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1. Introduction

We begin the discussion with a rough classification of compressible turbu-
lent flows into:

I) Flows with unimportant compressibility effects due to turbulent fluc-
tuations and

II) Flows in which such effects play a role.

Type I flows are assumed to follow Morkovin’s hypothesis in it’s weak form
(Morkovin (1962)) which states that thermodynamic pressure and total
temperature fluctuations are negligible for small turbulent Mach numbers
implying negative density-temperature correlations. The hypothesis has led
to the so–called strong Reynolds analogy (SRA) and is in line with the Van
Driest transformation (Van Driest (1951)) which collapses velocity pro-
files of compressible turbulent boundary layers onto the incompressible law
of the wall (Fernholz & Finley (1980), Huang & Coleman (1994)). Com-
pressibility effects therefore manifest themselves in terms of mean density
variations and can be modelled by straightforward adaptations of classical
incompressible models. Besides boundary layers with zero or weak pressure
gradient and freestream Mach numbers less than 5, mixing layers with con-
vective Mach numbers less than 1 are commonly considered as examples of
type I flows (Bradshaw (1977)). It is also expected (although not confirmed
at present) that type II flows in which fluctuations of the thermodynamic
pressure become important, are encountered at hypersonic speeds. Unfortu-
nately, direct numerical simulation data are not yet available to clarify this
issue. A closer look at DNS results for different classes of flows, however,
unveils the lack of subtlety of such a classification. Coleman et al.’s (1995)
DNS of supersonic fully developed flow in a channel with cooled walls e.g.
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shows that, although compressibility effects due to turbulent fluctuations
are unimportant, the strong Reynolds analogy in it’s form for nonadiabatic
flows (Gaviglio (1987), Rubesin (1990)) does not apply. A more general
representation of the analogy was therefore derived by Huang et al. (1995)
and shown to match the DNS data. Recent direct simulations of annular
mixing layers with convective Mach numbers ranging from Mc=0.1 to 1.8 by
Freund et al. (1997) indicate that pressure fluctuations are subordinate to
temperature and density fluctuations (related to their mean values, respec-
tively) only for Mc < 0.2. For higher values of Mc, Morkovin’s hypothesis
for adiabatic flows does not apply. A third example where pressure fluctua-
tions are non-negligible, is shock isotropic turbulence interaction. Based on
DNS and linear theory Mahesh et. al. (1995) found considerable deviation
from Morkovin’s hypothesis (in it’s weak form) behind shocks, although the
deviations were seen to decrease with the downstream distance. To be more
specific, total temperature fluctuations are generated immediately behind
the shock as a result of shock oscillation and are convected into the far
field. A second important finding of their work is that upstream entropy
fluctuations lead to higher amplification rates of turbulent kinetic energy
and vorticity across the shock than pure vortical fluctuations. This result
should be of great value in explaining the interaction between shocks and
strongly cooled boundary layers.

These examples show that a conclusive classification scheme for com-
pressible turbulent flows is difficult to find at present, especially as long as
our knowledge of compressibility effects is not complete.

The paper starts from the conservation laws for ideal gases in section 1,
discusses the molecular transport coefficients for high-speed flow and the
coupling between vorticity and dilatation transport. In section 2 the basic
equations are statistically averaged and transport equations for unknown
single-point correlations like the turbulent stress, the pressure variance and
the turbulent heat flux are derived. Homogeneous shear flow is discussed
in detail in terms of these equations, since this flow is fundamental for the
development of turbulence models. Section 3 concentrates on compressibil-
ity effects due to turbulent fluctuations as derived from direct numerical
simulation. The importance of linear mechanisms is emphasized in homo-
geneous isotropic, respectively sheared turbulence, and assumptions in the
derivation of models for explicit compressibility terms are discussed.

1.1. EQUATIONS OF MOTION

Turbulent flows of compressible polyatomic gases for which the continuum
hypothesis is considered valid are governed by the following set of conser-
vation equations:
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Mass:

∂ρ

∂t
+

∂ρuj

∂xj
= 0, (1)

Momentum:

∂ρui

∂t
+

∂

∂xj
(ρuiuj) =

∂σij

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
, (2)

Energy:

∂ρE

∂t
+

∂

∂xj
(ρEuj) = − ∂qj

∂xj
+

∂

∂xj
(ui(τij − pδij)). (3)

Body forces are assumed small in high-speed flows. ρ, ui, p denote the
density, velocity and pressure. E is the total energy which comprises the
internal energy e and the kinetic energy per unit mass:

E = e +
1
2
uiui. (4)

According to Fourier’s law, the heat flux by conduction, qj , is related
to the temperature gradient:

qj = −k
∂T

∂xj
. (5)

For Newtonian fluids the stress tensor, τij , is proportional to the rate-
of-strain tensor sij :

τij = 2µ

(
sij − 1

3
skkδij

)
+ µvskkδij , (6)

sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (7)

Introducing the deviatoric part of the sij-tensor, namely:

sD
ij = sij − 1

3
skkδij (8)

which describes the pure straining motion without change of volume,
eq. (6) reads:

τij = 2µsD
ij + µvskkδij . (9)
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The set of conservation equations is not yet complete. We have to add
equations of state which relate the thermodynamic variables. The assump-
tion of a thermally perfect gas, viz:

p = ρRT (10)

allows to describe even relaxation effects in the molecular translational
and rotational degrees of freedom. Eq. (10) implies a caloric equation of
state of the form:

e = e(T ) . (11)

We will use the equations

de = cv(T )dT (12)

and

e = cvT (13)

interchangeably. The latter defines the calorically perfect gas and as-
sumes constant specific heat at constant volume. The conservation of mo-
mentum and energy is controlled by the following molecular transport co-
efficients:

− the shear or dynamic viscosity µ
− the bulk viscosity µv

− the heat conductivity k.

They all depend on temperature alone. Sutherland’s formula for the
shear viscosity is valid in a range of temperatures, between 200K and
1200K:

µ

µ0
=

(
T

T0

) 3
2 T0 + S0

T + S0
(14)

The coefficients are given in table 1 for 3 gases.
Bertolotti (1997) has derived a new temperature dependence for the

bulk viscosity of the form:

µv(T )
µ(T )

=
(

µv

µ

)

T=293.3K

exp
(

T − 293.3
1940

)
, (15)

and has demonstrated its damping effect on the instability of laminar
boundary layers at M=4.5 (especially on Mack’s second mode). It has to
be noted, that the bulk viscosity is not a physical property of gases. It is
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TABLE 1. Sutherland constants for dynamic viscosity,
valid in the range 200K < T < 1200K.

Gas T0(K) S0(K) 105 × µ0 (Pa s)

N2 273.1 106.6 1.665

O2 273.1 138.8 1.921

CO2 273.1 222.2 1.370

rather an approximation designed to model the effect of rotational energy
relaxation1.

The pressure p at a point in a moving fluid is defined in a mechanical
way as the mean normal stress with sign reversed, i.e. p = −σii/3 (Batch-
elor (1967)). The thermodynamic pressure, to which it is related, depends
on two state variables, say ρ and e. The internal energy involves all molec-
ular energies, i.e. translational and rotational e.g. If the rotational modes
have relaxation times of the order of several collision intervalls and make a
significant contribution to the internal energy e, then µv has to take care
of the lag in the adjustment of the mechanical pressure to the continu-
ally changing values in ρ and e in a motion involving volume changes. The
bulk viscosity is usually regarded as non-negligible in situations like the
attenuation of high frequency sound waves or the structure of shock waves.
Considering Bertolotti’s findings (1997), it is to be expected that µv also
plays a considerable role in high-speed compressible turbulence.

The heat conductivity is likewise affected by the state of the internal
energy of the molecules and follows a similar Sutherland law (Bertolotti
(1997)) obtained from a best fit to experimental data:

k

k0
=

(
T

T0

)3/2 T0 + Sk0

T + Sk0
. (16)

The coefficients are contained in table 2.
For some situations an energy equation is needed in terms of the en-

thalpy h, where h = e + p/ρ, or of the stagnation (or total) enthalpy;
H = h + 1/2 uiui. The balance equation for the total enthalpy is:

ρ
DH

Dt
=

∂p

∂t
− ∂qj

∂xj
+

∂

∂xj
(uiτij), (17)

with the material derivative

1Vibrational energy relaxation cannot be treated in such an approximate way. A
relaxation equation must be solved.
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TABLE 2. Sutherland constants for heat conductivity,
valid in the range 200K < T < 1200K.

Gas T0(K) Sk0(K) 102 × k0

(
W

mK

)

N2 273.1 166.6 2.440

O2 273.1 222.2 2.480

CO2 273.1 2222.2 1.455

D

Dt
=

∂

∂t
+ uj

∂

∂xj
. (18)

Subtracting the kinetic energy equation from (17) leads to the enthalpy
equation:

ρ
Dh

Dt
=

Dp

Dt
− ∂qj

∂xj
+ τij

∂ui

∂xj
. (19)

The last term on the right-hand-side is the dissipation rate per unit
volume, φ. Using the symbol d for the dilatation,

d =
∂uj

∂xj
, (20)

we express the dissipation rate in a form which shows that it is always
positive, viz:

φ = τij
∂ui

∂xj
= τijsij = 2µsD

ijs
D
ij + µvd

2. (21)

The bulk viscosity provides additional dissipation. From (19) a temper-
ature equation may be derived introducing the caloric state equation in the
form

Dh

Dt
= cp

DT

Dt
(22)

appropriate for moving fluids with cp = cp(T ).
For thermally and at the same time calorically perfect gases (from now

on referred to as perfect gases), the enthalpy equation (19) can also be
converted into an equation for the pressure alone. Using the gas law one
gets

h = cpT =
γ

γ − 1
p

ρ
, γ = cp/cv . (23)



MODELLING OF TURBULENCE IN COMPRESSIBLE FLOWS 7

and from (19) and the continuity equation:

Dp

Dt
= −γp

∂uj

∂xj
+ (γ − 1)

(
φ− ∂qj

∂xj

)
. (24)

p is thus a measure of internal energy which is altered reversibly during
compression and expansion processes and irreversibly by dissipation and
heat conduction.

Finally, with the help of the Gibbs fundamental equation:

Tds = dh− dp/ρ (25)

an entropy balance equation is obtained from (19):

ρT
Ds

Dt
= − ∂qj

∂xj
+ φ (26)

or in the more informative form:

ρ
Ds

Dt
=

∂

∂xj


k ∂T

∂xj

T


 +

1
T


φ +

k

T

(
∂T

∂xj

)2

 (27)

which shows that the entropy irreversibly increases within the flow field
due to friction and heat conduction. The transfer of heat across a con-
trol surface (first term on the rhs) can otherwise increase or decrease the
entropy. Walls that inhibit the heat conduction across their surfaces are
called adiabatic. Setting all molecular transport coefficients to zero defines
isentropic flow:

Ds

Dt
= 0. (28)

1.2. TRANSPORT OF DILATATION AND VORTICITY

In high-speed non-reactive flows dilatation is a measure of compressibility,
in the sense that volume changes are caused by changes in the pressure
(Lele (1994)). Following Thompson (1988) we express density changes in the
continuity equation (1) by changes in the pressure and the entropy. Then,
introducing the speed of sound, c, for thermally and calorically perfect
gases, by:

c2 =
(

∂p

∂ρ

)

s

= γp/ρ, (29)

we obtain:
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d =
∂uj

∂xj
= − 1

γp

Dp

Dt
+

1
cp

Ds

Dt
. (30)

With the help of the gas law (10), the kinetic energy equation, the
enthalpy and entropy equations (19), (26) one finally gets:

d = − 1
c2

{
1
ρ

∂p

∂t
− D

Dt

(
1
2
uiui

)
+

ui

ρ

∂τij

∂xj
− 1

ρ
(γ − 1)

(
φ− ∂qj

∂xj

)}
. (31)

The first term on the rhs of (31) represents acoustic effects. It generates
compressibility when the time scale of the pressure ‘oscillations’ is compa-
rable to the local acoustic time scale. The second term is of the order of the
Mach number squared and states that high-speed flows are typically com-
pressible flows. The remaining terms generally don’t lead to compressibility
effects. Only in extreme situations might excessive heat transfer rates cause
considerable volume changes. For reactive flows, eq. (31) must be supple-
mented by diffusion effects, heat release and changes in the molecular weight
of the gas mixture. Supersonic combustion is a situation where chemical
and compressibility effects strongly interact. The modelling of correlations
which involve dilatation fluctuations is then extremely complicated.

Dilatation transport:

A transport equation for d is easily derived, taking the divergence of
the momentum equation (2):

Dd

Dt
= −∂ui

∂xj

∂uj

∂xi
− 1

ρ

∂2p

∂xi∂xi
+

1
ρ2

∂ρ

∂xi

∂p

∂xi
+

∂

∂xi

(
1
ρ

∂τij

∂xj

)
. (32)

It is useful to express the first term on the rhs by the rate-of-strain
tensor and the vorticity vector ωi, defined by:

ωi = εijk
∂uk

∂xj
= εijkrkj , (33)

where εijk is the alternating unit tensor and

rij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
(34)

the rate-of-rotation tensor. The following intermediate steps
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∂ui

∂xj

∂uj

∂xi
= (sij + rij)(sji + rji)

= sijsij − 1
2
ωiωi = sD

ijs
D
ij +

1
3
d2 − 1

2
ωiωi (35)

lead to the final form of the dilatation transport equation:

Dd

Dt
= −sD

ijs
D
ij −

1
3
d2 +

1
2
ωiωi − 1

ρ

∂2p

∂xi∂xi

+
1
ρ2

∂ρ

∂xi

∂p

∂xi
+

∂

∂xi

(
1
ρ

∂τij

∂xj

)
. (36)

Obviously, pure straining motions and volume changes act in the same
direction. They decrease the magnitude of d in expansion zones, whereas
any vortical motions directly increase the level of d and vice versa in com-
pression zones. The pressure field acts on d via its Laplacian and via the dot
product between density and pressure gradients and, finally, d is controlled
by viscous effects. For incompressible isothermal flow (36) reduces to the
well-known Poisson equation for the pressure:

∂ui

∂xj

∂uj

∂xi
= −1

ρ

∂2p

∂xi∂xi
, (37)

which underlines the fact that p is no longer a state variable, but is com-
pletely determined by the velocity field. This change in role of the pressure
also reflects the difficulties in adequately modelling correlation functions
involving pressure fluctuations.

