first direct simulations of
passive scalar transport in incompressible fully developed turbulent channel flow at a
Reynolds number Reτ, based on friction velocity, uτ, and channel half width, h, of 180. They
used two types of boundary conditions. In one case, the scalar (temperature) was internally
generated and isothermal walls of the same temperature served as boundary conditions. In the
other case, a different temperature was imposed at each of the isothermal walls. The Prandtl
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numbers were varied between 0.1 and 2. Recently, Johansson et al. (1999) performed a
similar DNS of incompressible channel flow, imposing a mean scalar (temperature) gradient
at a Reynolds number of Reτ = 265 and a Prandtl number of 0.7.
In which way compressibility affects passive scalar transport is important to know, before
active scalar transport is investigated, the understanding of which is prerequisite to the
understanding of combustion processes. Based on the above literature survey it appears that,
although the behaviour of the mean velocity profile is well understood in supersonic channel
flow, there are open issues regarding the behaviour of the turbulent stresses and turbulent
scalar fluxes. In the case of incompressible channel flow, the fluctuating velocity scale is

ρττ /wu = , while there are two length scales, the inner length scale, τν u/ , and the outer
length scale, h (the channel half width), leading to well-established inner and outer scalings of
the turbulence. Corresponding scalings apply to the turbulent scalar fluxes. The applicability
of these scalings to the turbulent momentum and scalar fluxes and their transport equations in
the context of compressible flow will be evaluated. At the same time an explanation will be
given why the turbulence structure is modified due to compressibility.

2. Numerical method and computational details

In this section, we describe the basic equations for compressible flow of an ideal gas
including passive scalar transport, how these equations are integrated numerically and which
initial and boundary conditions are used to predict fully developed turbulent channel flow.

1.1. Equations of motion

Turbulent flow of a compressible ideal gas (air) including passive scalar transport is governed
by the following set of transport equations in Cartesian tensor notation:

,)q()1(uppup jjjjjjt ∂−−+∂−∂−=∂ Φγγ (1)

,)fp(uuu 1i1ijji
1

ijjit δτρ −∂−∂−∂−=∂ − (2)

,)q()p/R(sus jjjjt ∂−+∂−=∂ Φ (3)

,)D(u jj
1

jjt ξρρξξ ∂∂+∂−=∂ − (4)

where ξρ ,,s,u,p i represent pressure, Cartesian velocity components, entropy, density and
concentration of a passive scalar, respectively and it , ∂∂ denote temporal and spatial
derivatives. This special set of variables has been chosen, in order to compute the relevant
modes of compressible turbulence, namely ‘pressure, entropy and vorticity’ as ‘directly’ as
possible. A vorticity transport equation has been avoided here, since two of the vorticity
boundary conditions cannot be formulated exactly. The body force f1δi1 in equation (2) will be
specified later in such a way that it replaces the mean streamwise pressure gradient. In
equations (1-3) the components of the heat flux vector ,jq  viscous stress tensor ,ijτ and the
dissipation rate ,Φ read:

,s3/2s2,Tq ijkkijijjj δµµτλ −=∂−= (5)

).uu(2/1s,s jiijijijij ∂+∂== τΦ (6)
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The thermal equation of state

,ccR,TRp vp −== ρ (7)

and the following laws for dynamic viscosity µ , heat conductivity λ  and diffusivity D close
the set of equations:

.7.0n,cS/D,rP/c,)T/T(/ p
n

refref ==== ρµµλµµ (8)

The Prandtl number Pr, the Schmidt number Sc and the ratio of specific heats γ are kept at
constant values in the temperature and concentration ranges considered, namely Pr = 0.7, Sc
= 1.0, γ = cp / cv = 1.4.

2.2 Numerical method and computational details

The equations of motion (1-4) are cast in a characteristic non-conservative form, following
Sesterhenn (2001), which allows to formulate wall and free boundary conditions consistently
with the field equations. A 5th-order compact upwind scheme of Adams and Shariff (1996) is
used to discretize the hyperbolic (Euler) terms in the equations of motion. The molecular
transport terms are discretized with a compact 6th-order scheme of Lele (1992). The solution
is advanced in time with a 3rd-order ‘low-storage’ Runge-Kutta scheme, proposed by
Williamson (1980).
The body force term 1i1f δ  in the momentum equation is introduced in order to replace the
mean pressure gradient in streamwise direction. It is uniform in 3D space and allows to
handle fully developed turbulent flow using periodic boundary conditions for all variables in
stream- and spanwise directions. A mean scalar gradient is imposed on the flow, using an
initial profile of the form (Johansson, 1999):
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At the walls the velocity components satisfy no-slip and impermeability boundary conditions.
The passive scalar is injected at the lower wall ( x2 = 0 ) with vanishing momentum and
removed through the upper wall. Its boundary conditions, hence, read:

,1)t,x,h2,x(,1)t,x,0,x( 3131 −== ξξ (10)

For a solid isothermal and stationary wall the pressure and entropy boundary conditions have
the form:

,)XX()c2(/pp 22t
−+ +−=∂ (11)

