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This paper focuses on the phenomenon of vorticity shedding in tube bundles and its relation to the 
acoustic resonance mechanism and the dynamic fluid forces exerted on the tubes. These 
phenomena are investigated by means of velocity, pressure and force measurements, as well as 
with the aid of extensive visualization of the unsteady flow structure at the presence and absence of 
acoustic resonance. Vorticity shedding excitation is shown to be generated by either jet, wake, or 
shear layer instabilities. The tube layout pattern (in-line or staggered), the spacing ratio, and 
Reynolds number determine which instability mechanism will prevail, and thereby the relevant 
Strouhal number for design against vorticity shedding excitation. Strouhal number design charts 
for vortex shedding in tube bundles are presented for a wide range of tube patterns and spacing 
ratios. With respect to the acoustic resonance mechanism, it is shown that the natural vorticity 
shedding, which prevails before the onset of resonance, is not always the source exciting acoustic 
resonance. This is especially the case for in-line tube bundles. This finding leads to the conclusion 
that separate "acoustic" Strouhal number charts must be developed to improve our ability to avoid 
acoustic resonances in new designs. To this end, the most recently developed charts of acoustic 
Strouhal numbers are provided. Finally, design charts of dynamic lift coefficients and bound 
spectra of turbulent fluid forces acting on the tubes are also presented. 
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1. Introduction 
 

Flow-induced vibrations of heat exchanger tube bundles often cause serious damages resulting 
in lost revenue and high repair costs. A wide range of flow-induced vibration and noise problems in 
heat exchangers is reviewed by Païdoussis (1982). The excitation mechanisms causing flow-
induced vibrations of tube bundles in cross-flows are generally classified as (a) tube resonance by 
vorticity shedding, (b) acoustic resonance, (c) turbulent buffeting and (d) fluid-elastic instability. 
This study focuses on the first three of these excitation mechanisms for the most common layout 
patterns of tube bundles. Figure (1.1) shows these patterns, classified into in-line (IL), parallel 
triangle (PT), normal triangle (NT), and rotated square (RS) arrays. Note that the normal square 
(NS) geometry is a special case of the general in-line pattern. As illustrated in Fig. (1.1), the parallel 
triangle array has staggered tubes, similar to NT and RS arrays. However, in contrast to the latter 
arrays, it allows the flow to proceed relatively freely along the lanes between adjacent tube 
columns, which is similar to the case of in-line tube pattern. For this reason, as will be shown in this 
paper, the flow excitations in IL and PT tube bundles display some common features, which are 
different from those observed in NT and RS arrays. 
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1.1. Excitation Mechanisms 

 
A typical vibration response of a tube in a bundle showing the main features of the excitation 

mechanisms is given in Fig. (1.2). In the following, the main features of each mechanism are briefly 
introduced. 

 

Normal Square (NS) Rotated Square (RS)

Normal Triangle (NT)Parallel Triangle (PT)

Normal Square (NS) Rotated Square (RS)

Normal Triangle (NT)Parallel Triangle (PT)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. Standard layout patterns of tube arrays and corresponding patterns of flow “lanes” for a 
selected pitch ratio (P/d = 1.4). 
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Figure 1.2. Typical vibration response of a tube in a bundle showing the characteristics of different 
excitation mechanisms. V1: critical velocity for tube or acoustic resonance; V2: critical 
velocity for fluid-elastic instability.  

 
1.1.1. Vorticity shedding 

Tube arrays in cross flow are excited, to varying degrees by periodic fluid forces, the frequency 
of which varies linearly with the flow velocity. This periodic excitation is variously known as: flow 
periodicity, Strouhal periodicity, or vorticity shedding. It appears in the turbulence and pressure 
spectra as a narrow band peak, which indicates that it is basically a periodic phenomenon. The 
turbulence spectra given in Fig. (1.3) illustrate the dependence of the vorticity shedding peak (fv) on 



 
the gap velocity (Vt). When the frequency of this vorticity shedding coincides with a mechanical 
resonance frequency of the tubes, resonant vibration and rapid tube damage can occur, especially in 
liquid flows. The flow velocity at which this occurs is known as the critical flow velocity for tube 
resonance, and the velocity range over which the tubes exhibit large amplitude vibration is referred 
to as the "Lock-in" range. The resonant response of a tube within the lock-in range is exemplified in 
Fig. 1.2. Although this type of excitation has been recognised since the 1950's, its cause has been 
disputed in the literature (Owen, 1965). However, recent studies have shown clearly that it results 
from periodic vortex formation in the space between the tubes (Weaver, 1993; Ziada et al., 1989; 
Ziada & Oengoeren, 1992). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1.3. Typical spectra of fluctuating velocity behind the third row of an in-line tube bundle 

illustrating the nature of vorticity shedding. (a) air tests; (b) water tests; Vt: gap flow 
velocity; fv: vortex shedding frequency. 

 
1.1.2. Acoustic resonance 

Acoustic modes of the tube bundle containers can also be excited by gas flow across the tubes. 
The excited modes are those consisting of acoustic standing waves in a direction normal to the tube 
axes and the flow direction, see Fig. (1.4). At resonance, an intense pure tone noise, which can 
reach 175 dB, is produced. This level is sufficiently high to disturb the operation of power plants 
and cause structural failure. The excitation mechanism of these resonances is strongly dependent on 
the tube layout pattern and spacing ratio. 

 
1.1.3. Turbulent buffeting 

Every tube bundle in cross flow is subjected to a broad band excitation due to the turbulence 
existing in the approach flow and that generated by the tubes of the bundle. Although the response 
of the tubes to turbulence excitation is generally small and does not cause short-term damage, it is 
the principal source of long term fretting wear at the tube supports. The rate of fretting wear, and 
therefore the lifetime of the equipment, depends on the amplitude of the turbulent response. Thus, 
in order to be able to estimate the life span of heat exchange equipment, which is especially 



 
important for nuclear power generation, one needs an expression of the turbulent fluid forces acting 
on the tubes. 