Vorticity transport:

Taking the curl of the momentum equation (2) provides the vorticity
transport equation for a compressible fluid in the form:

Dωi

Dt
= ωjsij − ωid− εijk

(
1
ρ2

∂p

∂xj

∂ρ

∂xk
− ∂

∂xj

(
1
ρ

∂τkl

∂xl

))
. (38)

The first term on the rhs changes vorticity by stretching, contracting or
tilting of vortex lines. It is this term which increases vorticity fluctuations
in turbulent flows while kinetic energy is transferred from large to small
scales in a cascade process, until the loss of vorticity by viscosity compen-
sates the gain by stretching at the smallest scales. In compressible flows
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two extra effects appear, namely the increase in vorticity in compression
zones (d < 0) or a corresponding decrease in expansion zones and a change
due to the baroclinic torque term (3rd term on the rhs). If pressure and
density gradients are not parallel, the pressure force does not pass through
the center of gravity of the fluid particle and a moment about this center
exists which changes ωi (Smits and Dussauge (1996)). The baroclinic term
is zero for barotropic flows, for which the pressure is a function of den-
sity alone (isentropic flow of thermally and calorically perfect gases; e.g.).
Baroclinic effects are discussed by Mahesh et al. (1995) in the context of
shock/turbulence interaction. Finally, we emphasize the explicit non-linear
coupling between dilatation and vorticity, which contributes to the com-
plexity of compressible turbulent flows and is reflected in the two transport
equations (36) and (38).

2. Averaged equations

2.1. DEFINITION OF AVERAGES

For compressible flows it is common practice to work with two different
averages simultaneously, the Reynolds-average, denoted by a bar and the
Favre- or mass-weighted average, characterized by a tilde. Density and pres-
sure are mostly written in terms of Reynolds-averages and fluctuations, viz:

ρ = ρ̄ + ρ′

p = p̄ + p′ (39)

whereas temperature, internal energy and velocity are split into

T = T̃ + T ′′,
e = ẽ + e′′,

ui = ũi + u′′i . (40)

Mass-weighted averages are defined as

ρ̄T̃ = ρT , etc. (41)

implying

ρT ′′ = 0, (42)

but

T ′′ 6= 0 (43)
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in general. The mean of the Reynolds-fluctuation, however, vanishes. It
remains to state, how mean quantities can be obtained in the computation
(DNS/LES) or the experiment. One way is by ensemble averaging over a
large number of realizations:

ρe ≡ lim
N→∞

1
N

N∑

n=1

ρn. (44)

Another is by time-averaging over a finite time-interval τ which is large
enough to cover all turbulent time scales but small with respect to the
statistical unsteadiness of the flow:

ρt =
1
τ

τ∫

0

ρ(t + θ)dθ (45)

For stationary turbulence, τ may go to infinity, in principle. If a com-
puted flow is homogeneous in one or two or even all three directions, spatial
averaging in these directions is common. We assume that all mean values
coincide in the special case of stationary and homogeneous turbulence (er-
godic hypothesis), and that there is usually a way to obtain stable statistical
values in general flow situations. We simply denote such statistical quan-
tities by the overbar, , or the tilde, ˜, and do not care anymore how
they have been obtained. We further assume that the averaging procedure
commutes with differentiation, is linear and preserves constants.

2.2. AVERAGED CONSERVATION EQUATIONS

The conservation equations not only contain products of ρ and ui e.g., but
also products of p and ui or of µ and gradients of ui etc. When averaging
these products, it proves in general more convenient to use Favre variables
and their fluctuations in terms resulting from convection and Reynolds-
averages and -fluctuations in the remaining terms (see Huang et al. (1995)).
The averaged mass, momentum and total energy equations are:

Mass:

∂ρ̄

∂t
+

∂ρũj

∂xj
= 0, (46)

Momentum:

∂ρũi

∂t
+

∂

∂xj
(ρũiũj) = − ∂

∂xj
ρu′′i u

′′
j −

∂p̄

∂xi
+

∂τij

∂xj
, (47)

Energy:
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∂ρ̄Ẽ

∂t
+

∂

∂xj
(ρ̄ũjẼ) =

− ∂

∂xj
ρu′′j E′′ − ∂qj

∂xj
+

∂

∂xj

(
ui(τij − p̄δij) + u′iτ

′
ij − u′jp′

)
. (48)

Several terms in these equations need some discussion. The mean total
energy, Ẽ, e.g. contains the kinetic energy of the mean motion and the
turbulent kinetic energy K:

Ẽ = ẽ +
1
2
ũiũi +

1
2
ũ′′i u

′′
i

︸ ︷︷ ︸
K

. (49)

Consequently, a fluctuation E′′ is defined as

E′′ = e′′ + ũiu
′′
i +

1
2
u′′i u

′′
i −K. (50)

The energy flux term (See the 1st term on the rhs of (48)) can then be
written as:

ρu′′j E′′ = ρu′′j e′′ + ũiρu′′i u
′′
j +

1
2
ρu′′i u

′′
i u
′′
j , (51)

i.e. as the sum of the turbulent heat flux, the work done by the Reynolds
stress tensor, ρu′′i u

′′
j , and the turbulent transport or diffusion.

The mean viscous stress, τij , is

τij = 2µsD
ij + µv skkδij + 2µ′sD

ij
′ + µ′vs′kkδij . (52)

It contains correlations betweeen viscosity fluctuations, µ′ = µ(T ′) and
fluctuations of the rate-of-strain tensor:

s′ij =
1
2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (53)

Similarly, the mean conductive heat flux is:

qj = −k̄
∂T̄

∂xj
− k′

∂T ′

∂xj
. (54)

Consistent definitions of τ ′ij and q′j , in the sense that τ ′ij = 0 and q′j = 0,
are:
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τ ′ij = 2µ′sD
ij
′
+ µ′vs

′
kkδij

−2µ′sD
ij
′ − µ′vs′kkδij

+2µsD
ij
′
+ µvs

′
kkδij

+2µ′sD
ij + µ′vskkδij , (55)

q′j = −k′
∂T ′

∂xj
+ k′

∂T ′

∂xj
− k′

∂T̄

∂xj
− k̄

∂T ′

∂xj
. (56)

Subtracting the transport equation for the kinetic energy of the mean
motion, 1

2 ũiũi, from the total energy balance equation (48), leads to the
balance equation for the mean internal energy ρ̄ẽ:

∂ρ̄ẽ

∂t
+

∂

∂xj
(ρ̄ũj ẽ) =

− ∂

∂xj
ρu′′j e′′ −

∂qj

∂xj
− p̄d̄− p′d′ + τij sij + τ ′ijs

′
ij . (57)

In the averaged conservation equations above, the following (single-
point) correlations appear that require closure:

− the turbulent (or Reynolds) stresses, ρu′′i u
′′
j = ρ̄ũ′′i u

′′
j

− the turbulent heat fluxes, ρu′′j e′′ = ρ̄ũ′′j e′′

− the turbulent mass flux, u′′i = −ρ′u′i/ρ

− the pressure-velocity correlation, p′u′j
− the velocity triple correlation, ρu′′i u

′′
i u
′′
j

− the pressure dilatation, p′d′ = p′
∂u′j
∂xj

− the turbulent dissipation rate, ρ̄ε = τ ′ijs
′
ij

− the transport by viscous stresses, τ ′iju
′
i

− viscosity rate-of-strain correlations. e.g. µ′s′ij
− and the heat conductivity temperature gradient correlation, k′∂T ′/∂xj

The turbulent heat flux and the pressure velocity correlation can be
combined for perfect gases to:

ρu′′j e′′ + p′u′j = ρu′′j (e′′ + p′/ρ) =

ρcpu′′j T ′′ + RT̃ρ′u′′j = ρcpu′′j T ′′ − p̄u′′j . (58)
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Note that p′u′j = p′u′′j and p̄ = ρ̄RT̃ . The turbulent mass flux u′′i de-
scribes the difference between Reynolds and Favre-averaged velocities

ui − ũi = u′′i = −ρ′u′i/ρ = −ρu′i/ρ̄, (59)

and is one of the explicit compressibility terms.
We follow Huang et al. (1995) and split the turbulent dissipation rate

into a total number of five terms. From the definition of τ ′ij in eq. (55) we
first get:

ρ̄ε = τ ′ijs
′
ij = ρ̄(ε1 + ε2 + ε3), (60)

where

ρ̄ε1 = 2µ̄sD′
ij sD′

ij + µ̄vs′kks
′
jj (61)

ρ̄ε2 = 2µ′sD′
ij sD′

ij + µ′vs′kks
′
jj (62)

ρ̄ε3 = 2µ′sD′
ij · sD

ij + µ′vs′kk · sjj . (63)

The quantity ρ̄ε1 is the most important one among these and can be
expressed as the sum of a solenoidal (εs), a dilatational (εd) and an inho-
mogeneous term (εI):

ρ̄ε1 = ρ̄(εs + εd + εI) (64)

with

ρ̄εs = µ̄ω′iω
′
i, (65)

ρ̄εd =
(

4
3
µ̄ + µv

)
s′kks

′
jj , (66)

ρ̄εI = 2µ̄

(
∂2

∂xi∂xj
u′iu

′
j − 2

∂

∂xi
u′is

′
jj

)
. (67)

ρ̄εs has the same form as in incompressible turbulence and is usually ob-
tained from a transport equation. The compressible or dilatational dissipa-
tion rate, ρ̄εd, is an explicit compressibility term for which several algebraic
models have been proposed in the past. The inhomogeneous term vanishes
for homogeneous turbulence. The turbulent dissipation rate ρ̄ε not only ap-
pears in the internal energy balance equation, but also in the turbulence
kinetic energy equation which will be derived next.
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2.3. TURBULENT STRESS TRANSPORT EQUATIONS

The steps needed in order to derive a transport equation for the turbulent
(or Reynolds) stress follow from the time-derivative of

ρuiuj = ρ̄ũiũj + ρu′′i u
′′
j , (68)

viz:

∂

∂t
ρu′′i u

′′
j =

∂

∂t
(ρuj)ui +

∂

∂t
(ρui)uj − ∂ρ

∂t
uiuj

−
(

∂

∂t
(ρ̄ũj)ũi +

∂

∂t
(ρ̄ũi) ũj − ∂ρ̄

∂t
ũiũj

)
. (69)

Substituting from equations (1), (2), (46) and (47) and rearranging we
obtain the turbulent stress transport equation:

∂

∂t
(ρ̄ũ′′i u

′′
j ) +

∂

∂xk
(ũkρ̄ũ′′i u

′′
j ) =

ρ̄Pij + ρ̄ΠD
ij + ρ̄ΠDL

ij + Mij − ρ̄εij − ∂

∂xk
(ρ̄DT

ijk) +
∂

∂xk
DV

ijk (70)

in which ρ̄Pij represents the production rate tensor, ρ̄ΠD
ij the devia-

toric part of the pressure-strain rate tensor; ρ̄ΠDL
ij the pressure-dilatation

term (which appears as a consequence of subtracting this term out of the
pressure-strain term), Mij the mass flux variation, ρ̄eij the turbulent dis-
sipation rate tensor and ρ̄DT

ijk, DV
ijk, the turbulent, respectively viscous

diffusion terms. These terms are defined by:

Pij = −ũ′′i u
′′
k

∂ũj

∂xk
− ũ′′j u

′′
k

∂ũi

∂xk
, (71)

ρ̄ΠD
ij = p′

(
∂ui

′

∂xj
+

∂uj
′

∂xi

)
− 2

3
p′d′δij , (72)

ρΠDL
ij =

2
3
p′d′δij , (73)

Mij = u′′i

(
∂τjk

∂xk
− ∂p̄

∂xj

)
+ u′′j

(
∂τik

∂xk
− ∂p̄

∂xi

)
, (74)

ρ̄εij = τ ′ik
∂u′j
∂xk

+ τ ′jk
∂u′i
∂xk

, (75)
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ρ̄DT
ijk = −(ρu′′i u

′′
j u
′′
k + p′(u′iδjk + u′jδik)), (76)

DV
ijk = τ ′iku

′
j + τ ′jku

′
i. (77)

With the help of the fluctuating viscous stress tensor according to eq.
(55) the dissipation rate tensor, ρ̄εij , can be expressed in the form:

ρ̄εij = µ̄

(
2

∂u′i
∂xk

∂u′j
∂xk

+
∂u′i
∂xk

∂u′k
∂xj

+
∂u′j
∂xk

∂u′k
∂xi

)

+2
(

µ̄v − 2
3
µ̄

)
s′ijs

′
kk

+µ′
(

2
∂u′i
∂xk

∂u′j
∂xk

+
∂u′i
∂xk

∂u′k
∂xj

+
∂u′j
∂xk

∂u′k
∂xi

)

+2
(

µ′v −
2
3
µ′

)
s′ijs

′
kk + 2

(
µ′

∂u′i
∂xk

sjk + µ′
∂u′j
∂xk

sik

)

+2(µ′v −
2
3
µ′)s′ijskk. (78)

It can be verified that the trace of this tensor is twice the dissipation
rate, ρ̄ε, defined in (60), i.e.