.)XX()c2(/Rs 22t
−+ +=∂ (12)

They follow from Gibbs’ fundamental relation and the momentum balance in the wall normal
direction, which reads in characteristic form:

,j2j22 )/2(XX τρ ∂+= −+ (13)
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using ‘waves’ defined by:

.)up)c(()cu(X 222
1

22 ∂±∂±= −± ρ
(14)

2/1)/p(c ργ= is the speed of sound. The boundary conditions (11) and (12) show explicitely
that pressure and entropy evolve in time at the wall. A possible way of initializing
compressible turbulent channel flow, is as follows: A mean streamwise velocity profile is
specified according to a linear law between the wall and 10/uxx w22 ==+ ντ and a log-law from
there to the centreline. The mean temperature corresponds to its wall value and the mean
density to its bulk-average, see equation (16). Velocity fluctuations are given as random
fluctuations with zero mean values. The level of the rms-fluctuations may be of the order of
5% of the bulk-averaged velocity. Temperature, density and entropy fluctuations are zero.
Pressure fluctuations are proportional to velocity fluctuations times the mean density. Since
fully-developed  shear-turbulence is independent of initial conditions, the choice of these
conditions is not critical. They will be swept out of the flow domain during an initial transient
stage. Once a stable turbulence field has been generated, it can be used as initial condition in
the simulation with other flow parameters.

The numerical algorithm has been previously validated by Lechner et al. (2001) whose results
for a Mach number M = 1.5 case are in excellent agreement with those of Coleman et al.
(1995). The present paper reports on five direct numerical simulations for different Reynolds
and Mach numbers. The global Mach and Reynolds numbers for fully developed turbulent
channel flow are defined as

./huRe,c/uM wavmwav µρ== (15)

The speed of sound and the dynamic viscosity are evaluated at a wall temperature which has
the constant value Tw = 500 K in all cases. The bulk-averaged density and velocity read

.h/dxuu,h/dx 2

h

0 1av2

h

0m ∫∫ == ρρ (16)

The overbar denotes Reynolds averaged quantities to be defined below. Table 1 summarizes
the flow parameters, box sizes and numbers of grid points used in the different direct
simulations. Equidistant grids  are chosen in the (x1, x3)-, i.e. the streamwise and spanwise
directions of the channel. In the wall-normal x2 – direction, points are clustered using tanh-
functions (Lechner et al., 2001). The friction Reynolds number Reτ = ρw uτ h / µw , with uτ =
(τw / ρw)1/2 , is a result of the computation. Note, that for spatial and velocity coordinates the
following notations are used alternately, (x1, x2, x3)↔(x, y, z), (u1, u2, u3)↔(u, v, w).

TABLE 1. Flow and computational parameters

Case    M        Re       Reτ     Lx1/h    Lx2/h    Lx3/h     Nx1      Nx2       Nx3      ∆x1
+      ∆x2min

+     ∆x2max
+     ∆x3

+

M0.3   0.3      2820    181      9.6          2         9.6       192      129      160      9.12      1.02           4.21         6.84
M0.4   0.36   10121    550     6.4          2          2          512      192     462      6.75      0.675         3.96         5.65
M1.5   1.5      3000     221     4π           2       4π/3       192      151      128     14.46     0.84           5.02         7.23
M3.0   3.0      6000     556     4π           2       4π/3       512      221      256     13.65     0.89           9.38         8.91
M3.5   3.5    11310   1030     6π           2       4π/3       512      301      256     37.89      1.27         13.35      16.85
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3. Statistical equations for fully developed channel flow

In this section we define statistical and fluctuating quantities and present the statistically
averaged equations of motion for fully developed channel flow as well as transport equations
for the Reynolds stresses and the turbulent scalar fluxes. It is common practice to work with
Reynolds- and Favre-averaged, i.e. mass-weighted averaged quantities simultaneously.
Velocity components and temperature are decomposed in the following way:

,/uu~,uu~uuu iiiiiii ρρ=′′+=′+= (17)

./TT~,TT~TTT ρρ=′′+=′+=
(18)

Density, pressure, entropy (and the molecular transport coefficients) follow Reynolds’
decomposition:

.)s,p,()s,p,()s,p,( TTT ′′′+= ρρρ (19)

The statistical operation, represented by the overbar, is achieved by averaging in the
streamwise and spanwise directions, i.e. over 512*256 mesh points (case M3.5) and in time.
A typical number of statistically independent time samples is 103 for basic quantities, like
mean velocity, pressure, density, and 104 for correlations like the Reynolds stresses.