 
1.1.4. Fluid-elastic instability 

This excitation mechanism is initiated due to the coupling between the tube motion and the fluid 
forces. A small extraneous displacement of the tube, due to turbulence for example, alters the flow 
pattern, resulting in a change in the fluid forces, which leads to further displacement. The change in 
the fluid forces may be displacement dependent, causing stiffness-controlled instability, or vibration 
velocity dependent, causing negative damping instability. In either case, when the flow velocity 
exceeds a critical value, the vibration amplitude grows very rapidly as illustrated in Fig. (1.2). 
Fluid-elastic instability is distinguished from the other mechanisms in that the destabilizing fluid 
forces disappear in the absence of the tube motion. Moreover, tube and acoustic resonance 
vibrations occur over a certain range of flow velocity, whereas tube instabilities are triggered 
abruptly when the flow velocity exceeds a critical value. This instability mechanism is outside the 
scope of this paper and interested readers are referred to the review paper by Price (1993). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4. Schematic presentation of the wind tunnel test section illustrating the distributions of 
acoustic pressure associated with the first and second acoustic modes. P(f1 ): pressure 
distribution of first acoustic mode; P(f2): second mode. 

 
1.2. Brief Outlines of Contents 

 
Investigation of the vorticity shedding excitation in tube bundles and its relation to acoustic 

resonance excitation and generation of dynamic fluid forces in the tubes requires a spectrum of 
experimental techniques to measure fluctuating flow velocity between the tubes, pressure 
fluctuations on the surface of the tubes, dynamic fluid forces acting on the tubes, and sound 
pressure on the test section wall. Additionally, flow visualization of unsteady flow structures at 
different locations within the bundles and the phase of these flow activities is essential to reveal the 
global feature of flow instability and its dependence the tube layout patter and spacing ration. The 
experimental techniques used to investigate these phenomena are described briefly in the next 
section. For further details the reader is referred to Ziada & Oengoeren (1992, 1993, 2000) and 
Oengören & Ziada (1992a, 1992b, 1998). 

 



 
The normal triangle array pattern will first be discussed. Attention will then be focused on the 

in-line geometry, which exhibits unsteady flow features distinctively different from those observed 
for normal triangle arrays. The parallel triangle array is then discussed and is shown to be more 
complex as its geometry combines features from the in-line and the normal triangle patterns. The 
last array to be considered is the rotated square geometry, whose flow characteristics have some 
similarities with those of normal triangle arrays. In general, the geometry of investigated bundles 
will be classified into small, medium and large tube spacings. This is because the flow development 
in each of these groups exhibits similar features. Finally, typical data of dynamic force coefficients 
and bound spectra of turbulent fluid forces on the tubes are given for selected cases. 

 
2. Experimental Techniques 

 
Two different types of tests were conducted to investigate different aspects of the flow field 

inside the bundle. The majority of bundles were investigated in a wind tunnel to allow the excitation 
of acoustic resonance. Thereafter, selected bundles were investigated in a water channel to facilitate 
flow visualization. During the water tests, favourable conditions were provided to stimulate self-
excited resonance of free surface waves in order to be able to simulate the acoustic resonance 
observed in the wind tunnel. In the following, the main features of the air and water tests, together 
with the measuring technique are described. 

 
2.1. Air Tests 

 
The air tests were conducted in an open-circuit wind tunnel facility. The test-section was made 

of 10mm thick steel plates and had a cross-section of 200mm wide and a height of about 450mm. 
The upstream turbulence existing in the flow approaching the test-section was less than 1 %. An 
overall view of the test-section, for an in-line geometry, is shown in Fig. (1.4). Generally, both the 
pitch and the tube diameter were changed to obtain the required geometries with the maximum 
possible number of tubes in the test-section for a better representation of actual tube bundles. The 
tubes were made of acrylic rods and were rigidly fixed to the sidewalls of the test-section so that a 
modification of the flow structure through a coupling with the tube motion was avoided (Oengoeren 
& Ziada 1992b). Specially instrumented cylinders were used to measure the local pressure 
fluctuations on the tubes. A sketch illustrating this set-up is shown at the top of Fig. (2.1). The 
fluctuations were detected by connecting a microphone to a pressure tap 1 mm in diameter, drilled 
on the surface of the tube. In the preliminary tests, the spectra of the microphone measurements 
were compared with those of a hot wire located in the close proximity of the pressure tap for 
various flow velocities and it was verified that the pressure spectra measured with this set-up 
resemble the hot-wire spectra. The dynamic force measurements were made by means of the set-up 
shown at the bottom of Fig. (2.1). It is composed of a rigid cylinder and two piezo-electric 
transducers that are capable of measuring dynamic forces in the lift and drag directions 
simultaneously. This set-up is described in detail in Oengoeren & Ziada (1992b). 

 
2.2. Water Tests 

 
The water tests were carried out in a closed-circuit water channel facility. A closed surface 

insert test-section containing the tube array was utilized to avoid the effect of free surface 
oscillations. The streamwise turbulence level in the flow 20 tube diameters upstream of the first row 
was less than 0.1 %. The tubes were fixed vertically in the test-section. A more detailed description 
of the water test facility can be found in Oengoeren & Ziada (1992a). The resonance of the acoustic, 
transverse standing waves in the wind tunnel was simulated in the water tests by free surface waves 
in the transverse direction of the water channel. This was achieved by reducing the water level in 
the channel to allow free surface to form, but this was made only when the resonance mechanism 
was being investigated. The details of this technique including the analogy of these free surface 



 
waves and acoustic resonances have been discussed in detail by Ziada & Oengoeren (1992, 1993). 
Dye injection technique was used to visualize the flow structure in the arrays. The images of the 
flow field were recorded by a video system. The photos presented in this paper were taken from the 
screen of the video system. Further details of the set-up and the experimental technique used in 
water tests can be found in Ziada & Oengoeren (1992, 1993) and Oengoeren & Ziada (1992a). 
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Figure 2.1. Sketches illustrating the instrumented cylinders used to measure local pressure (top) and 
dynamic forces (bottom) on the tubes of the array.  
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Figure 2.2. Sketches illustrating: (a) front few of the water channel test section in which the tubes 
are vertically mounted; (b) first mode shape of free surface wave resonance; (c) second 
mode shape of free surface wave resonance. 