ρ̄ε =
1
2
ρ̄εjj . (79)

For later reference, we split the dominant part of the dissipation rate
tensor (namely the first line of eq. (78) which does not involve correlations
with viscosity fluctuations) into solenoidal, dilatational and inhomogeneous
parts, in analogy to eq. (64). We get:

ρ̄ε1ij = µ̄

(
2

∂u′i
∂xk

∂u′j
∂xk

+
∂u′i
∂xk

∂u′k
∂xj

+
∂u′j
∂xk

∂u′k
∂xi

)
+ 2

(
µv − 2

3
µ̄

)
s′ijs

′
kk

= ρ̄(εs
ij + εd

ij + εI
ij) (80)

where

ρ̄εs
ij = 2µ̄(2r′ikr

′
jk + s′ikr

′
jk + s′jkr

′
ik), (81)

ρ̄εd
ij = 2

(
µv +

4
3
µ̄

)
s′ijs

′
kk, (82)
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ρ̄εI
ij = 2µ̄

(
∂2

∂xj∂xk
u′iu

′
k +

∂2

∂xi∂xk
u′ju

′
k −

∂

∂xi
u′js

′
kk

− ∂

∂xj
u′is

′
kk − 2

∂

∂xk
u′ks

′
ij

)
. (83)

Note that contracting the solenoidal part leads to

ρ̄εs
jj = 4µ̄r′ijr

′
ij = 2µ̄ω′iω

′
i (84)

which is twice ρ̄εs.
The balance equation for the turbulent kinetic energy, ρ̄K = ρ̄ ũ′′i u

′′
i /2,

is the trace of eq. (70) multiplied by 1
2 :

∂

∂t
(ρ̄K) +

∂

∂xj
(ũj ρ̄K) = −ρ̄ũ′′i u

′′
j

∂ũi

∂xj
+ p′d′

+ u′′i

(
∂τij

∂xj
− ∂p̄

∂xi

)
− τ ′ijs

′
ij

− ∂

∂xj


ρ̄

˜(
u′′i u

′′
i u
′′
j

)

2
+ p′u′j + τ ′iju

′
i


 . (85)

Comparison of the K-equation with the balance equation (57) for the
mean internal energy, ρẽ, shows that K and ẽ exchange energy via the
following terms:

− pressure dilatation, p′d′
− turbulent dissipation rate, ρ̄ε = τ ′iks

′
ik

− mass flux variation, u′′i
(

∂τik
∂xk

− ∂p̄
∂xi

)
.

In eq. (57) the mass flux variation is contained implicitely and appears,
if the Favre-averaged velocity is used to express the dissipation rate by the
mean velocity field and the work done by compression or expansion, viz:

−p̄d̄ + τij sij =

−p̄

(
∂ũj

∂xj
+

∂u′′j
∂xj

)
+ τij

(
∂ũi

∂xj
+

∂u′′i
∂xj

)
=

−p̄
∂ũj

∂xj
+ τij

∂ũi

∂xj
+

∂

∂xj

(
−p̄u′′j + τiju′′i

)
+ u′′i

(
∂p̄

∂xi
− ∂τij

∂xj

)
. (86)
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On the other hand, turbulent kinetic energy is extracted from the mean
motion via the production term −ρ̄ũ′′i u

′′
k∂ũi/∂xk. The whole energy ex-

change in compressible turbulent flows is illustrated in an instructive dia-
gram by Lele (1994).

The viscous diffusion term

DV
iij/2 = τ ′iju

′
i (87)

can be simplified by neglecting fluctuations of viscosity (see e.g. Gatski
(1997)). The complete and simplified expressions are:

τ ′iju
′
i = 2µ̄s′iju

′
i +

(
µv − 2

3
µ̄

)
s′iiu

′
j + 2µ′sD

ij
′
u′i + µ′vs′iiu

′
j

+2µ′u′i · sD
ij + µ′vu′j · sii

≈ µ̄

(
1
2

∂

∂xj
u′iu

′
i +

∂

∂xi
u′iu

′
j −

5
3
s′iiu

′
j

)
+ µvs′iiu

′
j . (88)

Between correlations involving Favre fluctuations and those involving
Reynolds fluctuations there are the following relations:

ũ′′i u
′′
j + u′′i · u′′j = u′iu

′
j + ρ′u′iu

′
j/ρ̄, (89)

s̃′′iiu
′′
j − ρ′s′ii u′′j /ρ̄ = s′iiu

′
j + ρ′s′iiu

′
j/ρ̄. (90)

2.4. TRANSPORT EQUATIONS FOR THE PRESSURE VARIANCE AND
THE TURBULENT HEAT FLUX

There is a third equation in which the pressure-dilatation correlation ap-
pears as an explicit compressibility term, the pressure variance equation.
We will see later (section 3.2.3) that a simplified version of this equation
forms the basis for Zeman’s pressure-dilatation model. Mostly algebraic
models are being used to treat the turbulent heat flux. Since it is advan-
tageous to solve a heat flux transport equation, it will be derived in this
subsection.

2.4.1. Pressure variance transport equation
This equation is obtained via the following procedure:

∂

∂t
p′2 = 2p′

∂p

∂t
. (91)
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We keep in mind that eq. (24) for the pressure involves the assumption
of perfect gases. Then, multiplying eq. (24) by 2p′, using Favre as well as
Reynolds splitting where desirable and averaging, we get:

∂

∂t
p′2 + ũj

∂

∂xj
p′2 = −2p′u′′j

∂p̄

∂xj
− 2γp′2

∂ũj

∂xj

−2γp̄ p′
∂u′′j
∂xj

− (2γ − 1)p′2
∂u′′j
∂xj

− ∂

∂xj
u′′j p′2

+2(γ − 1)

(
p′τ ′ij

∂ũi

∂xj
+ p′

∂u′′i
∂xj

τij + p′
∂u′′i
∂xj

τ ′ij − p′
∂q′j
∂xj

)
. (92)

The equation is discussed by Sarkar (1992) and Lele (1994). Pressure
fluctuations are produced when the mean flow has strong pressure gradients
or thin compression zones like shocks. In the special case of a homogeneous
turbulence field, the third term on the rhs (the pressure-dilatation term)
is the dominant term. DNS data show that the pressure dilatation term is
weakly positive (and oscillatory) for isotropic turbulence and predominantly
negative (and again oscillatory) for homogeneous shear turbulence (Sarkar
(1992)). An explanation for the different signs is given by Sarkar et al.
(1991). These few comments already show the limitations of a model which
is based on a direct relation between the time evolution of p′2 and the
pressure dilatation, since algebraic models for ∂p′2/∂t can hardly predict
the sign change.

2.4.2. Turbulent heat flux transport equation
We present equations for both ρ̄ẽ′′u′′i and ρ̄h̃′′u′′i and note that these equa-
tions can be converted one into the other for perfect gases. The relation
guiding the derivation of a transport equation for ρ̄ẽ′′u′′i is:

∂

∂t
ρe′′u′′i = ui

∂

∂t
(ρe) + e

∂

∂t
(ρui)− eui

∂ρ

∂t

−
(

ũi
∂

∂t
(ρ̄ẽ) + ẽ

∂

∂t
(ρ̄ũi)− ẽũi

∂ρ̄

∂t

)
, (93)

A similar relation holds for ∂ρh′′u′′i /∂t. After combining the correspond-
ing equations we obtain the transport equation for ρ̄ẽ′′u′′i in the form:

∂

∂t
ρe′′u′′i + ũj

∂

∂xj
ρe′′u′′i = −ρu′′i u

′′
j

∂ẽ

∂xj
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− ρe′′u′′j
∂ũi

∂xj
− (ρe′′u′′i + pu′′i )

∂ũj

∂xj
+ u′′i τjk

∂ũj

∂xk

− ∂

∂xj
ρe′′u′′i u

′′
j − pu′′i

∂u′′j
∂xj

+ u′′i τjk

∂u′′j
∂xk

− e′′
∂p

∂xi
+ e′′

∂τij

∂xj
− u′′i

∂qj

∂xj
. (94)

In order to avoid the appearance of too many terms, the instantaneous
pressure and the viscous stress tensor have been kept in the correlations. A
turbulent heat flux is generated due to mean temperature gradients (first
term on the rhs), due to mean shear and mean dilatation. In compressible
homogeneous turbulence there is no turbulent heat flux because there is no
mean temperature gradient (Blaisdell et al. (1991)).

The transport equation for ρh′′u′′i reads:

∂

∂t
ρh′′u′′i + ũj

∂

∂xj
ρh′′u′′i = −ρu′′i u

′′
j

∂h̃

∂xj

−ρh′′u′′j
∂ũi

∂xj
− ρh′′u′′i

∂ũj

∂xj
+ u′′i τjk

∂ũj

∂xk

− ∂

∂xj
ρh′′u′′i u

′′
j + ũju′′i

∂p

∂xj
+ u′′i u

′′
j

∂p

∂xj
+ u′′i

∂p

∂t

+u′′i τjk

∂u′′j
∂xk

− h′′
∂p

∂xi
+ h′′

∂τij

∂xj
− u′′i

∂qj

∂xj
. (95)

Similar production terms appear as in eq. (94). The turbulent heat fluxes
and the pressure velocity correlation are related by:

ρh′′u′′i = ρe′′u′′i + pu′′i (96)

which becomes for perfect gases:

ρh′′u′′i =
γ

γ − 1
pu′′i . (97)

In this case the turbulent heat flux equations (94) and (95) can also
be considered as transport equations for the pressure velocity correlation.
Since ρe′′u′′i vanishes in homogeneous turbulence, ρh′′u′′i and pu′′i are zero as
well. It is certainly wrong to conclude from this fact that in general inhomo-
geneous flows these terms are of minor importance. In strongly compressible
flows with shocks, e.g., these terms are important and have to be modelled
properly (Gatski (1997)).
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2.5. TRANSPORT EQUATIONS FOR HOMOGENEOUS SHEAR FLOW

Homogeneous shear flow has been frequently used in the past to test tur-
bulence models and to tune model constants. Direct numerical simulation
has provided insight into the physics of compressible turbulent shear flow
and has helped to develop pressure-dilatation and compressible dissipation
rate models. It is therefore useful to discuss the characteristics of this flow.
We first derive conditions under which homogeneous turbulent flows can
exist.

2.5.1. Necessary conditions for homogeneity
Homogeneous turbulence has statistics of fluctuating quantities which are
independent of space. This definition allows for non-zero mean velocity
gradients. Blaisdell et al. (1991) have inspected transport equations for
u′′i u

′′
j (a quantity which is unusual in turbulence modelling), for ρ′2 and

p′2 in order to find necessary conditions under which initially homogeneous
turbulence remains homogeneous.

Starting from transport equations for u′′i and ρ′, one concentrates on
terms involving velocities only. Then, from the identities

∂u′′i
∂t

=
1
ρ

(
∂

∂t
(ρui)− ui

∂ρ

∂t

)
− 1

ρ̄

(
∂

∂t
(ρ̄ũi)− ũi

∂ρ̄

∂t

)
, (98)

∂ρ′

∂t
=

∂ρ

∂t
− ∂ρ̄

∂t
, (99)

one finds:

∂u′′i
∂t

= −ũj
∂u′′i
∂xj

− u′′j
∂ũi

∂xj
− u′′j

∂u′′i
∂xj

+
1
ρ̄

∂

∂xj
ρu′′i u

′′
j + . . . , (100)

∂ρ′

∂t
= −ρ′

∂ũj

∂xj
− ρ̄

∂u′′j
∂xj

− ρ′
∂u′′j
∂xj

−u′′j
∂ρ̄

∂xj
− ũj

∂ρ′

∂xj
− u′′j

∂ρ′

∂xj
. (101)

Averaging the combined transport of u′′j ∂u′′i /∂t and u′′i ∂u′′j /∂t as well as
the transport of 2ρ′∂ρ′/∂t and applying homogeneity, gives rise to:

∂

∂t
u′′i u

′′
j = −u′′i u

′′
k

∂ũj

∂xk
− u′′j u

′′
k

∂ũi

∂xk
+ u′′i u

′′
j

∂u′′k
∂xk

+ . . . (102)
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∂

∂t
ρ′2 = −2ρ′2

∂ũj

∂xj
− 2ρ̄ρ′

∂u′′j
∂xj

− 2ρ′u′′j
∂ρ̄

∂xj
− ρ′2

∂u′′j
∂xj

. (103)

Now, Blaisdell et al. (1991) argue that due to homogeneity, correlation
functions can only depend on time. Since the left hand side of equations
(102), (103) is solely a function of time, the same must be valid for the
right hand side, especially for each of the rhs terms. Thus from (102):

∂ũi

∂xj
= Aij(t) (104)

which corresponds to a linear mean velocity field

ũi(~x, t) = Aij(t)xj . (105)

The time-dependent constant of integration is not considered because
it can be treated as a time-dependent body force, which is not of interest
to us. Similarly, eq. (103) provides the condition

ρ̄ = ρ̄(t), (106)

since ρ′∂u′′j /∂xj is generally non-zero. Restrictions on p̄ can be derived
from eq. (92). From the third term on the rhs one gets (since p′d′ is non-
zero):

p̄ = p̄(t). (107)

From the averaged equation of state for perfect gases:

p̄ = ρ̄RT̃ . (108)

One finally concludes that for spatially uniform mean density and pres-
sure the temperature must also be uniform is space, i.e. T̃ = T̃ (t).