3.1 Mean balance equations

Considering the above decompositions and the fact that for fully developed channel flow

,0)...(
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x

,0u~u~,)x(u~u~
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32211 =
∂
∂

=
∂
∂

===
(20)

leads to the following balance equations for mean streamwise momentum and scalar
concentration:

( ) ,fuu
x

0 12112
2

+′′′′−
∂
∂

= ρτ (21)
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(22)

In equation (21) the mean body force, 1f , replaces the mean pressure gradient and is related
to the wall shear stress in the following way:

.
hx

pf w

1
1

τ
=

∂
∂

−= (23)

Integrating equations (21-22) from the wall (x2 = 0) to a position in between the wall and the
centreline, taking care of the fact that the solid wall inhibits all turbulence fluctuations and
that correlations involving fluctuations of viscosity and diffusivity are negligibly small,
provides the following balances for the shear stresses and scalar fluxes:
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.1u
xd

d
Sc
1

w
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(25)

The ‘+’ indicates normalization with wall units, namely the friction velocity, uτ , the viscosity
at the wall, νw , and the scalar fluctuation, ξτ , defined via the scalar flux at the wall, χw , as

.u
xSc w

w2
w ττ ξρ

ξµ
χ −=

∂
∂

= (26)

From (24) we conclude that the sum of the viscous and Reynolds shear stresses varies linearly
in the channel, decreasing from its wall value to zero at the centreline. (25) indicates that the
sum of molecular and turbulent scalar fluxes is constant. Unlike the viscous stress, the
molecular scalar flux is non-zero at the centreline which leads to considerable production of
scalar fluctuations in the channel core.

The mean balance of the total enthalpy, ρH = ρe + p + ρuiui/2,  takes the following form in
fully developed channel flow:

( ) .qu
x

Hu
x

Hu
x 22ii

2
2

2
1

1

−
∂
∂

=
∂
∂

+
∂
∂

τρρ (27)

The first term on the l.h.s. is non-zero since it contains the mean pressure gradient. Obviously,

.
x
puHu

x 1
11

1 ∂
∂

=
∂
∂

ρ (28)

All the other streamwise gradients of mean quantities and correlations vanish. Now,
integrating equation (27) from the wall to the centreline and using symmetry conditions for
flow variables and correlations, provides the interesting relation

,uxd
x
puq avw2

h

0
1

1w τ−=
∂
∂

= ∫ (29)

which states that the work done by the mean pressure gradient in one half of the channel
corresponds to the heat that leaves the channel through the isothermal wall. In other words, in
order to achieve supersonic velocities in a channel, the walls have to be cooled. Adiabatic
walls do not allow for supersonic flow and lead to choking.

3.2 Budgets of the Reynolds stresses,  the scalar fluxes and scalar variance

In order to analyze effects of compressibility on second-order moments of turbulent
fluctuations, one has to study their transport equations. These equations contain higher-order
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correlations and are, hence, unclosed. It is a real challenge for turbulence modellers to
develop proper models which relate unknown higher-order correlations to known correlations
and variables. DNS helps to test these models and to improve them.
The derivation of the transport equation for the Reynolds stress, jiij uuR ′′′′= ρρ , proceeds along
the following steps: One first derives a transport equation for ρuiuj and averages it
statistically. From this one subtracts an equation for ji u~u~ρ . The transport equations for the
streamwise and spanwise components, 2/R11ρ , 2/R33ρ , and the Reynolds shear stress,  12Rρ
read:
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They state that there is no mean convective transport of the Reynolds stresses in fully
developed flow. The r.h.s. of eq. (30) contains production of the streamwise Reynolds stress
by the action of the shear stress (first term), turbulent and viscous transport (second term),
intrinsic compressibility by streamwise turbulent mass-flux,

,/u/uu 111 ρρρρ ′′−=′−=′′ (33)

energy loss by redistribution (fourth term) and dissipation (last term). The spanwise Reynolds
stress (eq. (31)) is modified by turbulent and viscous transport as well (first term on the r.h.s.),
by streamwise turbulent mass flux which is, however, weak. It is not directly produced, but
receives energy from the streamwise component by redistribution (third term) and looses
energy by dissipation (last term). The Reynolds shear stress balance (eq. (32)) contains
corresponding terms. The most important ones are production, redistribution and turbulent
transport. Viscous diffusion and dissipation nearly balance in the wall layer.

The derivation of transport equations for the scalar fluxes and the scalar variance proceeds
similarly to that of the Reynolds stresses. Again there is no mean convective transport in fully
developed channel flow. The equations for the streamwise and wall-normal turbulent scalar
fluxes are:
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Both fluxes are primarily produced by mean scalar gradients, the streamwise scalar flux in
addition by the mean velocity gradient. Both balances contain turbulent and viscous transport
terms, scalar pressure-gradient correlations (the analogues of velocity pressure-gradient terms
in the Reynolds stress transport equations) and, finally, destruction terms due to viscous and
diffusion effects.
The transport equation for the scalar variance, 2/2ξρ ′′ , reads:
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Scalar fluctuations are produced by the mean scalar gradient alone. If the mean flow were
accelerated or retarded, there would be a production term by mean dilatation as well. We
further note that turbulent transport of scalar fluctuations and viscous diffusion as well as
dissipation contribute to the dynamics of scalar fluctuations. Diffusion and dissipation consist
of two terms, respectively, where the terms involving correlations between ‘viscosity’ and
scalar fluctuations are generally small.