 



 
2.3. Instrumentation 

 
The pressure fluctuations on the tubes as well as the SPL on the walls of the wind tunnel were 

measured by means of 1/4" condenser microphones. The velocity fluctuations, both in air and in 
water, were measured by means of a hot-film anemometer system. The capability of moving the 
microphones and the hot-film to any location within the arrays enabled extensive phase and 
coherence measurements which provided information about the spatial characteristics of the flow 
structure. Piezo-electric transducers were used to measure the dynamic forces on the tubes. The data 
acquisition and analysis were made either by a 16-channel computer or by a two-channel real-time 
analyser. Each spectrum obtained was an average of 50 samples in air tests. This number was 
increased to 100 in case of coherence and phase measurements. In the water tests, 20 samples were 
used. 

 
3. Normal Triangle Tube Arrays 

 
3.1. Overview of Flow Periodicity 

Figure 3.1. Relevant parameters 
of normal triangle array

Figure 3.1. Relevant parameters 
of normal triangle array

 
Figure (3.1) shows a normal triangle array geometry for 

which the spacing (or pitch) ratio is defined as Xp = P/d. 
Typical pressure spectra for a small, an intermediate, and a 
large pitch ratio, Xp = 1.6, 2.08 and 3.41, respectively, are 
given in Fig. (3.2). For each case, spectra of rows 1-5 taken 
during air tests are illustrated. Three frequency components 
are observed at the first row for the cases Xp = 1.6 and 2.08 
and two components are apparent in the case of Xp = 3.41. 
These components are referred to hereafter as fv2, fvl and fvd, 
from the highest to the lowest, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3.2. Typical pressure spectra measured at rows 1 to 5 and (a) on top wall of the wind tunnel, 

(b) and (c) on the tubes of normal triangle arrays in air flow. (a) Xp=1.61, R=49600; (b) 
Xp=2.08, R=26300; and (c) Xp=3.41, R=6000. 

 



 
 
 
As observed in Fig. (3.2.a), which belongs to the small spacing ratio, the components fvd and fvl 

have relatively broader frequency bands as compared with the peak fv2. The peak fvd becomes hardly 
discernible at the second row. The peak fv2 also weakens substantially at the inner rows and totally 
disappears at row 4. Only the fvl component is sustained at rows from 1 to 5. It should be mentioned 
at this point that the spectra for this case (Xp = 1.6) were measured with a microphone located on 
the top wall of the test-section. Therefore, the responses of the first and the second acoustic modes 
were also present in addition to the vortex-shedding peaks. These acoustic responses were removed 
from these spectra and replaced by dotted lines to avoid a possible confusion. The pressure spectra 
of the intermediate spacing case, Fig. (3.2.b), were measured by means of a microphone connected 
to a pressure tap on the tube, as shown in Fig. (2.1.a). They show similar characteristics as the small 
spacing case; however, the peak fv2 is stronger and is sustained somewhat deeper inside the array up 
to the fourth row. The pressure spectra of the large spacing array contain only two frequency 
components, fv1 and fv2, at the first row. In contrast to the previous two cases, both components are 
rather broad-banded, even at the front rows. However, the development of these peaks towards the 
inner rows is similar to the other cases.  

 
The frequency component fvd appears to be relatively broad-banded and tends to disappear as 

one of the other peaks becomes weaker. In fact, a close look at the spectra of the intermediate 
spacing array shows that fvd is exactly equal to the difference between fv2 and fv1 (fvd = fv2 - fv1). 
These features suggest that the component fvd results from nonlinear interaction between fv1 and fv2. 
This phenomenon of nonlinear interaction between different frequency components in separated 
flows has been reported by many researchers; see, for example, Miksad (1973). The fvd component 
was studied carefully in all cases tested and it was verified that it stems from the interaction 
between the two components fv1 and fv2, and not from another periodic flow structure. 

 
The results presented in the foregoing illustrate that the flow activities in the three arrays exhibit 

some similarities. However, it should also be emphasized that these results are based on some rather 
selective data. These data were obtained utilizing different measurement techniques as well as 
different Reynolds numbers. An examination of the data provided in the literature for similar 
geometries shows that some of the features mentioned above have been overlooked because of 
differences in the test conditions, measurement techniques and/or the location of measurements. In 
order to establish a baseline for normal triangle tube arrays, the tests of each of the above 
geometries were carried out according to a standard procedure by Oengoeren & Ziada (1998). The 
objective was to study the effects of Reynolds number and row depth on the vortex-shedding 
process and the dynamic forces exerted on the tubes. In the following, these issues are discussed in 
some detail for intermediate tube spacing and then briefly for small and large spacing ratios. 