2.5.2. Mean flow characteristics of homogeneous shear turbulence
Taking equations (104), (106) and (107) into account the mean mass and
momentum transport equations (46), (47) reduce to:

dρ̄

dt
+ ρAjj(t) = 0, (109)

∂ũi

∂t
+ ũk

∂ũi

∂xk
= 0. (110)
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Differentiation of (110) with respect to xj provides a nonlinear coupled
set of ordinary differential equations to be satisfied by the mean velocity
gradient tensor Aij :

dAij

dt
+ AikAkj = 0. (111)

These equations which apply to any homogeneous turbulence field fur-
ther simplify in the case of homogeneous shear flow with constant shear rate
in x2-direction. We assume a mean momentum transport in x1-direction:

ũi(~x, t) = (ũ1(x2, t), 0, 0) (112)

and obtain from (109) and (111):

ρ̄ = const, (113)

A12(t) =
dũ1

dx2
= S = const. (114)

The mean internal energy balance (57) reduces to

ρ̄
dẽ

dt
= −p′d′ + µ̄S2 + ρ̄ε (115)

if fluctuations of viscosity are neglected in the mean flow dissipation
rate (2nd term on the rhs). The turbulence kinetic energy (TKE) balance
takes the simple form:

ρ̄
dK

dt
= −ρ̄ũ′′1u′′2S + p′d′ − ρ̄ε. (116)

The sum of ẽ and K increases in time due to TKE-production and
mean flow dissipation. Since p′d′ is predominantly negative, ẽ grows in
time. DNS data indicate an exponential growth of K for long times, i.e.
dK/dt ∼ K and, since the production and p′d′ terms do not balance, ε
grows in time as well. The mean shear rate introduces directionality into
the turbulence structure. Hence, the Reynolds stress tensor is homogeneous,
but anisotropic:

ũ′′i u
′′
j =




ũ′′21 ũ′′1u′′2 0
ũ′′1u′′2 ũ′′22 0

0 0 ũ′′23


 , ũ′′21 6= ũ′′22 6= ũ′′23 . (117)

Blaisdell et. al. (1991) provide a conclusive argument that the mass
flux ρu′i vanishes in homogeneous turbulence. This means that Reynolds
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and Favre averaged velocities coincide. In the TKE dissipation rate, ρ̄ε, the
inhomogeneous term vanishes. If we further exclude viscosity fluctuations,
ρ̄ε takes the simple form:

ρ̄ε = µ̄ω′iω
′
i +

(
4
3
µ̄ + µv

)
d′2. (118)

2.5.3. Turbulent stress transport in homogeneous shear flow
Although the homogeneity condition removes several unknown terms from
the full transport equations, compressible homogeneous shear turbulence is
still today a flow case which is hard to predict accurately. One reason is cer-
tainly the difficulty associated with pressure strain modelling. From equa-
tions (70) - (83) we obtain the transport equations for the four Reynolds
stresses:

ρ
d

dt

(
1
2
ũ′′21

)
= −ρũ′′1u′′2S + p′

∂u′1
∂x1

− ρ
(
εS
11 + εd

11

)
, (119)

ρ̄
d

dt

(
1
2
ũ′′22

)
= p′

∂u′2
∂x2

− ρ̄
(
εS
22 + εd

22

)
, (120)

ρ̄
d

dt

(
1
2
ũ′′23

)
= p′

∂u′3
∂x3

− ρ̄
(
εS
33 + εd

33

)
, (121)

ρ̄
d

dt

(
ũ′′1u′′2

)
= −ρ̄ũ′′22 S + p′

(
∂u′1
∂x2

+
∂u′2
∂x1

)
− ρ̄

(
εS
12 + εd

12

)
. (122)

Only the streamwise component and the shear stress obtain energy di-
rectly via production. The remaining components are fed by redistribution
of energy. As shown by Blaisdell et al. (1991) the ordering of the normal
stresses in compressible homogeneous shear turbulence is the same as in the
incompressible case, i.e. the streamwise component is the most energetic,
followed by the spanwise component, with the component in the shear di-
rection being the least energetic. So far, the only explicit differences to the
incompressible case are the appearance of dilatational dissipation rates ρ̄εd

ij

and the fact that the pressure strain terms sum up to a non-zero pressure-
dilatation term.

2.5.4. Compressibility parameters
The TKE equation (116) can be used to derive two independent compress-
ibility parameters which are needed to quantify effects of compressibility on
the turbulence structure. To this end, we nondimensionalize the K-equation
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choosing 1/S as the time scale, two different length scales l0, λ0 (an inte-
gral scale l0 and a Taylor microscale λ0), u0 as a fluctuating velocity scale,
ρ̄u2

0 as a characteristic pressure fluctuation and µ0 as a reference viscosity.
The index ’0’ refers to constant initial values of these quantities. Then the
nondimensional TKE equation reads:

Mgo
dK∗

dt∗
= −Mgoρ∗u′′∗1 u′′∗2 −Mtop′∗d′∗ − Mto

Reto

(
l0
λ0

)2

ε∗, (123)

with the:

− gradient Mach number:
Mgo = Sl0/c0 (124)

− turbulent Mach number:

Mto = u0/c0 (125)

− turbulent Reynolds number:

Reto = ρ̄l0u0/µ0 (126)

as free parameters. The star ∗ indicates non-dimensional quantities. (It
has this meaning only in eq. (123)).

The turbulent Reynolds number Reto drops out of the list of nondimen-
sional parameters, if a simple estimate of l0/λ0, as provided by Tennekes
and Lumley (1972), is assumed to hold, namely

l0/λ0 = O
(
Re

1/2
to

)
. (127)

This is also found if u3
0/l0 is used to scale ε. Sarkar (1995) has found

the gradient Mach number, Mgo, to be the key parameter in explaining the
stabilizing effect of compressibility on the TKE growth rate. We will come
back to this point later. Earlier Blaisdell et al. (1991) had already used
a gradient Mach number which they called shear rate Mach number and
which differs from Sarkar’s definition only in the specification of the integral
length scale. Durbin and Zeman (1992) had introduced a distortion Mach
number in their RDT analysis that can be interpreted as the mean Mach
number change across an ’eddy’. The expression ’distortion Mach number’
was then adopted by Jacquin et al. (1993), Cambon et al. (1993) and Simone
et al. (1997) to parameterize rapidly sheared and strained compressible
homogeneous turbulence. It is important to note that Mgo and Mto are two
independent parameters since their ratio Sl0/u0 can be changed via l0, u0.

There is some ambiguity in the definition of l0. While Sarkar (1995)
chooses
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l0 =
∞∫

−∞

˜(u′′1(x2)u′′1(x2 + r2))
∣∣∣
t=0

dr2 / ũ′′21 (x2)
∣∣∣
t=0

, (128)

Blaisdell et al. (1991) define

l0 =
∞∫

−∞

˜(u′′1(x2)u′′2(x2 + r2))
∣∣∣
t=0

dr2 / ũ′′1u′′2(x2)
∣∣∣
t=0

. (129)

In view of the fact that the 2-2 components of the Reynolds stress tensor,
of the pressure strain tensor and of the compressibe dissipation rate tensor
are the most affected by compressibility (Blaisdell et al. (1991)), a suitable
alternative to the definitions (128), (129) would be:

l0 =
∞∫

−∞

˜(u′′2(x2)u′′2(x2 + r2))
∣∣∣
t=0

dr2 / ũ′′22 (x2)
∣∣∣
t=0

(130)

A supporting argument for this definition follows from the linearized
inviscid equations of motion. For homogeneous shear turbulence there exists
a direct link between u′2 and d′ in Fourier space (Friedrich and Bertolotti
(1997)). On the other hand, the linear inviscid momentum balance in x2-
direction,

(
∂

∂t
+ ū1

∂

∂x1

)
u′2 = −1

ρ̄

∂p′

∂x2
, (131)

reflects the coupling between u2- and p-fluctuations. Pressure fluctua-
tions are found to be strongly affected by compressibility effects in plane
and annular mixing layers (Vreman et al. (1996), Freund et al. (1997)).
The suppression of the pressure strain rate correlation in the stress equa-
tion for the shear direction (x2) is explained primarily by the reduction of
pressure fluctuations due to compressibility. In fact, Freund et al. (1997)
demonstrate a significant decrease of the correlation length of velocity fluc-
tuations in the shear direction, which supports a definition of l0 according
to (130).

3. Compressibility effects due to turbulent fluctuations and
modelling of explicit compressibility terms

Most of our present knowledge about compressibility effects due to tur-
bulent fluctuations (intrinsic effects of compressibility) stems from direct
numerical simulations and rapid distortion analysis. In this chapter we will
therefore first inspect the linear equations of motion in order to gain some



MODELLING OF TURBULENCE IN COMPRESSIBLE FLOWS 27

insight into the physics of compressible turbulence, then summarize the
most important recent findings of DNS before we discuss turbulence mod-
els derived from DNS data.

3.1. HOMOGENEOUS ISOTROPIC TURBULENCE

The statistical equations for decaying isotropic turbulence are obtained
from those for homogeneous shear turbulence setting the mean shear rate
equal to zero. Without loss of generality the mean velocity can be assumed
zero. The mean density is constant, thus:

ρ̄ = const. , ũi = 0. (132)

The turbulent stress tensor is isotropic, with

ũ′′21 = ũ′′22 = ũ′′23 = 2K/3. (133)

The time evolutions of the mean internal energy, ρ̄ẽ, and of the turbulent
kinetic energy, ρ̄K, are determined by p′d′ and ρ̄ε alone, consequently:

ẽ + K = const. (134)

While K decays, ẽ increases in time, along with p̄ and T̃ . The decay
of K entrains that of ρ̄ε and p′d′ after initial transients. Normalized den-
sity, pressure and temperature variances decay as well. Integral and Taylor
microscales grow after some initial decay.

3.1.1. Linear analysis of turbulent fluctuations
We assume fluctuations of density, pressure and temperature to be small
with respect to their mean values, and velocity fluctuations to be small com-
pared to the mean speed of sound, c̄0. The latter is equivalent to assuming
low turbulent Mach number, Mto. There are two characteristic velocities
in compressible isotropic turbulence, namely u0 = (2K0/3)1/2 and c0. To-
gether with an integral length scale l0 they define two timescales:

− the eddy-turnover time, τt = l0/u0

− and the acoustic time, τa = l0/c0.

The ratio of these two time scales is the turbulent Mach number:

Mto = τa/τt. (135)

Low Mto means that the two time scales are disparate. In this situation
we may linearize the equations of motion with respect to fluctuations. From
(1), (2), (24) we then obtain for decaying isotropic turbulence:
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∂ρ′

∂t
+ ρ̄d′ = 0, (136)

∂u′i
∂t

= −1
ρ̄

∂p′

∂xi
+ ν̄

∂2u′i
∂xj∂xj

+ (ν̄/3 + µ̄v/ρ̄)
∂d′

∂xi
, (137)

∂p′

∂t
= −γp̄d′ + (γ − 1)k̄

∂2T ′

∂xj∂xj
. (138)

An alternative energy equation follows from the entropy balance, viz:

∂s′

∂t
=

k̄

ρ̄T̄

∂2T ′

∂xj∂xj
. (139)

From this coupled set of equations we now derive wave equations for
p′, ρ′, d′ and diffusion equations for ω′i and s′. Thereby we use the linearized
perfect gas relation

p′ = R(ρ′T̄ + T ′ρ̄) (140)

and the linearized state relation p′ = p′(ρ′, s′) to express time-derivatives

∂p′

∂t
= γRT̄

∂ρ′

∂t
+

p̄

cv

∂s′

∂t
(141)

or the Laplacian:

∂2p′

∂xj∂xj
= γRT̄

∂2ρ′

∂xj∂xj
+

p̄

cv

∂2s′

∂xj∂xj
. (142)

Equation (141) is valid on an acoustic time scale, τa, in which the time
variations of T̄ and p̄ due to viscous effects can be neglected. (142) is
straightforward due to spatial homogeneity of T̄ , p̄.

Now, applying the Laplacian to eq. (136), differentiating (138), (139)
with respect to time, taking the divergence of eq. (137), introducing (140)
and combining these results, leads to the following wave equation for the
pressure fluctuations:

∂2p′

∂t2
− c̄2 ∂2p′

∂xj∂xj
= γ

(
4
3
ν̄ + µ̄v/ρ̄

)
∂2

∂xj∂xj

(
∂p′

∂t

)

+
(

1− 4
3
Pr − cpµ̄v

k̄

)
p̄

c̄v

∂2s′

∂t2
. (143)
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The first term on the rhs accounts for sound absorption at high frequen-
cies. Pr = µ̄cp/k̄ is the mean Prandtl number. Equations, similar to (143)
are obtained for ρ′ and d′:

∂2ρ′

∂t2
− c̄2 ∂2ρ′

∂xj∂xj
=

(
4
3
ν̄ + µ̄v/ρ̄

)
∂2

∂xj∂xj

(
∂ρ′

∂t

)
+

p̄

cv

∂2s′

∂xj∂xj
, (144)

∂2d′

∂t2
− c̄2 ∂2d′

∂xj∂xj
=

(
4
3
ν̄ + µ̄v/ρ̄

)
∂2

∂xj∂xj

(
∂d′

∂t

)

−(γ − 1)T̄
∂2

∂xj∂xj

(
∂s′

∂t

)
. (145)

Taking the curl of eq. (137) and replacing the Laplacian of T’ with the
help of (140) and (142) gives rise to diffusion equations for the velocity and
entropy fluctuations:

∂ω′i
∂t

= ν̄
∂2ω′i

∂xj∂xj
, (146)

∂s′

∂t
=

ν̄

P r

(
∂2s′

∂xj∂xj
+

R

p̄

∂2p′

∂xj∂xj

)
. (147)

The conclusions we draw from these equations as long as viscosity plays
a role, are:

− pressure (density and dilatation) fluctuations are coupled with entropy
fluctuations. The coupling between p′ and s′ is via viscosity and there-
fore weak,

− only vorticity fluctuations develop independently,
− the wave character of p′, ρ′, d′ and the diffusive character of ω′i, s

′ are
obvious.

If we neglect viscosities, we note that:

− the vorticity and entropy fluctuations are frozen (this corresponds to
Taylor’s hypothesis used in experiments),

− the pressure and dilatation fluctuations follow a pure wave equation,
− density fluctuations are still coupled with entropy fluctuations.

Vorticity, pressure and entropy fluctuations have been called ’modes’ by
Kovasznay (1953) and Morkovin (1962), and are since then referred to as
the vorticity mode, the acoustic mode and the entropy mode of compressible
turbulence. In isotropic turbulence these three modes are decoupled.
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The decoupling is a result of the missing of mean shear or of gradients
of mean thermodynamic variables. It has the important consequence that
compressibility effects studied in DNS depend more on the initial conditions
than on the turbulent Mach number (Blaisdell et al. (1993)). Therefore
DNS data of isotropic turbulence can in general not be used to validate
turbulence models for the compressible dissipation rate and the pressure-
dilatation correlation. We come back to the effect of initial conditions in
chapter 3.1.2.