4. DNS results

In this section we investigate effects of compressibility on the Reynolds stresses, scalar fluxes
and terms in the corresponding balance equations. We also provide an explanation for the
structural changes of correlations involving pressure fluctuations, like the pressure-strain and
pressure-scalar-gradient correlations. Wherever possible, we use comparisons with DNS data
of incompressible channel flow for a better understanding of the high-speed physical
mechanisms.

4.1 Mean flow properties

Compressibility effects in fully developed channel flow originate mainly from the large
changes in fluid properties, ρ  and µ , caused by viscous heating. Figure 1 shows profiles of
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these quantities for four Mach number cases listed in Table 1. The increase in mean
temperature in the channel core as a result of mean and turbulent dissipation, leads to a steep
rise in viscosity and entails a simular decrease in mean density. Given the fact that the mean
wall-normal pressure gradient is negligibly small, corresponding density and temperature
gradients are equal in magnitude, but opposite in sign. From the averaged ideal gas law, we
obtain, neglecting the contribution from the density-temperature correlation:

.
xd

d1
xd
Td

T
1

22

ρ
ρ

≅−
(37)

Equation (37) also contains the assumption that the wall-normal mean pressure gradient
resulting from the wall-normal momentum balance

( ) ,up
x

0 22
2

2
2

τρ −′′−
∂
∂

−=
(38)

is small. In (38), 2222 dx/ud3/4 µτ ≈ .

          
FIGURE 1: Variation of mean density (symbols) and mean viscosity (lines), both normalized with wall values.

Figure 2 contains profiles of the Van Driest transformed mean velocity

1

u

0 wVD,1 udu 1

∫
+

=+ ρρ (39)

in a semi-logarithmic plot. This transformation provides a reasonable collapse of the various
cases in the outer region alone and there seems to be no way of finding a single
transformation which does a good job in the inner as well as the outer layer. Neglecting the
turbulent fluxes in equations (24) and (25), we get for the viscous sublayer:

µ
µ

µ
µξ w

2

1w

2 xd
ud,Sc

xd
d

==− +

+

+

+

(40)

and after integration

.uSc 1w
+++ =− ξξ (41)
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Equation (40) suggests the following transformed velocity and scalar in the viscous sublayer:
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ξξ
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µ ξ
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Figure 3 shows both, the Van Driest- and the viscosity-transformed mean velocities.

                           
FIGURE 2. Profiles of the Van Driest-transformed mean velocity, eq. (39).

                             

FIGURE 3. Profiles of the Van Driest- and viscosity-transformed mean velocity, eq. (42).

Figures 4 and 5 present profiles of the local Mach number, w1 c/uM = , and the mean scalar,
normalized by ξw. From equation (41) we conclude that ξ varies linearly in the viscous
sublayer, when plotted against the variable

.dxx 2

x

0
w

2
2 ++ ∫
+

=
µ
µ

µ (43)

In the core region, where wµµ and w2u χξρ ′′′′ both reach a plateau, i.e. nearly constant
values, we note that
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( ) ( )hx1hu1Sc 2w2
w −′′′′+≈ ++ χξρ
µ
µ

ξ
(44)

varies linearly with x2.

                           
FIGURE 4. Profiles of the local Mach number w1 c/uM = .

                                                        

FIGURES 5. Profile of the mean scalar ξ normalized by wξ . □ shows data of Johansson et al. (1999).

4.2 The turbulent stress tensor

At sufficiently large distances from the wall, where the viscous stress is small at high
Reynolds numbers, the shear stress balance, eq. (24), allows to conclude that the quantity

w12R τρ is a linear function of hx2 , independent of Mach and Reynolds number. In other
words, wτ , is the proper outer scaling parameter which collapses compressible and
incompressible cases on to a universal profile, see Figure 6. Incompressible channel flow data
of Moser et al. (1999) at 590and,395,180Re =τ , denoted by cases I1, I2, and I3, respectively,
have been used for comparison. Note that the Reτ values are similar between cases M0.3,
M1.5 and I1, and between cases M3.0 and I3.
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FIGURE 6. Outer scaling of the Reynolds shear stress, 12Rρ .

In Figure 6, cases M0.3 and I1 are practically indistinguishable. Given the fact that cases M3.0
and I3 have similar Reynolds numbers, τRe , the differences between their profiles in the wall
layer are due to mean property variations. The linear behaviour of ( )0.3MR12ρ  starts at

3.0hx2 〉  only, while that of ( )3IR12ρ  starts at 1.0hx2 〉  already, because temperature and
hence viscosity µ  increase with increasing x2 , extending the importance of the viscous stress
to larger distances x2 . Another observation which is not demonstrated here, is the
independence of the correlation coefficient of 21uu ′′′′ρ from Mach and Reynolds numbers for

3.0hx2 〉 . From this additional fact we are allowed to conclude that w11R τρ and w22R τρ ,
finally all Reynolds stresses, tend to a universal dependence on hx2  sufficiently far from the
wall, see Figure 7.