 
3.2. Normal Triangle arrays with Intermediate Tube Spacing 

 
3.2.1. Effect of Reynolds number on vortex shedding 

 In order to illustrate the effect of Reynolds number on the vortex-shedding phenomenon, the 
spectra of the pressure fluctuations on a tube in the second row and the spectra of the velocity 
fluctuations detected by a hot-film located behind rows 1 to 5 are given in Fig. (3.3). These 
measurements cover a Reynolds number range of 17300-52000. Only one vortex-shedding peak, fv2, 
is observed at low Reynolds numbers (Re < 22200). It corresponds to a Strouhal number of 0.4. As 
the Reynolds number is increased to 22200, this peak becomes weaker and a second peak, fv1, 
appears in the spectrum with a Strouhal number of 0.26. The peak fv1 is rather weak and broad-
banded at this Reynolds number. With further increases in the Reynolds number, the enhancement 
in fv1 and the decrease in fv2 components continue. At a Reynolds number of 32000, the amplitude 
of fv1 becomes significantly stronger than fv2. As this process of frequency change continues, a third 



 
peak, fvd = fv2 - fv1, corresponding to a Strouhal number of 0.14 emerges in the pressure spectra for 
Reynolds numbers over 22200. It is interesting to note that the difference component fvd reaches its 
strongest level at the second row and when both components fv1 and fv2 are relatively strong. The 
modulation of the frequency of vortex shedding behind row 2 vanishes when the Reynolds number 
is increased above 45000, where the vortex shedding transforms into a single-frequency event at the 
lower-frequency component fv1 (S = 0.26). A typical pressure spectrum measured in this range is 
given in Fig. (3.3.a) for Re = 52000. Similar pressure and hot-film measurements carried out on the 
first row showed that the same transformation also occurs behind this row. This means that the 
vortex shedding phenomenon becomes a single-frequency event with a Strouhal number of 0.26 
throughout the whole bundle in the high Reynolds number range. 
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Figure 3.3. Spectra of (a) pressure fluctuations measured on a tube in the second row for different 

Reynolds numbers and (b) velocity fluctuations measured by a hot-film behind rows 1 to 5 
of the intermediate spacing array (Xp = 2.08). 

 
From the results presented in this section, it is clear that the multiple frequency nature of vortex 

shedding is strongly Reynolds number dependent. It is particularly interesting to note that the flow 
activities in this array transform into a single-frequency phenomenon with a frequency of fv1 in the 
Reynolds number range of Re > 50000.  

 
3.2.2. Effect of row number on vortex shedding 

Figure (3.3.b) shows the effect of row number at Re of 34800. Additionally, pressure spectra 
measured on the first five rows were previously presented in Fig. (3.2.b). As observed in these 
figures, the vortex shedding peaks fv1 and fv2 and the associated difference component fvd exist in 
both pressure and velocity spectra in the front rows. The component fv2 becomes gradually weaker 
as one proceeds towards the inner rows and ceases to exist rather promptly after the third or fourth 
row. In contrast to fv2 the component fv1 exists in the spectra for the whole bundle at this particular 
Reynolds number range, being the only peak existing after the fourth row.  



 
From the foregoing results, it may be suggested that data obtained in tube bundles having less 

than five rows may not be representative. At relatively low Reynolds numbers, the changes in the 
vortex-shedding behaviour might be displayed only partly in the results. On the other hand, 
measurements made solely on rows deeper than the fourth in deep tube bundles may not reflect all 
aspects of vortex shedding, either. In such cases, the multiple frequency nature of vortex shedding 
and its transformation to a single-frequency event may be overlooked.  

 
3.2.3. Nature of vorticity shedding 

In order to investigate the local and global characteristics of the vortex-shedding process that 
dominates over the whole bundle, the phase and the coherence distributions of the fluctuation 
velocity behind several rows were measured in detail as functions of the vertical distance, y. A 
diagram showing the measurement locations is given at the bottom of Fig. (3.4). A length of two 
vertical pitches was traversed behind rows 3, 5, 7 and 9 to account for the relation between the flow 
patterns in different columns as well as in different rows so that an overall spatial image of the flow 
structure could be obtained.  

 
As shown in Fig. (3.4), the fluctuating pressure signal detected by means of a pressure tap 

located at the mid-span of a tube in the fifth row was used as a reference in all the coherence and 
phase measurements of the velocity fluctuations. The phase of the velocity fluctuations at the 
frequency component fv1 measured behind rows 3, 5 and 7 for a velocity of 21.2 m/s (Re = 25500), 
are plotted in Fig. (3.4.al). The positions  y/P = 0, 1 and 2 correspond to the centrelines of the tube 
wakes. All the phase data of fv1 belonging to different rows produce a single distribution as observed 
in this figure. This means that the flow structures behind the three rows are identical and 
synchronized (because the associated phase distributions are similar and are also in phase with each 
other). Moreover, the data belonging to neighbouring tube wakes (or flow lanes) have identical 
distributions, e.g. the phase distribution in flow lane 11 is identical to that in flow lane 12. This 
indicates that the flow pattern is identical and synchronized in the wakes of neighbouring tubes in 
each row. These rather remarkable features illustrate the fact that the flow patterns in the wakes of 
all tubes in rows 3, 5 and 7 are identical and synchronized. This flow pattern is identified as 
alternating vortex shedding from the tubes when the phase in each tube wake is examined (a phase 
jump of 180º occurs at the centre of each wake). 

 
 The coherence distributions associated with the aforementioned phase distributions are given in 

Fig. (3.4.a2). The distributions belonging to all rows are similar. The coherence drops to a 
minimum at the centres of the tube wakes and the flow lanes, where a phase jump occurs because 
the vortices at the opposite sides of these locations have opposite circulations, see the diagram at the 
bottom of Fig. (3.4). The coherence increases rapidly away from these locations, because the 
velocity fluctuations become better defined, and it reaches a maximum of 0.75. A high coherence 
between the velocity fluctuations at different locations indicates that these fluctuations are 
associated with the same (global) flow phenomenon. The phase and coherence measurements were 
repeated for rows 5, 7 and 9 at a higher velocity of 33 m/s (Re = 39600) in order to verify this very 
organized flow behaviour. The results are given in Fig. (3.4.b). All the characteristics of the 
previous low Re case are evident also in this case, indicating that the same flow structure exists at 
high Reynolds numbers. Additionally, a significant enhancement is observed in the coherence level 
at this velocity, reaching a maximum of 0.98 in comparison with a level of 0.75 in the low velocity 
case. Both cases are clearly away from the range of acoustic resonance (Oengoeren & Ziada, 1998). 
Therefore, this globally synchronized flow structure cannot be attributed to a coupling mechanism 
with acoustic standing waves, but rather to a fluid dynamic mechanism that gains in strength as the 
Reynolds number is increased. The impingement of the shed vortices on the downstream cylinders 
may well be the source of the fluid dynamic mechanism that enhances this global mode of vortex 
shedding; for more details see Rockwell & Naudascher (1979). 