In order to demonstrate the coupling between the acoustic pressure
mode and the velocity field, we apply Helmholtz’s decomposition of u′i into
incompressible, us

i
′, and compressible parts, ud

i
′:

u′i = us
i
′ + ud

i
′

(148)

where

∂us
i
′

∂xi
= 0, εijk

∂ud
k
′

∂xj
= 0. (149)

Furthermore, we follow Simone (1995) and use the Craya-Herring for-
malism (Craya (1958), Cambon(1990)) to express the Fourier transform
of u′i in an orthonormal frame of reference with bases (e(1)

i , e
(2)
i , e

(3)
i ) nor-

mal and parallel to the wavevector ~k. Defining a pair of three-dimensional
Fourier transforms by

Â(~k, t) =
1

(2π)3

∫

V (~x)

A(~x, t)exp(−~ik · ~x)d~x, (150)

A(~x, t) =
∫

V (~k)

Â(~k, t)exp(~ik · ~x)d~k, (151)

(where the caret denotes the Fourier coefficient and i2 = −1), the
Fourier transform of the velocity fluctuation2 reads:

ûi(~k, t) = ϕ̂(1)(~k, t)e(1)
i (~k) + ϕ̂(2)(~k, t)e(2)

i (~k)︸ ︷︷ ︸
ûs

i

+ ϕ̂(3)(~k, t)e(3)
i (~k)︸ ︷︷ ︸

ûd
i

. (152)

The first two terms on the rhs of (152) represent the Fourier transform
of the solenoidal velocity fluctuation us

i
′; the third is the compressible (or

dilatational) contribution, aligned with ~k. ûs
i lies in the plane (~e(1), ~e(2))

2For simplification we omit the dash in Fourier space
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perpendicular to ~k. It is possible to fix the coordinates in that plane by
introducing a polar axis ~n (Herring (1974)) either according to symmetries
of the mean flow (if any) or the statistical properties of the fluctuating field,
viz:

~e(1) =
~k × ~n

|~k × ~n|
, ~e(2) = ~e(3) × ~e(1), ~e(3) = ~k/|~k|. (153)

The Fourier transforms of vorticity and dilatation fluctuations have the
form:

ω̂i = εijkikj ûk = ik
(
ϕ̂(1)e

(2)
i − ϕ̂(2)e

(1)
i

)
, (154)

d̂ = ikiûi = ikϕ̂(3), k = |~k|. (155)

Only the incompressible modes (ϕ̂(1), ϕ̂(2)) contribute to Kovasznay’s
vorticity mode, while the compressible mode ϕ̂(3) alone determines the di-
latation fluctuation. Fourier transforming the inviscid equations of motion
(136) - (138), leads to:

∂ρ̂

∂t
+ ρ̄ikϕ̂(3) = 0, (156)

∂ûi

∂t
= −1

ρ̄
ikip̂, (157)

∂p̂

∂t
= −γp̄ikϕ̂(3), (158)

Introducing (152) into (157) and multiplying (157) scalarly with e
(j)
i (j =

1, 2, 3), one obtains a set of equations determining the behaviour of the
incompressible and compressible modes ϕ̂(3), ϕ̂(4) = ip̂/(ρ̄c̄):

∂ϕ̂α

∂t
= 0, α = 1, 2, (159)

∂ϕ̂(3)

∂t
+ c̄kϕ̂(4) = 0, (160)

∂ϕ̂(4)

∂t
− c̄kϕ̂(3) = 0. (161)

Cambon et al. (1993) and Simone (1995) call this the purely acoustic
regime of isotropic turbulence, where energy is exchanged between the di-
latational velocity and the pressure at a frequency c̄k, while the solenoidal
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component us
i
′ is frozen. Differentiating equations (160) and (161) with re-

spect to time and combining them gives rise to the two wave equations in
Fourier space:

∂2ϕ̂(3)

∂t2
+ c̄2k2ϕ̂(3) = 0, (162)

∂2ϕ̂(4)

∂t2
+ c̄2k2ϕ̂(4) = 0, (163)

which, together with eq. (159), demonstrate the independence of all
modes and e.g. the fact that the pressure fluctuations have no influence
on the solenoidal velocity component. The analytical solution of eqs. (162),
(163) is given by Simone (1995) in the form:

ϕ̂(3)(~k, t) = ϕ̂(3)(~k0, 0) cosωt− ϕ̂(4)(~k0, 0) sinωt, (164)

ϕ̂(4)(~k, t) = ϕ̂(3)(~k0, 0) sinωt + ϕ̂(4)(~k0, 0) cos ωt, (165)

with ω = c̄k = c̄0k0. k0 is the magnitude of the wavevector at time t0. ~k0

plays the same role in wavenumber space as the Lagrangian coordinate in
physical space. In isotropic turbulence ~k is independent of time, i.e. ~k = ~k0.
Figure 1 shows the time evolution of the compressible modes ϕ̂(3), ϕ̂(4) for
initial values between 0 and 1, corresponding to acoustical equilibrium3, i.e.
to a situation in which the kinetic energy of the dilatational velocity mode
equals the potential energy of the pressure mode:

1
2
ud

i
′
ud

i
′ =

1
2
p′p′/(ρ̄c̄)2. (166)

A measure for acoustical equilibrium or non-equilibrium had earlier been
introduced by Sarkar et al. (1991) in the form of the energy partition pa-
rameter

F = γρ̄p̄
ud

i
′
ud

i
′

p′p′
. (167)

One easily verifies that eq. (166) corresponds to F = 1. Sarkar et al.
(1991) had shown, based on DNS data of isotropic turbulence that F = 1
even holds for high turbulent Mach numbers (Mto = 0.5) and had used the
value F = 1 in deriving a model for the compressible dissipation rate (see
section 3.1.3).

3A ’strong form’ of acoustical equilibrium was used to specify initial conditions for
fig. 1, by assuming that the energy balance occurs at each wavenumber.
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3.1.2. Importance of initial conditions
Blaisdell et al. (1991, 1993) emphasize that initial conditions strongly influ-
ence the time evolution of correlation functions which makes it difficult to
use simulations of decaying isotropic turbulence to evaluate compressible
turbulence models. This difficulty is removed when a mean shear rate is
introduced (See section 3.2).

The authors have performed several DNS to demonstrate the effect of
initial conditions. They varied the initial rms-values of density and tem-
perature, of turbulent Mach number and of the fraction χ of compressible
kinetic energy, defined as:

χ = ud
i
′
ud

i
′
/(2K). (168)

Table 3 contains the simulation parameters of six of the simulations.
The number 96 appearing in the case identifications refers to the 963 grid

TABLE 3. Initial parameters for DNS of isotropic turbulence. Taken from
Blaisdell et al. (1991).

Case iga96 igb96 idc96 ie96 ifd96 ife96

ρrms,0 0.1 0.016 0 0.15 0.15 0

Trms,0 0.1 0.016 0 0.15 0.15 0

χo 0.1 0.816 0 0.25 0.25 0

Mto 0.05 0.11 0.3 0.3 0.7 0.7

Reto 90.6 360 160 160 90 91

used in these simulations. The initial spectra are the same in all cases. Cases
iga96 and igb96 have been chosen to test how well ideas from linear acous-
tics could predict the evolution of turbulence. While the turbulent Mach
numbers are low in both cases, the equilibrium parameters F0 are very
different. Case iga96 has an F0 of 1/40, corresponding to comparatively
large pressure fluctuations and case igb96 is characterized by F0 ≈ 40 and
large dilatational velocity fluctuations. Cases idc96 and ie96 have moder-
ate turbulent Mach numbers and differ in the initial fluctuations of density,
temperature and dilatational velocity. Cases ifd96 and ife96 have been se-
lected to show the effect of higher Mach number. The turbulent Reynolds
numbers Reto = 2ρ̄K/(εµ̄) do not vary much from case to case and need
therefore not be discussed.

Figure 2 shows the nondimensional variances of pressure and density
fluctuations for the cases iga96 (top) and igb96 (bottom). Simulation iga96
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starts with remarkable density and pressure fluctuations. Energy is trans-
ferred from pressure to dilatational velocity fluctuations in a highly oscilla-
tory way. The transfer process reaches an acoustical equilibrium state after
one eddy-turnover time. Simulation igb96 on the other hand produces pres-
sure and density fluctuations from low levels, in close agreement with an
isentropic process. These results demonstrate the existence of linear acous-
tic mechanisms in compressible turbulence as described in the previous
subsection.

Figure 3 aims at illustrating the dependence of compressibility effects
on initial conditions. It shows the time evolution of the dilatational fraction
χε of the turbulent dissipation rate:

χε =
εd

ε
=

εd/εs

1 + εd/εs
, (169)

for the 4 remaining flow cases of table 3. The top figure contains the
Mto = 0.3 cases, the bottom figure the Mto = 0.7 cases. The values of χε

differ from case to case. It is obvious that χε not only depends on Mt, but
also on the initial conditions. The behaviour of χε is also consistent with
linear analysis, since the coupling between acoustical and vortical modes is
weak. Strong coupling could only be due to nonlinearities and would lead to
curves which approach each other. Of course, nonlinear vortex interactions
are weak for low Reynolds number turbulence. Blaisdell et al. (1991) could
however show that the dependence on initial conditions persists at higher
Reynolds numbers.

The authors conclude that simulations of isotropic turbulence cannot
be used to validate turbulence models. Recently Ristorcelli and Blaisdell
(1996) have designed consistent initial conditions for DNS. Tests for decay-
ing isotropic turbulence show the natural development of the flow during
the initial phase.

3.1.3. Turbulence models for the compressible dissipation rate

Model proposed by Sarkar et al. (1991):

Sarkar et al.’s model is based on ideas from linear acoustics and uses
assumptions such as

F = 1, p′d′ ≈ 0. (170)

Based on an asymptotic analysis for low turbulent Mach numbers Mt

and on DNS data, the authors show that isotropic turbulence, in the state
of acoustic equilibrium, is characterized by (170). F=1 is a good approx-
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imation even at Mt = 0.5. Using the definitions (65), (66) for εs, εd and
µ̄v = 0, the dilatational fraction χε of the dissipation rate reads

χε =
4d′2/3

ω′iω
′
i + 4d′2/3

(171)

Then defining compressible and incompressible Taylor microscales λd,
λs:

λ2
d = ud

i
′
ud

i
′
/d′2, (172)

λ2
s = us

i
′us

i
′/ω′iω

′
i (173)

and using χ, the fraction of compressible kinetic energy, given by eq.
(168), χε takes the form:

χε =
χ

χ + 3
4

(
λd
λs

)2
(1− χ)

, (174)

from which εd/εs is obtained:

εd

εs
=

4λ2
sχ

3λ2
d(1− χ)

. (175)

For weakly compressible turbulence

λd/λs = O(1) (176)

is a permissible assumption. In compressed turbulence, as e.g. in shock-
turbulence interactions, relation (176) certainly makes no sense in general.
Introducing (176) into (175) leads to:

εd

εs
= β1χ + O(χ2), (177)

where β1 = O(1). Now, from the definition of F

F = γρ̄p̄
ud

i
′
ud

i
′

p′p′
=

(γp̄)2

p′p′
χM2

t , (178)

the order of magnitude relation

p′p′ = O(ρ̄2u4
rms) = O(ρ̄2K2) (179)

and F = 1, the authors conclude

χ = O(M2
t ). (180)
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From (177) they obtain the model

εd = εsα1M
2
t . (181)

The model constant α1 is specified in the following way: Decaying
isotropic turbulence is governed by the transport equations:

ρ̄cv
dT̃

dt
= −p′d′ + εs + εd, (182)

ρ̄
dK

dt
= p′d′ − εs − εd, (183)

dεs

dt
= −cε2

ε2s
K

. (184)

The equations for ẽ and K are still exact. Only the last equation is mod-
elled. cε2 is set to 1.83, which is the proper value for decaying incompressible
isotropic turbulence at high Reynolds number. With the help of eq. (183)
and the definition M2

t = 2K/(γRT̃ ), the equation for T̃ is converted into
an equation for M2

t . Setting p′d′ to zero the set of equations for M2
t ,K, εs

is solved for different initial conditions and different values of α1. The best
agreement between modelled and directly simulated turbulence decay was
achieved for α1 = 1. For homogeneous shear turbulence, however, Sarkar
(1992) suggested the value α1 = 0.5.

Zeman’s model:

Zeman (1990) has formulated a model assuming the existence of shock-
like structures in the flow. On the basis of a stochastic shocklet model he
inferred the parametric expression

εd

εs
= czf(Mt, F ). (185)

cz = 0.75. The so-called shocklet dissipation function f(Mt, F ) is an
integral functional of a pdf (m,F ) of the fluctuating Mach number m. F

is the kurtosis of m, i.e. F = m4/
(
m2

)2
and characterizes the departure

from Gaussianity. From DNS of homogeneous turbulence, F was estimated
as F ≈ 4 and f(Mt, F ) approximated as

f(Mt) =
[
1− exp

(
−1

2
(γ + 1)(Mt −Mto)2/Λ2

)]
H(Mt −Mto), (186)
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TABLE 4. Parameters of Zeman’s dissipation model

Λ Mto

free shear flows 0.6 0.1(2/(γ + 1))1/2

boundary layers 0.66 0.25(2/(γ + 1))1/2

where γ is the ratio of specific heats, H(x) the Heaviside step function
and Mto a threshold value, below which shocklets cannot occur. The pa-
rameters Λ,Mto have different values for free and wall bounded turbulence,
see table 4. The function f(Mt) is taken from Wilcox (1993).

Fauchet’s model:

Based on a new two-point closure for weakly compressible isotropic tur-
bulence, Fauchet (1998), Fauchet et al. (1997) derived a model for the
compressible dissipation rate valid for low turbulent Mach numbers:

εd

εs
= cεM

4
t ln (ReL) Re−1

L , for Mt < 0.1 (187)

Mt and ReL are defined as follows:

Mt = (2K)1/2/co , ReL = (2K)1/2L/νo. (188)

The integral scale L is computed from the energy spectrum E(k):

L =
π

8K

∞∫

0

E(k)
k

dk . (189)

In contrast to Sarkar’s model where εd/εs grows with M2
t and contrary

to results obtained with EDQNM models by Bertoglio et al. (1998) where
εd/εs is found to scale as M2

t (in perfect agreement with Sarkar), Fauchet’s
model predicts a behaviour which coincides with Ristorcelli’s (1995) pseudo-
sound theory. Moreover, Fauchet is able to confirm his model by LES results
of forced isotropic turbulence with a subgrid-scale model of the Chollet-
Lesieur type.

3.2. HOMOGENEOUS SHEAR TURBULENCE

We quickly recall the mean flow characteristics of homogeneous shear tur-
bulence, discussed in section 2.5.2, before we turn to the linear inviscid



38 R. FRIEDRICH

equations for the turbulent fluctuations. The mean density and mean shear
rate are space-time constants, viz:

ρ = const.,
dũ1

dx2
= S = const. (190)

The mean pressure and mean temperature are homogeneous in space,
but grow in time due to dissipative effects.