                          
FIGURE 7. Outer scaling of the turbulent streamwise stress, 11Rρ
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4.3 The turbulent scalar fluxes and the scalar variance

The molecular scalar flux, being non-zero everywhere in the channel, makes χw not an ideal,
but a reasonable outer scale of the turbulent scalar flux in wall-normal direction. Figures 8
and 9 demonstrate that this is true in the range of 6.0hx2 〉  for the streamwise scalar flux as
well, irrespective of Mach and Reynolds numbers.
There is a striking similarity in the behaviour of the streamwise scalar flux, w1u χξρ ′′′′ , and the
streamwise Reynolds stress, 2

1u ′′ρ . This is seen by comparing Figures 7 and 9, but also by
comparing the structure of the transport equations for 1u ′′  and ξ ′′ . Introducing mean and
fluctuating quantities into the momentum equation (2) for u1 and the scalar transport equation
(4), we obtain:

( ) ( ) term.visc
x
puu

xd
duu

xxd
u~duu

Dt
D

21
2

j1
j2

1
21 +

∂
′∂
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∂
∂

+′′+′′ ρρρρ (45)

( ) ( ) term.diffu
xd
du

xxd

~du
Dt
D

2
2

j
j2

2 =′′′′−′′′′
∂
∂

+′′+′′ ξρξρ
ξ

ρξρ (46)

where xu~tDtD ∂∂+∂∂=  denotes the substantial derivative based on mean convective
transport. The viscous and diffusion terms have not been written out, because we intend to
discuss the large scale turbulent effects. In both equations there are very similar production
and turbulent transport terms (2nd and 3rd terms on the l.h.s.) and effects by mean turbulent
transport. The only difference between both equations is the fluctuating streamwise pressure
gradient. As will be shown later, the importance of this term is substantially reduced due to
compressibility. The same is true for the production terms in the wall layer. Hence, the higher
the Mach number, the stronger is the similarity between  1u ′′  and ξ ′′ .

                          

FIGURE 8. Profiles of the wall-normal scalar flux ξρ ′′′′2u , normalized by wχ .
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FIGURE 9. Profiles of the streamwise scalar flux ξρ ′′′′1u , normalized by wχ .

                        

FIGURE 10. Profiles of the r.m.s. scalar fluctuations 2ξ ′′ , normalized by wξ = ξd.

In Figure 10 we present profiles of the r.m.s. scalar fluctuations, normalized by wξ . These
profiles reveal peaks in the wall layer and maxima at the channel centreline which are due to
non-zero gradients of the mean scalar, cf. Figure 5. Effects similar to those for the streamwise
Reynolds stress (and the turbulent kinetic energy, not shown here) can be observed, namely:
an increase in Reynolds number intensifies the near-wall peak. A simultaneous increase in
Mach number lowers it again, so that eventually these effects compensate each other.

4.4 Budgets of second-order moments

Reynolds stresses: Terms in the transport equations for the Reynolds stresses, ijRρ , when
normalized with w

4
w u νρ τ and plotted as functions of +

2x , which is customary for
incompressible flow, do not show a tendency to collapse incompressible and compressible
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data. Hence, an alternate inner scaling is required. This is obtained by considering the kinetic
energy production term, P11 of the 11Rρ -balance. Away from the viscous layer, the Reynolds
shear stress scales as ( )hx1R 2w12 −=− τρ , while the mean shear is ( )221 xuxdu~d κτ

∗≅  (where
ρττ wu =∗ ), so that

.uxx,
h
1

x
1P 22
2

2
w ν
κµ

τ
τ
∗∗

∗∗ =







−= (47)

Equation (47) implies that the Reynolds stress budgets should be normalized with µτ 2
w and

plotted against the semi-local coordinate, ∗
2x .  Figure 11 shows profiles of the terms in the

11Rρ -balance, normalized accordingly. The dominant terms in the near-wall region, namely,
production, dissipation and viscous diffusion do not change significantly between cases M3.0
and I3. However, as shown in Figure 11 (right), the pressure-strain correlation,

)uu(psp2 jiijijij ′∂+′∂′=′′=Π , (48)

changes significantly between cases. Compressible flow, obviously, reduces the pressure-
strain correlations in a remarkable way. A quantitative explanation of this behaviour is given
below, based on an analysis of the Poisson equation for the pressure fluctuations.

FIGURE 11. Budget of the 11Rρ -stress, normalized by µτ2
w and plotted against the semi-local coordinate ∗

2x .
Symbols represent the incompressible case I3 and lines the compressible case M3.0. Left: Production, dissipation

and diffusion. Right: Pressure-strain, turbulent diffusion and mass flux variation.

In Figure 12 we demonstrate for 3311 and ΠΠ that huavwτ  are outer scaling parameters which
collapse compressible onto incompressible pressure-strain correlation data.
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FIGURE 12. Pressure-strain correlation: Streamwise 11-component (left), Spanwise 33-component (right).