 



 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4. Distributions of phase and coherence of velocity fluctuations at fvl for velocities of (a) 
21.2 m/s (Re = 25500) and (b) 33 m/s (Re = 39600) behind rows 3, 5, 7 and 9. The pressure 
fluctuation on a tube located in the fifth row was taken as the reference signal for all 
measurements. Air tests: ○, row 3; ●, row 5; ◊, row 7; ▲, row 9. 

 
 

  
 
 
 
 
 
 
 
 
 
 

Figure 3.5. Distributions of coherence and phase of vortex-shedding component fvl as functions of 
row depth at a velocity of 22 m/s (Re = 26400). The signal of row 2 was taken as the 
reference signal for all other rows. 

 



 
Finally, Fig. (3.5) shows the coherence and the phase difference between the second and the 

deeper rows for the vortex shedding component fv1. These results were obtained by means of two 
microphones located on the top wall of the test-section. It is seen that the vortices shedding from all 
rows are correlated and are in phase with each other implying a total synchronization of vortex 
shedding in the bundle. 

 
3.2.4. Flow visualization 

 The flow visualization study was carried out in the water channel as described in Section (2). 
First, the frequency of vortex shedding was measured when the free surface in the test-section was 
covered, thereby precluding the formation of free-surface waves. The results of Strouhal number 
obtained by means of a hot film located at different rows were found to be similar to those obtained 
from the air tests (for more details see Oengoeren & Ziada, 1998). 
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Figure 3.6. Flow structure behind the first two rows of an intermediate spacing normal triangle tube 
bundle (Xp = 2.08; d = 25 mm) in water for Reynolds numbers of (a) 1000, (b) 1800, (c) 
5000, and (d) 7000. 

 
A series of typical flow visualization photographs are given in Fig. (3.6), showing the flow 

structure behind the first and the second rows in a Reynolds number range of 1000 < Re < 7000. 
Alternating vortices are shed from the tubes of the first row. They then proceed into the flow lanes 
of the second row and promote vortex formation from the tubes of this row. The same flow pattern 
is observed in all the photographs despite the large range of Reynolds number. Symmetry is 
observed in the vortex-shedding pattern with respect to the centre of the tubes in the second row. 
However, this symmetric pattern occurs only intermittently and the flow switches to an 
antisymmetric mode as well. The mechanism of vortex shedding from the tubes of the first two 
rows is further delineated in Fig. (3.7), which shows the time series of the symmetric and the 
antisymmetric patterns for a Reynolds number of 1800. As the vortices in the wakes of the first tube 
row are convected downstream, they become distorted and weaker. When they reach the gap 
between the second row tubes, the boundary layers of these tubes erupt and form vortices; see the 
top left photograph of Fig. (3.7). These vortices remain attached to the tubes while being formed 
and then join the approaching vortices from the first row to form mushroom-shaped vortex pairs, 



 
which finally impinge on the third row tubes. Downstream of the third row, the flow activities do 
not seem to have any organized nature at this Reynolds number.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7. Time sequence of the two transient modes of vortex shedding behind the first two rows 
of the intermediate spacing normal triangle array for Re = 1800. Water tests; Xp = 2.08; d = 
25 mm; (a) symmetric and (b) antisymmetric pattern of vortex shedding. 

 
As can be seen from the time series of Fig. (3.7), the pattern of vortex shedding from the tubes 

in the second row depends on the phase between the two upstream wakes. Symmetric vortex 
shedding occurs when the upstream wakes oscillate out of phase. This symmetric shedding from 
any tube in the second row is out-of-phase with that of the neighbouring tubes; see the symmetric 
time series in Fig. (3.7). Antisymmetric vortex shedding from the second row tubes takes place 
when the upstream wakes oscillate in phase; see Fig. (3.7.b). It is noteworthy that the symmetric 
pattern was much more persistent than the antisymmetric one. These results suggest that vortex 
shedding from the first and the second rows occurs at the same frequency, which is the high-
frequency component fv2. This was confirmed by counting the frequency on the video monitor. 

 
In order to show the vortex shedding pattern at high Reynolds numbers, where a single- 

frequency vortex shedding phenomenon occurs, the flow was visualized inside an array of larger 
diameter tubes. With this arrangement, the visualization of the flow at a Reynolds number of 35500 
was possible. As shown in Fig. (3.8), a persistent alternating vortex shedding was observed behind 
the third row. Most importantly, counting of these vortices on the video has shown that they 



 
correspond to the frequency component fv1, which is in agreement with the hot-film spectra 
measured behind this row. A pattern belonging to fv2 component has not been observed in the flow 
visualization photographs taken behind this row at this Reynolds number. 
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Figure 3.8. Alternating vortex shedding behind row 3 of a normal triangle array. Xp= 2.08; 
d=60mm; Re= 35500. 