3.2.1. Linear inviscid analysis of turbulent fluctuations
From equations (1), (2) and (24) we derive the linear inviscid equations of
motion for homogeneous shear turbulence:

Dρ′

Dt
+ ρd′ = 0, (191)

Du′i
Dt

+ u′2Sδi1 +
1
ρ

∂p′

∂xi
= 0, (192)

Dp′

Dt
+ γpd′ = 0. (193)

The material derivative along mean flow trajectories has the form:

D

Dt
=

∂

∂t
+ Sx2

∂

∂x1
. (194)

Blaisdell et al. (1991, 1993) have discussed these equations in a trans-
formed coordinate system which moves with the mean velocity. They have
Fourier transformed the vorticity equations in order to show the coupling
between vorticity and acoustic modes due to the presence of mean shear.
It is this coupling which ensures that measures of compressibility become
independent of their initial conditions. We follow Simone (1995), Simone et
al. (1997) and Fourier transform equations (191) - (194) using the Craya-
Herring reference frame in Fourier space with bases (e(1)

i , e
(2)
i , e

(3)
i ) normal

and parallel to the wavevector ~k. The polar vector ~n is chosen parallel to
the direction of mean shear, i. e. the x2-direction. The base vectors then
have the form:

e
(1)
i = (εi12k1 − εi23k3)/k′ ,

e
(2)
i = (k2ki − k2ni)/(kk′) ,

e
(3)
i = ki/k . (195)

εijk is the alternating unit tensor and k′ the magnitude of ~k × ~n:
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∣∣∣~k × ~n
∣∣∣ = k′ = (k2

1 + k2
3)

1/2. (196)

Figure 4 shows the Craya-Herring reference frame. The compressible ve-
locity mode is parallel to the wavevector ~k. The incompressible modes lie in
the plane perpendicular to ~k. This plane also contains the vorticity mode.
Before transforming the linear equations we discuss the mean flow trajec-
tories in physical and Fourier space. The material derivative in eq. (194)
corresponds to a partial derivative with respect to time at fixed Lagrangian
coordinate Xj :

D

Dt
=

(
∂

∂t

)

~X
. (197)

In homogeneous shear flow Eulerian and Lagrangian coordinates are
related by:

xi = xi (Xj , t0, t) , xi (Xj , t0, t) = Fij (t0, t) Xj . (198)

xi is the position of a fluid particle moving with the mean flow at time
t, and Xj denotes its position at time t0, i.e. Xj = xj(t0). The gradient
displacement tensor is defined by the mean shearing motion:

Fij(t0, t) =
∂xi(Xj , t0, t)

∂Xj
= δij + Stδi1δj2 . (199)

The fluid particle coordinates are therefore:

x1 = X1 + StX2 , x2 = X2 , x3 = X3 . (200)

A moving coordinate system in physical space corresponds to a time-
dependent wave vector ~k(t). ~k(t) represents the position of a fluid particle
in Fourier space at time t which at time t0 had the position ~K. (see Lesieur
(1997)). The wavenumbers are obtained from:

ki = F−1
ji (t0, t)Kj . (201)

The tensor F−1
ji is the inverse of the transpose of Fij given in eq. (199).

The components of ki are:

k1 = K1 , k2 = K2 −K1St , k3 = K3 . (202)

One easily verifies the wave conservation law (Cambon (1982)):

kixi = KiXi . (203)
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The Fourier transform of the material derivative, eq. (194), is denoted
by the symbol D

Dt :

D
Dt

=
∂

∂t
− k1S

∂

∂k2
. (204)

The linear inviscid equations of motion finally take the spectral form:

Dρ̂

Dt
+ ikρϕ̂(3) = 0 , (205)

Dûi

Dt
+ û2Sδi1 +

iki

ρ
p̂ = 0 , (206)

Dp̂

Dt
+ ikγpϕ̂(3) = 0 . (207)

The transformed velocity fluctuation, ûi, consists of a solenoidal and a
compressible part, as defined in eq. (152). By scalar multiplication of eq.
(206) with e

(j)
i (j = 1, 2, 3), Simone (1995) gets the mode equations. The

derivation needs some care since the base vectors depend on ~k and only
implicitly on time. Eq. (206) is equivalent to the component relations:

Dϕ̂(1)

Dt
+ S

k3

k
ϕ̂(2) − S

k2k3

kk′
ϕ̂(3) = 0 , (208)

Dϕ̂(2)

Dt
− S

k1k2

k2
ϕ̂(2) + S

k1

k′
ϕ̂(3) = 0 , (209)

Dϕ̂(3)

Dt
− 2S

k1k
′

k2
ϕ̂(2) + S

k1k2

k2
ϕ̂(3) + ckϕ̂(4) = 0 . (210)

The mode ϕ̂(4) replaces the pressure:

ϕ̂(4) = i
p̂

ρ c
. (211)

One immediately recognizes the differences to the case of isotropic tur-
bulence. The incompressible modes ϕ̂(1), ϕ̂(2) are no longer frozen, but get
energy from the dilatational mode ϕ̂(3). There is even a coupling among
the incompressible modes as a result of the mean shearing motion. For
S = 0 the equations (159), (160) are recovered. The compressible velocity
mode on the other hand is fed by the acoustic pressure mode ϕ̂(4). An-
alytical solutions of this set of equations are not available. Simone et al.
(1997), however, discuss two special solutions. The first is the solenoidal
limit, given by ϕ̂(3) = 0. From (208) and (209) one then gets:
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Dϕ̂(1)

Dt
+ S

k3

k
ϕ̂(2) = 0 , (212)

Dϕ̂(2)

Dt
− S

k1k2

k2
ϕ̂(2) = 0 . (213)

Taking the wavenumber relations (202) into account, the second equa-
tion can be directly integrated. The exact solution of (212) is then found.
Simone et al. (1997) show that the modes kϕ̂(2) and ϕ̂(1) are directly linked
to the variables ∇2u2 and ω2 which are typically used in the stability anal-
ysis of parallel incompressible shear flow (Orr–Sommerfeld equations).
The second special case is the so–called pressure–released limit. In this case
pressure fluctuations are unable to draw energy from the dilatational ve-
locity field. The mathematical model for this limit is obtained by removing
the ϕ̂(4) mode from the equations. The most simple way to study this case
is in the form of eq. (192). One has:

Du′1
Dt

+ u′2S = 0 ,
Du′2
Dt

= 0 ,
Du′3
Dt

= 0 , (214)

which means that the vertical and spanwise velocity fluctuations are
only advected with the mean velocity ũ1. The integration along particle
trajectories yields the solution:

u′1(xi, t) = u′1(Xi, t0)− St u′2(Xi, t0) ,

u′2(xi, t) = u′2(Xi, t0) ,

u′3(xi, t) = u′3(Xi, t0) . (215)

It immediately leads to the following expression for the turbulent kinetic
energy, provided the turbulence field is initially isotropic:

K(t)
K(0)

= 1 +
(St)2

3
. (216)

A term linear in St does not appear because the Reynolds shear stress
vanishes in isotropic turbulence. In the case where the initial turbulence
field is not completely isotropic, Simone (1995) obtains:

K(t)
K(0)

= 1 +
u′2(0)u′2(0)

K(0)
(St)2 − 2St

u′1(0)u′2(0)
K(0)

. (217)
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This is an important result of rapid-distortion theory (RDT)4, because
the pressure–released regime constitutes an upper bound to the TKE am-
plification. This will be shown later in comparison to DNS data.
Another aspect that can be deduced from the linear equations, concerns
the special role of the velocity fluctuations in the direction of mean shear.
The 2-component of the momentum equation (192) and the energy equa-
tion (193) reflect the direct coupling between u2- and pressure fluctuations
on one side and pressure and dilatation fluctuations on the other side:

Du′2
Dt

+
1
ρ̄

∂p′

∂x2
= 0 , (218)

Dp′

Dt
+ γpd′ = 0 . (219)

The Fourier transforms of these relations are:

Dû2

Dt
+

1
ρ
ik2p̂ = 0 , (220)

Dp̂

Dt
+ γpd̂ = 0 . (221)

Operating D/Dt on eq. (220) while considering the wave number rela-
tions (202) and introducing (221) gives:

D2û2

Dt2
+

k1

k2
S
Dû2

Dt
= ik2c

2d̂ . (222)

This second-order hyperbolic equation for the transformed velocity fluc-
tuation in the direction of mean shear contains the dilatation as ’forcing
term’. It provides a direct link between compressibility effects (through d̂)
and the u2-fluctuations. A second equation is available in the form of the
wave equation for d̂:

D2d̂

Dt2
+ k2c2d̂ = −4k1k2S

p̂

ρ
= −4ik1S

Dû2

Dt
, (223)

where

D2

Dt2
=

∂2

∂t2
− 2k1S

∂2

∂t∂k2
+ (k1S)2

∂2

∂k2
2

. (224)

Equations (222) and (223) have to be solved for suitable initial con-
ditions. From these equations it can be concluded that intrinsic effects of

4The combination of linear solutions with statistical averaging is frequently referred
to as rapid-distortion theory (RDT).
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compressibility in the form of dilatation fluctuations at low turbulent Mach
number (the acoustic time scale is small with respect to the turbulent time
scale) should scale with the u2-fluctuations. In some sense this result sup-
ports the definition of an integral length scale based on the transverse
two-point correlation of u2-fluctuations to be used in the definition of Mg,
see eq. (130).

3.2.2. Some findings based on DNS of homogeneous shear turbulence
The extensive work of Blaisdell et al. (1991) is full of useful information.
We concentrate on a few findings and conclusions only.

Independence of initial conditions:

The authors have performed five direct simulations with initial turbulent
Mach numbers of 0.5, but different rms-values of density- and temperature
fluctuations and varying fractions of compressible kinetic energy, χ. Fig. 5
shows the time evolution of χε, the dilatational fraction of the dissipation
rate. Depending on initial conditions this quantity goes through different
transient phases, but finally settles down and becomes independent of its
initial value. Other measures of compressibility such as χ and ρ′2 show a
similar behaviour. This independence from the initial conditions is due to
the coupling between vorticity and dilatation fluctuations and means that
algebraic turbulence models for explicit compressibility terms may be able
to capture compressibility effects.

Test of models for explicit compressibility terms:

Models for εd proposed by Sarkar et al. (1991) and Zeman (1990) and
discussed in section 3.1.3 have been examined by Blaisdell et al. (1991,
1993). The results of eleven DNS with different initial turbulent Mach
numbers and rms-fluctuations are displayed in figure 6 and compared with
Sarkar’s and Zeman’s models. Depending on χ0 the simulations have dif-
ferent initial values of εd/εs and progress according to the arrows. Only the
final values should be compared with the model results. The solid/dashed
curves represent the results of Sarkar resp. Zeman. Obviously, Sarkar’s
model provides proper prediction, at least up to Mt around 0.3, whereas
Zeman’s model predicts a much faster increase of εd/εs with Mt

5 and
does not match so well the results of the simulations.

A model for the pressure-dilatation correlation proposed by Zeman
(1991), relates p′d′ to p′2 via the relation

5Blaisdell et al. use an rms Mach number instead of Mt which takes fluctuations in
the sound speed into account. Both quantities do not differ noticeably.
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p′
∂u′i
∂xi

= − 1
2γp̄

dp′2

dt
(225)

which can be derived from the linear equation (193) (cf. also the dis-
cussion in section 2.4.1). The validity of this relation has been checked by
Blaisdell et al. (1991, 1993) using a highly resolved DNS (sha 192) with
1923 grid points for an initial Mt of 0.4 and vanishing initial values of ρrms,
Trms, χ. Figure 7 presents the time evolutions of p′d′ and of the rhs of eq.
(225). The model (discussed below) assumes the time variation of p′2 to
scale with M4

t at low Mt and with M2
t at higher Mt. The DNS data follow

an M2
t scaling much earlier than Zeman’s model, cf. figure 8. This means

that the model constants or the fitting function should be modified.

’Mean’ polytropic coefficient:

In turbulence modelling one has usually to assume some correlation
among fluctuations of thermodynamic variables. In his one-equation model
Rubesin (1976) has used the following relation

p′

ρ̄
= n

ρ′

ρ̄
=

n

n− 1
T ′′

T̃
. (226)

The polytropic coefficient n is γ in isentropic flow, n = 1 in isothermal
and n = 0 in isobaric flow. In turbulent flow, a local quantity n is not
well defined. Blaisdell et al. (1991) therefore define an average polytropic
coefficient

n =

(
p′2/p2

ρ′2/ρ̄2

)1/2

(227)

and demonstrate for homogeneous shear turbulence its independence on
initial conditions after some transient behaviour and that it tends to a value
slightly less than γ. This means that density, temperature and pressure
fluctuations follow nearly isentropic processes. Figure 9 shows results for n
according to (227) for seven different DNS of sheared turbulence.

This behaviour is in complete contrast to what is found in supersonic
channel flow (see Huang et al. (1995)) where n obviously follows an isobaric
process. An explanation for this behaviour is not easily found. It is however
interesting to note that density-temperature correlations in the core region
of the channel indicate that the flow there shows a tendency towards isen-
tropic behaviour.
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Structure of solenoidal and dilatational velocity fields:

Based on a Helmholtz decomposition of the fluctuating velocity vec-
tor Blaisdell et al. (1991) have investigated the different structure of the
solenoidal and dilatational velocity fields. The Reynolds stresses Rij =
ρu′iu

′
j are written as the sum of solenoidal, dilatational and cross terms

Rij = Rs
ij + Rd

ij + Rc
ij , (228)

where

Rs
ij = ρus′

i us′
j (229)

Rd
ij = ρud′

i ud′
j (230)

Rc
ij = ρus′

i ud′
j + ρus′

j ud′
i (231)

The anisotropy tensors of the ’s’ and ’d’ components are:

bs
ij = Rs

ij/Rs
kk − δij/3 , bd

ij = Rd
ij/Rd

kk − δij/3 . (232)

Each of them possesses three scalar invariants. The first, being the trace,
is zero. The other two are (omitting the superscripts):

II = −1
2
bijbji , III =

1
3
bijbjkbki .