Scalar fluxes and scalar variance: A suitable normalization of the streamwise and spanwise
scalar flux balances must be found. The streamwise scalar flux balance e.g. has two
production terms, see eq. (34). They scale outside the viscous layer as:

,u1
h
x1

uxd
duu

xd

~duu
w

22
2
w

2
21

2
21 







 ′′′′
+








−−=′′′′−≅′′′′− ∗

∗

χ
ξρξ

µ
τξ

ρ
ξ

ρ
τ

τ

(49)

.u
x
1

Sc
1

u
u

x
u

xd
u~du

w

2

2

2
w

2
22

1
2 χ

ξρ
κ

ξ
µ
τ

ξρ
κ

ξρ
τ

ττ ′′′′
=′′′′−≅′′′′− ∗

∗

(50)

As long as the Schmidt number is 1 or O(1), the streamwise scalar flux budget has to be
normalized with ( )ττξµτ u2

w . This scaling again underlines the similarity between u1- and ξ-
fluctuations. The production term for the wall-normal scalar flux in eq. (35) scales as shown
in eq. (49). Finally, we obtain for the scalar variance production:

.u1u
Sc
1

uxd

~du
w

2

w

2

22
w

2
2 







 ′′′′
+

′′′′








−≅′′′′−

χ
ξρ

χ
ξρξ

µ
τξ

ξρ
τ

τ
(51)

Obviously, the scaling parameters differ from those for the wall-normal scalar flux only by
the factor ττξ u .

Upper bounds of production rates: It is interesting to compute the high Reynolds number
limits of the peak production rates of the streamwise Reynolds stress (respectively the
turbulent kinetic energy) and the scalar flux and to compare them with their incompressible
counterparts. In the limit of high Reynolds number, τReh =+ , the shear stress balance (24)
takes the form:

.
xd
ud1uu

2

1

ww

21
+

+

−=
′′′′

−
µ
µ

τ
ρ

(52)

The spatial extremum of P11 is obtained from
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,0
xd
uduu

xd
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1

w
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21
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 ′′′′
− +

+

++

+

+ τ
ρ

τ
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(53)

which becomes, using (52):

.
xd
ud

dx
d

xd
ud1

2
1

xd
ud

2
2

1
2

2

w

2

2

1

2

1

w





















−= +

+

++

+

+

+ µµ
µ
µ

(54)

For channel flow with wall-cooling, the term in the bracket again adds to a quantitiy larger
than 1, since the derivative of ,µ is positive and the second derivative of +

1u is negative.
Hence,

.
2
1

xd
ud

2

1

w

〉+

+

µ
µ

(55)

The corresponding relations for incompressible channel flow are:

.
2
1

u
uu

xd
ud

2
21

2

1 =
′′

−=+

+

τ
(56)

We therefore conclude that in compressible (isothermal) channel flow between cooled walls,
the Reynolds shear stress, 12Rρ , and the peak production of , 11Rρ , are reduced with respect
to incompressible isothermal flow as a result of viscous heating. The upper bound ( ∞→τRe )
for the peak production rate of 11Rρ  is:

.
4
1

xd
uduu

Re2

1

w

21 ≤






 ′′′′
−

∞→
+

+

τ
τ

ρ
(57)

The equal sign is valid for incompressible flow.

In a similar way, we obtain the upper bound for the production rate of the scalar variance
from:

,0
xd

du
xd
d

2w

2

2
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 ′′′′
− +

+

+

ξ
χ

ξρ
(58)

using the approximation, .~
ξξ ≅  Substituting eq. (25) into condition (58), we get:
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2
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22w





















+=− +
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+

+ ξµµξξ
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(59)

Obviously, the molecular scalar flux is increased due to viscous heating in compressible flow,
as compared to incompressible flow. Since the term in the brackets is greater than one, we
have
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2
1

xd
d

Sc
1

2w

〉− +

+ξ
µ
µ

(60)

while in incompressible isothermal flow

.
2
1

xd
d

Sc
1

2

=− +

+ξ
(61)

The upper bound ( ∞→τRe ) for the peak production rate of the scalar variance therefore
reads:

.Sc
4
1

xd
du

Re2w

2 ≤








 ′′′′
−

∞→

+

+

τ

ξ
χ

ξρ
(62)

Again, the equal sign holds for incompressible isothermal flow. Viscous heating in
compressible flow consequently reduces the production rate of the scalar variance in a similar
way as it reduces the streamwise Reynolds stress production.

Figures 13-15 show budgets of 21 u,u ′′′′′′′′ ξρξρ and 22ξρ ′′  as functions of hx2  for case M3.0. It
is obvious that production and dissipation play an important role in the budgets of 1u ′′′′ξρ and

22ξρ ′′ . Dissipation is less important in the wall-normal scalar flux budget. Instead, the
pressure-scalar gradient correlation balances the production term there. It also plays a
remarkable role in the streamwise scalar flux. As we will see, it is strongly damped in
compressible flow, very much like the pressure-strain correlation or velocity-pressure-
gradient correlation. Figures 16-18 demonstrate the effect of Mach number on the production
rates of 21 u,u ′′′′′′′′ ξρξρ and 22ξρ ′′ . There is a clear decrease of the peak values as M increases
and an increase with Reτ.

Finally, we demonstrate the outer scaling of the scalar-pressure gradient correlations
21 xp,xp ∂∂′′∂∂′′ ξξ  in Figures 19, 20, using hu wav χ  for normalization.