 
3.3. Normal Triangle Arrays with Large Tube Spacing 

 
3.3.1. Effect of Reynolds number on vortex shedding 

The effect of Reynolds number on vortex shedding in a widely spaced normal triangle array 
(Xp= 3.41) is illustrated in Fig. (3.9). Typical spectra of the velocity fluctuations behind the second 
row measured in airflow are given in Fig. (3.9.a). The two frequency components appearing in these 
spectra are called fvl and fv2, according to the definitions of these components in Fig (3.2). There are 
three Reynolds number ranges where different vortex shedding characteristics are observed. At low 
Reynolds numbers, Re < 6600, both fvl and fv2 exist and follow the Strouhal number lines 0.2 and 
0.28, respectively. In this range, the fv2 component is significantly weaker and has a relatively 
broader band than fvl. At high Reynolds numbers, Re > 18200, only the vortex-shedding component 
fvl remains in the spectra. In fact, this component becomes narrower and stronger as the Reynolds 
number is further increased. The spectra belonging to the range of 6600 < Re < 18200, show that 
vortex shedding changes from a multi-frequency to a single-frequency phenomenon. Within this 
transition range, the vortex-shedding component fv2 is gradually shifted towards the component fvl 
as the Reynolds number is increased. The transition is completed as fv2 unites with fvl. To illustrate 
this process better, the Strouhal numbers of both components are plotted as functions of the 
Reynolds number in Fig. (3.9.b), including both the air-and water-test data. The shift of fv2 towards 
fvl is depicted clearly in this plot. Although the flow velocity in the air tests is about two orders of 
magnitude higher than that in the water tests, the transition range in both cases occurs at the same 
Reynolds number. 

 
3.3.2. Effect of row number on vortex shedding 

As in the previous case, similar measurements of the flow activities in a range of 6600 < Re < 
26300 (Oengoeren & Ziada, 1998) showed that at the lower end of this range the vortex shedding 
has a multi-frequency nature containing peaks at fvl and fv2 behind the first three rows. However, the 
peak fv2 disappeared after the fourth row, leaving fvl as the only peak existing. This result suggests 
that the multi-frequency character of vortex shedding is confined not only to low Reynolds numbers 
but also to the upstream rows.  

 
On the other hand, the single-frequency phenomenon appears behind all rows at the higher end 

of the Reynolds number range, with a frequency of fvl. Although this result is expected for the inner 
rows in accordance with the results of the previous case, it is interesting to note that, at high 



 
Reynolds numbers, vortex shedding from the first row becomes a single-frequency phenomenon 
and occurs at the low-frequency component fvl. This trend is similar to that observed for the 
intermediate spacing case; however, it starts here at a substantially lower Reynolds number. 
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Figure 3.9.  Transition process of frequency components in the large spacing array (Xp = 3.41).
(a) Frequency spectra of velocity fluctuations measured behind the second row in air, and 
(b) strouhal number of vortex shedding measured in air and in water for 2700 < Re < 31000. 

Air tests;                   water tests. 

Figure 3.9.  Transition process of frequency components in the large spacing array (Xp = 3.41).
(a) Frequency spectra of velocity fluctuations measured behind the second row in air, and 
(b) strouhal number of vortex shedding measured in air and in water for 2700 < Re < 31000. 

Air tests;                   water tests. 

 
3.3.3. Flow structure 

The photograph given in Fig. (3.10) depicts typical flow structures behind the first two rows of 
the large spacing array for a Reynolds number of 4800. Well-defined alternating vortices are shed 
from almost every tube of these rows. At this Reynolds number, the dominance of an antisymmetric 
mode of flow pattern is evident. Moreover, this mode is persistent for all times and a switch to a 
symmetric mode does not occur. The frequency of vortex shedding from the first two rows was 
counted from the video monitor. Vortex shedding from the first row occurred at the high-frequency 
component fv2, but that from the second row occurred at the low-frequency component fv1. Weaver 
et al. (1993) reported similar observations for rotated square arrays; i.e., the first-row shedding 
occurs at fv2 and that in the second row at fv1. Since the transverse gap of rotated square arrays is 
larger than that of normal triangle arrays with similar pitch ratios, the first-row vortices interact less 
with the second-row tubes, and hence vortex shedding from the first two rows at different 
frequencies is more likely in rotated square arrays. It is therefore logical to see similar features in 
normal triangle arrays when the pitch ratio is sufficiently increased. The air-test results of this large 
spacing array have shown that a single-frequency vortex shedding sets in at Reynolds numbers 
higher than approximately 12000. By utilizing another test-section with larger diameter tubes, d = 
31 mm, the Reynolds number range was increased over 12000 in order to visualize this single-
frequency structure. In Fig. (3.11), the flow structure behind the first three rows is shown for a 
Reynolds number of 13800. There exist not only well-defined vortices behind the tubes of at least 
the first three rows, but they also seem to shed in phase with each other. By means of hot-film 



 
measurements and video counting, these vortices were found to have a shedding frequency 
corresponding to the lower vortex-shedding component fv1. It should be noted that the hot-film 
signal was superimposed on the video screen and then used as a timer to piece together the 
photographs shown in Fig. (3.11). 
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Figure 3.10. Typical flow patterns behind the first two rows of a large spacing normal triangle array 
for Re = 4800; Xp = 3.41, d = 16mm. 
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Figure 3.11. Overall view of the flow structure in a large spacing normal triangle array for 
Re=13800; Xp = 3.41, d = 31mm. 

 
3.4. Normal Triangle Arrays with Small Tube Spacing 

 
3.4.1. Nature of vorticity shedding 

Typical spectra of pressure fluctuation on rows 1-4 of a small spacing normal triangle array 
(Xp=1.61) are given in Fig. (3.12) for a Reynolds number of 53300. A narrow-band peak at a 
Strouhal number of approximately 0.6 is clearly seen in the spectra. This Strouhal number, which 
corresponds to the vortex-shedding component fv2, is very close to that measured for the same 
geometry by Zukauskas & Katinas (1980). The background turbulence level increases gradually as 
the flow progresses into the bundle; however, no other distinct peaks that can be attributed to 
periodic flow activities can be seen in these spectra. A broad-band peak can be seen at a Strouhal 
number of about 0.15. Despite its broad-band nature, this peak does not seem to be generated by the 
turbulent buffeting mechanism because it exists at the second row only and within a certain range of 
Reynolds number.  