They must lie within the regions bordered by

II = − 3
22/3

(−III)2/3 ,

II = −3III − 1
9

,

II = − 3
22/3

(III)2/3 (233)

in the (III, II) plane and form an invariant map first introduced by
Lumley (1978). This map is presented in figure 10 for Blaisdell et al’s DNS
sha192. One notices that bd

ij lies very close to the curve which corresponds
to axisymmetric expansion and thus indicates that ud′

i tends to be planar
in contrast to us′

i . A velocity field associated with sound waves can indeed
be planar.
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TKE growth rate and Reynolds stress anisotropy:

DNS data of Blaisdell et al. (1991, 1993) and Sarkar et al. (1991) for
compressible homogeneous shear flow had indicated an exponential growth
of TKE at a rate considerably below that for incompressible turbulence,
cf. figure 11. This stabilizing effect of compressibility was, until recently,
attributed to the presence of explicit compressibility terms like the com-
pressible dissipation rate εd and the pressure-dilatation correlation p′d′ in
the K-equation (116). Indeed εd acts as a sink and p′d′ is predominantly
negative. It was Sarkar (1995) who provided new insight into the stabiliz-
ing effect of compressibility. His findings were later confirmed by Simone
et al. (1997) and for mixing layers by Vreman et al. (1996). Sarkar (1995)
performed two DNS series A, B of homogeneous shear flow in which he
varied the initial values Mgo and Mto individually from run to run in order
to demonstrate for large nondimensional times St that

- the reduction in the growth rate of TKE as Mgo, respectively Mto,
increaseses, is primarily due to the reduced level of turbulence pro-
duction, while the response of explicit dilatational terms is much less
pronounced

- the stabilizing effect of compressibility is substantially larger in the
DNS series A than in series B. In series A, Mgo is increased via the
shear rate S while co and Mto are kept constant. In series B, on the
other hand, Mto was increased and Mgo was kept constant.

The different behaviour is a consequence of the fact that Mgo and Mto

are two independent parameters since their ratio Slo/uo can be varied via
lo, uo. We recall that the nondimensionalized TKE equation (123) had al-
ready indicated the relevance of Mgo with respect to the production term.
The DNS parameters of Sarkar’s series A are given in Table 5.

TABLE 5. Parameters of Sarkar’s (1995) series
A simulations.

Case Mgo Mto Reλo Pro (SK/ε)o

A1 0.22 0.40 14 0.7 1.8

A2 0.44 0.40 14 0.7 3.6

A3 0.66 0.40 14 0.7 5.4

A4 1.32 0.40 14 0.7 10.8

Reλo is the Reynolds number based on the velocity scale uo and on
Taylor’s microscale λo = uo/(ω′iω

′
i)o

1/2
. Sarkar (1995) writes the K-equation

(116) as an evolution equation for the growth rate Λ = (1/SK) dK/dt, viz:
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Λ = −2b12

(
1− εs

P

)
− εd − p′d′/ρ

SK
= −2b12 (1−Xε) , (234)

where b12 = ũ′1u′2/ (2K) is the Reynolds shear stress anisotropy (cf. eq.
(232)) and P the production term. The quantity

Xε =
(
εs + εd − p′d′/ρ

)
/P (235)

combines all terms other than the production term. Figure 12 contains
the time evolutions of Λ and −2b12. We note that these quantities attain
asymptotic values at large St which decrease as Mgo increases. The non-
dimensional production term, P/ (SK) = −2b12, is strongly inhibited when
the gradient Mach number is increased. Figure 13 shows the evolution of εs

in two different non-dimensionalizations, the evolutions of the explicit com-
pressibility terms and of Xε. One recognizes that the long-time behaviour
(St = 20) of all these terms is much less affected by the gradient Mach
number than the turbulent production (−2b12). The effect of Mgo on the
dilatational terms is small, but non-negligible. It is against intuition that
the sum

(
−p′d′/ρ + εd

)
is decreasing instead of increasing with Mgo. From

Xε at (St = 20) Sarkar (1995) concludes that the large reduction in the
value of Λ is almost wholly due to the large reduction in the magnitude of
the Reynolds shear stress anisotropy b12. He further comments, based on a
Helmholtz decomposition of the velocity field, that the solenoidal part of b12

is responsible for the reduced production rate. The effect of compressibility
on the b11 and b22 components of the anisotropy tensor is presented in figure
14. There is a systematic increase in the magnitude of these anisotropies
from case A1 to case A4 and it may be concluded that the pressure-strain
correlation tensor in the homogeneous shear flow is significantly changed
due to compressibility.

Pressure strain correlation tensor:

The trace of the pressure strain correlation tensor is the pressure-dila-
tation correlation p′d′. Sarkar (1992) showed that this correlation, obtained
from spatial averaging of instantaneous turbulence fields, oscillates in time
in the case of homogeneous shear flow. For low to moderate initial turbulent
Mach numbers the oscillations take place at fast (acoustic) time scales, but
do not contribute in a time-integrated sense to the evolution of K. By
decomposing the fluctuating pressure into incompressible and compressible
parts,
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p′ = pI′ + pC′ , (236)

Sarkar (1992) was able to attribute the oscillations in p′d′ to the com-
pressible component pC′d′ which does not need modelling due to its negligi-
ble integrated effect. The model he derived for pI′d′ will be discussed below.
Figure 15 illustrates the time evolution of p′d′ and of its compressible and
incompressible contributions for a flow with the parameters: Mto = 0.4,
(2SK/ε)o = 13.6, Reto = 441, ρrms,o = 0, χo = 0. prms,o was obtained from
a Poisson equation.

The motivation for the decomposition (236) was derived from the Pois-
son equation for p′. In incompressible turbulence such a Poisson equation
forms the basis for the derivation of pressure-strain models. Sarkar’s anal-
ysis starts from the following equation for the instantaneous pressure:

∂2p

∂xi∂xi
= − ∂2

∂xi∂xj
(ρuiuj) +

∂2ρ

∂t2
+

∂2τij

∂xi∂xj
, (237)

which is the divergence of the momentum equation (2) combined with
the continuity equation (1). Splitting each quantity into a mean and a
fluctuation,

ui = ui + u′i , p = p + p′ , ρ = ρ + ρ′ , τij = τ ij + τ ′ij , (238)

substituting these into (237), and subtracting the mean of this relation
gives after some algebra:

p′,jj = − 2ui,j

(
ρu′j

)
,i
− 2ui,i

(
ρu′j

)
,j
− 2ui,ij

(
ρu′j

)
−

(
ρu′iu

′
j

)
,ij

− ρ′ (ui,i)
2 − ρ′ui,juj,i − 2ui,j

(
ρ′u′j

)
,i
− 2ui,i

(
ρ′u′j

)
,j

(239)

− 2ui,ij

(
ρ′u′j

)
−

(
ρ′u′iu

′
j

)
,ij

+
D2ρ′

Dt2
+ τ ′ij,ij .

For convenience, commas are used to denote spatial derivatives. The
first four terms on the right-hand side of this equation depend explicitly on
ρ, terms five to ten depend on ρ′ and its gradients. Term eleven contains
unsteadiness and mean convection of ρ′ and the last term describes explicit
viscous effects. Now, the first four terms are similar to the source terms for
incompressible constant density flow. All remaining terms vanish in that
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case. Therefore, the fluctuating ’incompressible’ pressure is associated with
the first four source terms and satisfies the Poisson equation:

pI′
,jj = −2ui,j

(
ρu′j

)
,i
− 2ui,i

(
ρu′j

)
,j
− 2ui,ij

(
ρu′j

)
−

(
ρu′iu

′
j

)
,ij

. (240)

Evaluating this equation, Sarkar obtains pI′ . Since the DNS provides p′,
the compressible part is the difference of p′ and pI′ . That way the incom-
pressible and compressible contributions to p′d′ were obtained.
The split pressure fields pI′ , pC′ were later used by Blaisdell and Sarkar
(1993) to decompose the pressure strain terms. They discuss the deviatoric
part of the pressure strain tensor

p′s∗′ij = p′
(

s′ij −
1
3
s′kkδij

)
6) (241)

= pI′
(

s′ij −
1
3
s′kkδij

)
+ pC′

(
s′ij −

1
3
s′kkδij

)
,

based on DNS data for the flow parameters listed above, which corre-
spond to a high Mto / low Mgo case. Figure 16 contains the time evolutions
of the four relevant pressure strain components, each of them split as in-
dicated in equation (241). The discontinuities in the curves are due to the
remeshing process in the numerical simulations. The following observations
were made:

- The normal components of the three pressure strain tensors p′s∗′ij , pI′s∗′ij
and pC′s∗′ij behave in a way similar to p′d′, pI′d′ and pC′d′. The com-
pressible parts are oscillatory and have much smaller magnitudes than
the incompressible parts, consequently their contributions to the time
evolutions of the Reynolds stresses are smaller.

- While all the 1-1 components are negative, all the 2-2 and 3-3 com-
ponents are positive. The compressible 2-2 component is the weakest
among these normal components.

- The compressible part of the off-diagonal (1-2) component is, however,
not small and thus contributes significantly to the time evolution of
ρu′1u′2. Its magnitude reaches 75 % of that of the incompressible part.
Therefore, pC′s′12 needs modelling. Its positive sign indicates a reduc-
tion of the magnitude of ρu′1u′2 (cf. eq. (122)).

6The star (∗) replaces the (D) used in equation (8) to denote the deviatoric deforma-
tion tensor.
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From correlation coefficients of the decomposed pressure fluctuations
Blaisdell and Sarkar (1993) conclude that the two pressure fields pI′ and
pC′ are not statistically independent, which makes a proper independent
modelling of pI′s∗′ij and pC′s∗′ij difficult. Splitting the incompressible field pI′

into rapid and slow parts

pI′ = pR′ + ps′ , (242)

moreover shows that the compressible pressure pC′ is more closely asso-
ciated with the rapid incompressible pressure pR′ than with its slow part ps′ .

The role of linear processes in explaining structural changes due to in-
trinsic compressibility:

One of several important issues of the work by Simone et al. (1997)
is that linear rapid-distortion theory (RDT) is capable of predicting the
TKE growth rate and the Reynolds shear stress anisotropy in surprisingly
close agreement with DNS data. The authors solve the rapid distortion
equations (207) to (210) numerically and perform direct simulations for a
turbulent Mach number of 0.25 and various gradient Mach numbers. In
order to allow for comparison, they select two flow cases which are close to
Sarkar’s cases A3 and A4 (See table 5). Their distortion Mach number (Md)
definition uses the large-eddy lengthscale (2K)3/2 /ε instead of an integral
lengthscale based on a two-point velocity correlation. Otherwise it coincides
with the definition of Mg. Therefore, their values for Mdo are by a factor
of more than 6 larger than Sarkar’s values for Mgo. All the computations
(RDT and DNS) start from initial conditions which correspond to a good
approximation to isotropic turbulence in acoustic equilibrium.
The following findings may be listed:

- For small non-dimensional times (St < 4) compressibility acts desta-
bilizing. Only at later times (St > 4) Sarkar’s stabilizing effect of
Mgo(Mdo) is observed. This ’crossover’ behaviour which appears only
in sheared (not in compressed) homogeneous turbulence is explained
based on a semi-analytical analysis. The growth rate Λ, defined in
equation (234) is used to show these effects.

- The destabilizing/stabilizing effect of Mdo on the growth rate is nearly
completely due to the behaviour of b12, the non-dimensional production
term.

- A Helmholtz decomposition of the velocity field shows that the dilata-
tional part of the shear stress anisotropy, bd

12 is practically independent
of Mdo, while the solenoidal part bs

12 is dramatically decreased (with
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growing Mdo) over the entire range of St. The source for these struc-
tural changes of the solenoidal velocity fluctuations is the feedback of
the dilatational disturbances upon the solenoidal field (cf. eqs. (208),
(209)).

Figure 17 shows the time evolution of the TKE growth rate as ob-
tained from DNS data (top) and RDT (bottom). The solid lines indicate
the pressure-released limit which was discussed at the end of section 3.2.1
(eqs. (214)-(217)) and is given by

Λpr =
2St

3 + (St)2
. (243)

This result follows from eq. (216) for initially isotropic turbulence with
the normalized TKE, K(0) = 1. It represents an upper bound, found for
initial Mdo À 1. All curves exhibit the ’crossover’ feature which is due to
the coupling of solenoidal and dilatational velocity fields.
The DNS and RDT histories of b12 on top and bottom of figure 18 not only
confirm Sarkar’s (1995) observation that the non-dimensional production
term in eq. (234) is primarily responsible for the exponential growth rate
behaviour, but demonstrate that it can be extended to the regime of desta-
bilization (St < 4). The bottom figure presenting RDT results contains two
solid curves. The upper represents the pressure-released limit and the lower
the RDT result for incompressible flow. Both form upper and lower bounds
for the regime in which an increase in Mdo(Mgo) acts destabilizing and the
agreement between DNS and RDT is striking.
Histories of the solenoidal and dilatational contributions to the Reynolds
shear stress anisotropy, bs

ij and bd
ij , are shown in figures 19 and 20. While

the solenoidal component is dramatically decreased with increasing Mdo

over the entire range of St, the dilatational part is essentially unaffected
by compressibility. The structural changes are therefore almost exclusively
felt in the solenoidal field. RDT predicts almost independence of bd

ij on Md.
The large-St limits of both terms are certainly not properly captured by
the RDT, because it does not treat nonlinear effects.
Summarizing, the overall good agreement between DNS and RDT has to
be emphasized; which means that much of the structural effect of com-
pressibility can be fairly well reproduced by solving linear equations. This
remarkable result should be used for the development of improved turbu-
lence models.
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Dissipation rate tensor:

The work of Blaisdell et al. (1991) also provides information concerning
the dissipation rate anisotropy. Unfortunately, only one flow case is con-
sidered, so that the Mach number dependence of εij and of its solenoidal
and dilatational components εs

ij , εd
ij (cf. eqs. (81), (82)) can only be grasped

from comparison with the incompressible case. A few observations pertinent
to Blaisdell et al.’s run sha92 are:

- In the transport equations for the four Reynolds stresses (119 - 122)
only εd

22 is relevant and comparable in size to εs
22. All other compo-

nents of εd
ij are negligibly small. εs

12 becomes small as the simulation
progresses (in agreement with the incompressible case).

- The solenoidal dissipation rate anisotropy tensor, ds
ij = εs

ij/εs
kk − δij/3

is highly aligned with the Reynolds stress anisotropy tensor, bij . The
same is true for incompressible turbulence. The dilatational tensor, dd

ij ,
is not aligned with bij .