                             

FIGURE 13. 1u ′′′′ξρ -budget, normalized by  hu wav χ . Case M3.0.
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FIGURE 14. 2u ′′′′ξρ -budget, normalized by  hu wav χ . Case M3.0.

                             

FIGURE 15. Scalar variance budget, normalized by hww χξ . Case M3.0.

                        

FIGURE 16. Production of 1u ′′′′ξρ , normalized by  hu wav χ . Case M3.0.
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FIGURE 17. Production of 2u ′′′′ξρ , normalized by  hu wav χ . Case M3.0.

                         

FIGURE 18. Production of 22ξρ ′′ , normalized by hww χξ .

                           

FIGURE 19. Scalar pressure-gradient correlation, 1xp ∂∂′′ξ , normalized by  hu wav χ .
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FIGURE 19. Scalar pressure-gradient correlation, 2xp ∂∂′′ξ , normalized by  hu wav χ .

4.5 Correlations involving pressure fluctuations

A quantitative explanation for the reduction of pressure-strain correlations and scalar
pressure-gradient correlations due to compressibility starts from an equation for the pressure
fluctuations. It is derived from the momentum equation, by taking its divergence and
incorporating mass conservation. Splitting flow variables into mean and fluctuating variables,
we get the following relation (see Foysi et al. (2004)), valid for fully developed channel flow:

( )
{

( )

( ) ( ) ( )
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.Duuuuuu~2uu

uuuu2uu~2uuuup
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jijiij
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2
2

2
222
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j2j2j2

ij1V

ij
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2112
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jijiijjj

ρ′−′′′′ρ′−′′′′ρ′∂−′′ρ′∂∂−′′−′′ρ∂−

′′′′−′′′′∂ρ∂−τ′∂+′′∂∂ρ−′′′′−′′′′∂ρ−=′∂

444 3444 2144 344 2144 344 21

444 3444 214434421444 3444 21

(63)

Note that the operator ijjijtjtttt u~u~u~2D ∂+∂+∂= is Galilean invariant. In incompressible
isothermal flow, the first term on the r.h.s. of eq. (63), labelled A1 (nonlinear fluctuation), and
the second, A2 (mean shear), survive. In compressible flow, there are additional terms, V1
(viscous stress, third term), B1 (density gradient), B2 (density second-gradient), and the last
three terms involving density fluctuations, C1, C2 and C3. From the DNS data base we
conclude that all terms involving density fluctuations can be neglected in the above equation.
This allows us to interpret eq. (63) as a Poisson equation for the pressure fluctuation.

A Green’s-function based analysis of the Poisson equation for p′  will now be performed. In
incompressible flow the exact wall boundary condition for p′  is 2

22
2

2 xuxp ∂′∂=∂′∂ µ . In
compressible channel flow the dilatation fluctuation is small and, hence, the wall boundary
condition is given by 2

22
2

w2 xuxp ∂′∂≅∂′∂ µ . Let us denote the r.h.s. of eq. (63) by f ′ρ  and
Fourier-transform the whole equation in the homogeneous −31 x,x directions, e.g.

( ) ( )321321 k,x,kp̂x,x,xp →′ . Then, the transformed Poisson equation, after normalizing length
scales with the channel half width, becomes,
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If we replace f̂ρ  in this equation by the point source, ( )22 xx ′−δ , then the Green function,

( )22 x;x,kĜ ′  with 2
3

2
1 kkk += is the solution of eq. (64). ( )22 x;x,kĜ ′   can be derived for the

homogeneous boundary condition, ( ) ,0xp w2 =∂∂  using standard methods and it turns out that
it is as given by eq. (7) of Kim (1989):

( ) ( )[ ] ( )[ ]

( ) ( )[ ] ( )[ ] .xx,
k2sinhk

1xkcosh1xkcoshx;x,kĜ

,xx,
k2sinhk

1xkcosh1xkcoshx;x,kĜ

22
22

22

22
22

22

′〉
−+′

−=′

′〈
+−′

−=′
(65)

The solution of eq. (64) including the non-homogeneous boundary condition is:

( ) ( ) ( ) ( ) ( ) ,x,kB̂xdk,x,kf̂xx,x,kĜk,x,kp̂ 223212

1

1 22321 +′′′′= ∫− ρ (66)

with B̂  given by

( )( ) ( )( )
.

k2sinhk

x1kcoshxp̂x1kcoshxp̂
B̂

21x221x2
22

−∂∂−+∂∂
= −== (67)

The inverse Fourier transform of (66) provides the pressure fluctuation in physical space,

( ) ( ) ( ) ( ) ,x,x,xBxdx;x,x,xfGxx,x,xp 32122321

1

1 2321 ′+′′′∗′=′ ∫− ρ (68)

where the convolution fG ′∗ is the inverse Fourier transform of f̂Ĝ . From eq. (68) all
correlations involving pressure fluctuations can be constructed. The pressure-strain
correlation, e.g., is given by

( ) ( ) ( ) ,sB2xdsx;x,x,xfGx2x ij2ij2321

1

1 22ij ′′+′′′′∗′ρ=Π ∫− (69)

and the pressure-scalar-gradient correlation

( ) ( ) ( ) .xBxdxx;x,x,xfGxx i2i2321

1

1 22i ∂′′∂′+′∂′′∂′′∗′= ∫− ξξρΠ ξ (70)

Figures 20 and 21 on the left show a comparison of the analytical solutions, eqs.(69) and (70),
and the DNS data for cases M0.3 and M1.5. On the r.h.s. of these figures we use the various
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FIGURE 20. Comparison between DNS data and equation (69) for the pressure-strain correlation (left). In the
figure on the right, symbols illustrate the effect of mean density on 11Π . Contributions of different source terms,

,f ′ρ  to equation (69) are shown by lines for case M1.5.