 
The pressure spectra given in Fig. (3.12) seem to be somewhat different from those presented in 

Fig. (3.2.a), which displays a better-defined low-frequency component, fvl. It should be recalled that 
the results of Fig. (3.2.a) were obtained by means of a microphone on the top wall of test section. 



 
This microphone senses the integrated effect of the pressure fluctuations over the area of the 
sensing element, which is substantially larger than the pressure taps on the tubes. The enhancement 
of the peak at fvl in the microphone signal is therefore attributed to an improved coherence and 
correlation length of the pressure fluctuation at this frequency. Undoubtedly, the low-frequency 
component fvl becomes weaker, broader and develops at higher Reynolds number in this small 
spacing array. It seems to be associated with the development of the flow turbulence at the 
downstream rows. 
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Figure 3.12. Spectra of pressure fluctuations on the tubes of rows 1 to 4 at Reynolds number of  
Re = 53300. Air tests of a normal triangle array with small spacing ratio; Xp = 1.61 

 
3.4.2. Flow structure 

Figure (3.13.a) displays the flow structure behind the first three rows at Reynolds number of 
3050. Well-defined but relatively weak vortices are shed behind the first row. They become rather 
strong behind the second row despite their relatively small scale. However, they are diffused at the 
third row, and vortex-like structures totally disappear downstream of this row. As in the case of 
intermediate spacing, alternating vortex shedding occurs behind the first row and symmetric 
vortices are shed from the second row. This pattern does not seem to be intermittent in this array, as 
opposed to the observations of the intermediate and the large spacing arrays. The flow structure was 
observed to remain the same when the Reynolds number was increased up to 15250, Fig. (3.13.b). 
The video counting of the frequency of vortex shedding from rows 1 and 2 verified that they are fv2 
vortices and correspond to the Strouhal number S2 = 0.55.  

 
3.5. Acoustic Resonance of Normal triangle arrays 

Since the vortex-shedding frequency increases linearly with the flow velocity, it may coincide 
with the frequency of an acoustic mode. Near the condition of frequency coincidence, powerful 
acoustic resonances may be produced. The acoustic modes of interest are those consisting of 
standing waves in a direction normal to the flow and the tube axis. As shown in Fig. (1.4), the first 
acoustic mode, fa1, consists of half a wavelength (λ/2) and the second, fa2, constitutes a full 
wavelength (λ) between the top and the bottom walls of the wind tunnel. 

 
A typical example for normal triangle arrays is illustrated in Fig. (3.14), which shows the 

acoustic response of a large spacing array with Xp=3.41. An acoustic resonance is initiated as the 



 
vortex-shedding frequency fv1 coincides with the first acoustic mode frequency, fa1, at a velocity of 
42 m/s. A lock-in of the vortex- shedding frequency with the acoustic resonance frequency occurs 
in the velocity range of 42-51 m/s. Within this range, the SPL increases rapidly until it reaches a 
level of 156dB. 
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Figure 3.13. Typical flow patterns behind rows 1-3 for Reynolds numbers of (a) Re = 3050 and (b) 
Re = 15250 in a small spacing normal triangle array. Xp = 1.61, d = 60mm. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14. Sound pressure level (SPL) of the vortex shedding component fv1 and the first acoustic 
resonance mode fal, and the corresponding frequency distributions as functions of gap 
velocity Vg in a large spacing normal triangle array. 

 



 
It should be noted that in this particular case of large spacing, the higher vorticity shedding 

component, fv2, did not excite acoustic resonance. The ability of this component to excite acoustic 
resonance increases substantially as the tube spacing ratio is decreased. In fact, for the other tube 
spacings discussed above, Xp = 1.61 and 2.08, the acoustic modes were excited by the vortex 
shedding component fv2 (for further details see Oengoeren and Ziada, 1998). For this reason, design 
against acoustic resonance should be based on the fact that both vorticity components are capable of 
exciting acoustic modes.  

 
3.6. Strouhal Numbers of Normal Triangle Tube Arrays 

The Strouhal numbers of the main components of vortex shedding in normal triangle arrays are 
given in Fig. (3.15). A particular criterion was not set in the selection of the data points and, 
therefore, some of them may not be reliable because they were extracted from either tube or 
acoustic resonances. However, the results of the three arrays discussed above indicate that the 
Strouhal numbers at the onset of acoustic resonances in normal triangle arrays approximate those 
of the natural vortex shedding away from resonance conditions. Thus, the use of these data to 
construct a chart of Strouhal numbers for normal triangle arrays seems to be justified. For the sake 
of clarity, the non-linear interaction component fvd is not included in the Strouhal number chart. 
This is because this component does not seem to cause any "harmful effects", at least within the 
tested ranges of spacing ratios and Reynolds numbers. The Strouhal number given in Fig. (3.15) is 
defined as: 

 
 S = fv d/Vg            (1) 

 
where fv is the shedding frequency, d is the tube diameter and Vg is the gap flow velocity. 

 
As expected, the data gather around two Strouhal number lines, S1 and S2. The points on the line 

S2 correspond to the vortex shedding component fv2, which is observed mainly behind the front 
rows. However, at high Reynolds numbers, this component may totally disappear in bundles with 
intermediate and large spacing ratios (Xp > 2). Increasing the spacing ratio results in a reduction in 
the Reynolds number at which this high-frequency component disappears.  
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Figure 3.15. Strouhal number data of vorticity shedding components in normal triangle arrays 
as function of the spacing ratio. Refer to Oengören & Ziada (1998) for data sources. 