- However, dd
ij tends to be aligned with bd

ij . A physically interesting
result, but difficult to use for modelling of εd

ij .

These results show that the dilatational dissipation rate tensor is strong-
ly anisotropic. So, besides altering the structure of the Reynolds stress an-
isotropy directly (via inviscid mode coupling) and of the pressure strain
correlation tensor, intrinsic compressibility could lead to further modifica-
tion of the Reynolds stress tensor via structural changes of the dissipation
rate tensor.

3.2.3. Pressure-dilatation models
Zeman’s model and extensions:

Zeman’s (1991) model is based on the argument that for low turbulent
Mach number homogeneous isotropic and sheared turbulence the pressure-
dilatation correlation and the time derivative of the pressure variance are
closely connected. The corresponding relation had already been given in eq.
(225) and figure 7 had shown the excellent agreement between this relation
and DNS data. Introducing relation (225) into the K-equation for homoge-
neous isotropic turbulence and neglecting viscosity fluctuations gives:

d

dt

[
1
2

(
ρu′′i u

′′
i +

1
γp

p′2
)]

= −ρ (εs + εd) . (244)

The term in the square brackets is the total energy of turbulence. In
a state of acoustic non-equilibrium kinetic and potential energies are ex-
changed. Assuming the rhs of eq. (244) to be closed, a model is needed for
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the pressure variance. Zeman postulates that p′2 relaxes to an equilibrium
value on an acoustic time scale τa:

dp′2

dt
= −p′2 − p2

e

τa
, (245)

where τa = 0.13 (2K/εs)Mt.
The equilibrium value p2

e is related to K and Mt via the empirical model:

p2
e

2ρ2Kc2 =
1

γ2M2
t

p2
e

p2 =
αM2

t + βM4
t

1 + αM2
t + βM4

t

= f
(
M2

t

)
(246)

This model combines two assumptions: (1) the equilibrium ratio of com-
pressible to solenoidal kinetic energy is ud′

i ud′
i /us′

i us′
i = αM2

t + βM4
t , and

(2) in a state of acoustic equilibrium, the compressible potential and kinetic
energies are equal, i.e.

p2
e ≈ ρ2c2ud′

i ud′
i , (247)

(cf eq. (167)). The model (246) allows for a M4
t behaviour for small Mt

in agreement with the acoustic analysis of Sarkar et al. (1991b) and a M2
t

variation at higher Mach numbers. The complete model reads:

p′d′ = − 1
2ρ2c2

p′2 − γ2p2M2
t · f

(
M2

t

)

τa
, (248)

where τa = 0.13 (2K/εs) Mt and f
(
M2

t

)
is defined in eq. (246). The

constants α, β were originally given as α = 1, β = 2. Later Durbin and Ze-
man (1992) extended the model to account for one-dimensional compression
using RDT:

p′d′ = − 1
ρ2c2

(
1
2

dp′2

dt
+

γ − 1
2

p′2
∂ũi

∂xi

)
. (249)

The first term on the rhs is a slow relaxation term (see (245)) and the
second a rapid compression term. The coefficient in front of the rapid term
was slightly modified by Zeman and Coleman (1993). In an attempt to pro-
vide a pressure-dilatation model for boundary layers in quasi-equilibrium,
Zeman (1993) analyzed the pressure variance equation in more detail and
obtained:
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p′d′ = 2fρ (Mt) c2ũ′′i u
′′
j

K

ε

1
ρ

∂ρ

∂xi

∂ρ

∂xj
, (250)

where
fρ (Mt) = 0.02

(
1− exp

(
−M2

t /0.2
))

. (251)

Aupoix et al’s model:

Instead of using linear acoustics and scaling relations, Aupoix, Blaisdell,
Reynolds and Zeman (1990) derive a transport equation for p′d′ assuming
that the fluid behaves as a perfect gas, and model it. For homogeneous
turbulence the model reads:

dp′d′

dt
= −c1ρ

M2
t

τ

dK

dt
− c2

1
τ
p′d′ , (252)

with

τ = K3/2/ (εc) , c1 = 0.25 , c2 = 0.2 . (253)

Comparison of model predictions with DNS data for homogeneous iso-
tropic and sheared turbulence shows that the model works well for sheared
flows. Isotropic flows with various initial acoustics allowed for fair predic-
tions only due to the sensitivity of these flows to initial conditions.

Sarkar’s model:

Sarkar (1992) derived a model for homogeneous flows based on a Poisson
equation for the pressure fluctuations, a decomposition into incompressible
and compressible pressure fields and the fact that the time-integrated con-
tribution of the latter is negligible. Homogeneous flows have no density
gradients. Equation (240), therefore, simplifies to:

pI′
,jj = −2ρ ui,ju

′
j,i − 2ρ ui,iu

′
j,j − ρ

(
u′iu

′
j

)
,ij

. (254)

As is done in incompressible modelling, the first two rhs terms define a
rapid and the last term, a slow part, cf. the defining equation (242). The
rapid pressure fluctuation satisfies the Poisson equation:

pR′
,jj = −2ρ ui,ju

′
j,i − 2ρ ui,iu

′
j,j (255)
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and the slow fluctuation obeys

ps′
,jj = −ρ

(
u′iu

′
j

)
,ij

. (256)

Homogeneous flow is periodic in all spatial directions and thus allows
to solve eqs. (255) and (256) exactly by Fourier transforms

k2p̂R = 2i ρ kiui,j ûj + 2i ρ kjui,iûj , (257)

k2p̂s = −ρkikj ûiuj . (258)

Multiplying these relations by the complex conjugate (denoted by ∗) of
the Fourier transformed dilatation fluctuation, d̂∗ = −ikmû∗m, and integrat-
ing over all wavenumbers, gives:

pR′d′ = 2ρ ui,j

∫
kikm

k2
Ejmd~k + 2ρ ui,i

∫
kjkm

k2
Ejmd~k , (259)

ps′d′ = ρ

∫
kikjkm

k2

(
iûiuj û

∗
m − iûiu∗j ûm

)
d~k , (260)

where

Ejm =
(
ûj û

∗
m + ûmû∗j

)
/2 (261)

denotes the spectrum of the Reynolds stress tensor u′ju′m.
Sarkar (1992) has evaluated the integrals in the above equations us-

ing scaling arguments, truncated Taylor-series expansions and an order of
magnitude analysis to obtain:

p′d′ ≈ pI′d′ = 2α2Mtρ ui,jbijK + α3ρεsM
2
t +

16
3

α4M
2
t ρ ui,iK , (262)

where bij is the Reynolds stress anisotropy tensor. The model coef-
ficients are α2 = 0.15, α3 = 0.2. The last coefficient has not yet been
calibrated for flows with homogeneous compression. The second term on
the rhs of (262) accounts for the slow pressure part. Sarkar shows that the
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model provides good agreement with DNS data of homogeneous shear tur-
bulence when used in SOC predictions with the SSG pressure-strain model
and his εd-model. However, Sarkar also mentions that eq. (262) forms a
reasonable approximation for weakly inhomogeneous flows without walls.
In wall-bounded flows he expects p′d′ to be smaller because the rms rapid
pressure is a smaller fraction of 2ρK and the wall normal velocity fluctua-
tion is damped.

El Baz and Launder’s model:

Although this model is not derived from observations related to DNS of
homogeneous shear flow, it is included in this subsection for later reference.
The model is empirical and was designed in order to account for compress-
ibility effects in mixing layers. An attempt was made to treat the influence
of dilatational terms on the pressure-strain correlation within a Reynolds
stress modelling framework. Only the rapid part of this correlation was
modified with respect to the model for incompressible flow. The trace of
this term (denoted by φkk2) vanishes in incompressible flows. In compress-
ible flows it is generally nonzero and provides a finite pressure-dilatation
correlation which is of the form (see El Baz and Launder (1993)):

p′d′ = 3ρMt
2

(
4
3
K

∂ũi

∂xi
+ ˜ui

′′uj
′′ ∂ũi

∂xj

)
. (263)

Applications of the model to predict simple-stream and two-stream mix-
ing layers with sub- and supersonic convective Mach numbers provided
broadly satisfactory agreement with available experiments.

Ristorcelli’s model:

Ristorcelli (1997) has conducted a small Mt singular perturbation ex-
pansion of the compressible Navier-Stokes equations about a mean state
corresponding to homogeneous turbulence without mean dilatation. The
first order expansion of the continuity equation provides a diagnostic rela-
tion for the dilatation fluctuation of the form:

−γd′ =
∂p′1
∂t

+ vj
′ ∂p′1
∂xj

(264)

where vj
′ and p1

′ denote the incompressible velocity and pressure fluc-
tuations. Ristorcelli calls p1

′ the ’pseudo-pressure’ in order to distinguish it
from the pressure associated with the acoustic problem. Multiplying (264)
by p1

′, averaging and applying the homogeneity condition leads to:
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−2γp′1d′ =
dp′1

2

dt
. (265)

This relation is similar to that used by Zeman (1991) with the difference
that the ’pressure-dilatation’ formed with the incompressible part of p′ (cf.
also Sarkar (1992)) now equals the time rate of change of the variance of
the incompressible pressure. The advantage is that a model results which is
consistent with the low Mt

2 asymptotics. While Zeman’s model indicates
p′2 → 0 as Mt

2 → 0, Ristorcelli’s model guarantees that p′21 is a function of
K in the incompressible limit.

Without going into details of the model derivation it may be said that
Ristorcelli (1997) uses the theory of incompressible homogeneous isotropic
turbulence to obtain an exact expression for the time rate of change of p1

′2.
In the case of homogeneous sheared turbulence, scaling assumptions lead
to:

p′d′ = −χpdM
2
t εs


−ũ′′i u

′′
j

εs

∂ũi

∂xj
− 1


 . (266)

The model coefficient χpd depends on Kolmogorov’s scaling parameter
α and the relative strain rate (s̃ij s̃ij)

1
2 K/εs. The result (266) is similar to

that of Aupoix et al. (1990) and of Sarkar (1992). All three models allow
for a change in sign from isotropic to sheared turbulence. This change in
sign depends on Mt for Sarkar’s model. In the case of Aupoix et al.’s and
Ristorcelli’s models it simply depends on whether the K-production exceeds
dissipation. For more details of a model comparison we refer to Ristorcelli
(1998).
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Figure 1. Time evolution of compressible modes in acoustic equilibrium (isotropic tur-
bulence, increasing wavenumber from top to bottom). Taken from Simone (1995) by
permission.



MODELLING OF TURBULENCE IN COMPRESSIBLE FLOWS 63

Figure 2. Evolution of normalized density and pressure variances. Blaisdell et al’s (1991)
DNS of isotropic turbulence. Top: F0 = 1/40, large initial pressure fluctuations. Bottom:
F0 = 40, large initial dilatational velocity fluctuations. By permission of the authors.
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Figure 3. Influence of initial conditions on time evolution of dilatational fraction of
turbulent dissipation rate. Modes are uncoupled, therefore, curves do not approach each
other. Taken from Blaisdell et al. (1993) by permission.
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Figure 4. Craya-Herring local reference frame in wavenumber space. The polar vector

~n is parallel to the mean shear direction. The compressible mode is parallel to ~k. The

vorticity vector lies in the plane perpendicular to ~k.

Figure 5. The dilatational fraction of the dissipation rate gets independent of initial
conditions in homogeneous shear turbulence. Taken from Blaisdell et al. (1993) by per-
mission.
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Figure 6. Comparison of Sarkar et al.’s (1991) ——— , and Zeman’s (1990) model
– – – – for compressible dissipation rate with DNS data of Blaisdell et al. (1991) for
homogeneous shear flow. Taken from Blaisdell et al. (1991) by permission.

Figure 7. Time evolutions of p′d′ and dp′2/dt/(2γp). Confirmation of linear theory.
Taken from Blaisdell et al. (1993) by permission.
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Figure 8. Test of Zeman’s pressure-dilatation model. Pressure variance versus turbulent
Mach number. Taken from Blaisdell et al. (1993) by permission.

Figure 9. Development of mean polytropic coefficient. Independence of initial conditions.
n close to γ. Taken from Blaisdell et al. (1993) by permission.
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Figure 10. Solenoidal ( © ) and dilatational ( 4 ) Reynolds stress anisotropy tensors
for Blaisdell et al.’s DNS sha192. Taken from Blaisdell et al. (1991) by permission.

Figure 11. Comparison between compressible and incompressible time evolutions of K.
——— , – – – – incompressible homogeneous shear flow. — ·— · sha192 shows reduced
growth rate. Taken from Blaisdell et al. (1993) by permission.
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Figure 12. Growth rate reduction (top) by increased Mg0 is primarily due to reduced
non-dimensional production (bottom). Taken from Sarkar (1995) by permission.
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Figure 13. Evolution of εs, of explicit compressibility terms and of the sum of all terms
(except b12). The effect of Mg0 is for all terms lower than for b12. Taken from Sarkar
(1995) by permission.
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Figure 14. Effect of Mg0 on streamwise and transverse Reynolds stress anisotropies.
Taken from Sarkar (1995) by permission.
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Figure 15. Time evolution of p′d′ ( – – – – ) and its compressible ( · · · · · · ) and incom-
pressible ( ——— ) contributions. Taken from Blaisdell and Sarkar (1993) by permission.
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Figure 16. Time evolutions of the four deviatoric pressure-strain correlations, split as
in fig. 1b. Taken from Blaisdell and Sarkar (1993) by permission.
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Figure 17. Comparison between DNS (top) and RDT (bottom) for TKE growth rate.
Solid line: pressure-released limit. Destabilization for St < 4 and stabilization at later
times. Taken from Simone et al. (1997) by permission.
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Figure 18. Comparison between DNS (top) and RDT (bottom) for b12. Incompressible
and pressure-released limits (higher curve). Taken from Simone et al. (1997) by permis-
sion.
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Figure 19. Behaviour of solenoidal b12-component. Top: DNS, bottom: RDT. This
component is strongly affected by Md. Taken from Simone et al. (1997) by permission.
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Figure 20. Behaviour of dilatational b12-component. Top: DNS, bottom: RDT. It is
essentially unaffected. Taken from Simone et al. (1997) by permission.
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