FIGURE 21. Comparison between DNS data and equation (70) for the pressure-scalar-gradient correlation (left).
In the figure on the right, symbols illustrate the effect of mean density on ξΠ 1 . Contributions of different source

terms, ,f ′ρ  to equation (70) are shown by lines for case M1.5.

source terms in the pressure Poisson equation and investigate their contributions to the
convolution terms in (69, 70). The proof that the changes in the correlations are mainly due to
the variation in the mean density is given by replacing ρ  by wρ  and taking the DNS velocity
field of case M1.5 to compute the r.h.s. of equations (69) and (70). The fact that the results
(squares in the figures) compare well with the quasi-incompressible case (triangles) in the
region 30x2 〉+ , confirms the hypothesis that the variable-density extension of the Poisson
equation is sufficient for obtaining the pressure-strain and pressure-scalar-gradient term.
The main result of the Green function analysis, hence, is to underline the non-local effect of
ρ  on correlations involving pressure fluctuations and to explain the observed reduction of
these correlations compared to their incompressible counterparts. The fluid in the interior of a
supersonic channel is hotter than that at the cooled isothermal walls so that ( )2x′ρ  is smaller
than the wall value and, according to equations (69, 70) are the correlations smaller than the
corresponding incompressible ones.
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4.6 Instantaneous flow field

The similarity between streamwise velocity fluctuations and scalar fluctuations mentioned in
section 4.2 is illustrated here based on carpet plots for 1u ′′  and ξ ′′ in vertical planes z = const
for case M1.5, see Figures 24 and 25. In the near-wall regions of the channel we observe not
only high intensities of these quantities, but also strong gradients. The similarities between 1u ′′

and ξ ′′ are strongest there. One special feature of scalar fluctuations, namely the formation of
cliffs and plateaus  is clearly brought out in Figure 25 in the core region of the channel.

X

Y

FIGURE 24.  Carpet plot of the streamwise velocity fluctuations in a vertical plane at Mach 1.5. The flow is
from left to right.

X

Y

FIGURE 25.  Carpet plot of the passive scalar fluctuations in a vertical plane at Mach 1.5. The flow is from left
to right.

5. Conclusions

Direct numerical simulations of compressible turbulent channel flow including passive scalar
transport have been performed in order to investigate in which way compressibility affects the
mean flow quantities and the turbulence structure in wall-bounded flows. The following
findings are reported:
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- Supersonic, turbulent channel flow can be achieved only when the heat generated by
dissipation within the flow field is removed through the walls. This needs wall cooling
and entails strong mean temperature, mean viscosity and mean density gradients in the
wall region (mean property variations).

- There is no similarity transformation which collapses velocity profiles for various
Mach and Reynolds numbers onto one single profile in the whole domain between the
channel walls. It is observed that viscosity-transformed mean velocities work well in
the near-wall region and density-transformed ‘Van Driest’ velocities are suited for the
log layer.

- All the Reynolds stress components scale with the wall shear stress, τw, in the channel
core region, independent of Mach and Reynolds number. In the wall layer, semi-local
coordinate scaling at least provides a proper collapse of the positions where most of
the turbulence is produced, but not of the amplitudes themselves.

- Other than the mean streamwise velocity, the mean scalar (introduced on one side and
removed from the other) has a non-zero gradient on the channel centreline, which
leads to a non-zero mean molecular flux and destroys the analogy between the
Reynolds shear stress and the wall-normal scalar flux. The mean scalar gradient in
turn produces a peak in the scalar fluctuations on the channel centreline.

- The streamwise scalar flux on the other hand scales properly in the core region of the
channel with the molecular scalar flux at the wall, χw.

- The ratio of the wall shear stress squared and the local mean viscosity ( µτ2
w )

provides a proper scaling for all terms in the Reynolds stress budgets, except the
pressure-strain correlation terms. Similarly, the ratio, huavwχ , is unsuited to
properly collapse all scalar pressure-gradient correlations.

- The reduction in pressure fluctuations observed in the wall layer of compressible
turbulent channel flow which is responsible for the dramatic reduction of pressure-
strain and scalar pressure-gradient correlations could be related to the variation of the
mean density normal to the wall. This is demonstrated by a Green’s function approach
of the Poisson equation for the pressure fluctuations. These findings should have an
impact on the modeling of correlations involving pressure fluctuations.
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