 



 
The line S1 belongs to the frequency component fv1. This component has the characteristics of 

turbulent buffeting excitation for small tube spacings (Xp ~ 1.6); however, it is associated with well-
defined vortex shedding at the inner rows for larger tube spacings (Xp > 2). Moreover, it becomes 
the only flow periodicity existing in bundles with large spacing ratios and at high Reynolds 
numbers. The range of Reynolds number over which this component becomes dominant depends on 
the particular spacing ratio. 

Whether acoustic resonances of normal triangle arrays are excited by fv1, fv2 or both depends on 
the spacing ratio. For spacing ratios of less than about 1.7, acoustic resonances are liable to the 
high-frequency component, fv2. The lower modes, however, may not be excited because the 
frequency coincidence occurs at low dynamic heads where the vorticity shedding excitation may 
still be weak in comparison to the system acoustic damping. Several acoustic damping criteria have 
been developed by Chen (1968), Fitzpatrick (1986), Ziada et at. (1989b), Blevins & Bressler (1992) 
and Eisinger et at. (1992). 

In the range of intermediate spacing ratios, 1.8 < Xp < 2.7, either frequency component can 
excite acoustic resonances. However, those excited by the high-frequency component are generally 
weak, whereas those excited by the lower component are very strong and can be destructive. Other 
researchers (e.g. Blevins & Bressler, 1987a, b) also suggested that the higher component excites the 
lower modes only weakly, if at all. At high Reynolds numbers, the low component fv1 becomes the 
only relevant excitation anyway. 

Acoustic resonances of large spacing arrays, Xp > 2.8, are excited by the lower-frequency 
component only. Since the higher component exists only at low Reynolds numbers and appears 
only at the first row or two, the fluctuating energy associated with it is presumably too small to 
excite resonances. 

The boundaries between small, intermediate and large spacing ratios are obviously not as well-
defined as might be suggested by the above. Those boundaries selected above are based on the 
results of a limited number of experiments. Future tests on additional geometries near these 
boundaries would improve our knowledge of which Strouhal number is more relevant in these 
transition regions. 

An important feature of normal triangle arrays is that acoustic resonances are excited by the 
vorticity-shedding excitation that dominates before the onset of resonance. This implies that the 
Strouhal number charts of vorticity shedding can be used to design against acoustic resonances. In 
order to provide a better prediction means of Strouhal number, empirical forms of S1 and S2 have 
been obtained from the least-squares approximation of the data points in Fig. (3.15) and are given 
by the formulae: 
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These empirical lines are shown in Fig. (3.15). 

 
3.7. Summary of Results for Normal Triangle Tube Arrays 

 
1. Three distinct frequency components of vortex shedding, fv1, fv2 and fvd, are observed. The 

components fv2 and fv1 (fv2 > fv1) are found to be associated with alternating vortex shedding 
from the tubes in the front and the rear rows, respectively. The third component, fvd = fv2 - 
fv1, seems to result from the non-linear interaction of fv1 and fv1, and is observed in the 
transition region (mostly behind the second row) where both components fv1 and fv2 coexist. 

2. The nature of vortex shedding and the relative importance of each frequency component 
depend on the spacing ratio, the Reynolds number, the location within the array and, in 
some cases, on the number of rows and the number of tubes in each row. 

3. Based on the general characteristics of vorticity shedding, normal triangle tube arrays are 
classified into small, intermediate and large spacing categories. 



 
4. In the intermediate spacing case, both components of vortex shedding can be strong. 

However, the lower component fv1 develops over the whole depth of the array at high 
Reynolds numbers. The mechanism that enhances this component at high Reynolds numbers 
is believed to be of a fluid dynamic nature such as that described by Rockwell & 
Naudascher (1979). 

5. Increasing the spacing ratio weakens the high-frequency component fv2 at the front rows, 
until the lower-frequency component fv1 dominates also at the front rows. The opposite 
occurs when the spacing ratio is reduced, however, the component fv2 remains confined to 
the front rows only. 

6. In general, acoustic resonances of normal triangle arrays occur in a classical manner such 
that the onset of resonance is initiated when the frequency of natural vortex shedding 
approaches the resonance frequency. The Strouhal number charts of vorticity shedding can 
therefore be used to design against acoustic resonances. 

7. The relative importance of the vorticity shedding components fv1 and fv2 with respect to the 
excitation of acoustic resonances is clarified and is related to the proposed classification of 
spacing ratios. 

8. A Strouhal number chart for vorticity shedding excitation is developed and empirical forms 
are proposed to predict the Strouhal numbers over a wide range of spacing ratios. 

 
 

4. Rotated Square Tube Arrays 
 
The main flow characteristics of rotated square 

arrays are similar to those of normal triangle arrays, 
which are discussed in detail in the previous 
section. For this reason, only a brief summary of 
rotated square arrays is given here. The majority of 
the results reported in this section are from Weaver 
et al. (1993).    
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Figure 4.1. Definitions of rotated
square layout of tube bundles

 
Figure (4.1) shows the main parameters of the 

rotated square layout geometry. As in the previous 
case, the spacing (or pitch) ratio is defined as Xp = 
P/d. In this section only, all flow parameters, 
including the Strouhal number, are given in terms 
of the upstream flow velocity, Vu , which is the free 
stream velocity upstream of the bundle. 

 
 

4.1. Vorticity Shedding Excitation 
 
Weaver et al. (1993) observed two Strouhal numbers in rotated square arrays. Figure (4.2) 

shows two frequency spectra, the first measured behind the first row and the second behind the third 
row. As can be seen, the higher frequency component of vortex shedding (5.8 Hz) is generated at 
the upstream rows. In fact, Weaver et al. reported that this component is caused by alternating 
vortex shedding from the first row as can be seen from the flow visualization picture in Fig. (4.3.a). 
This component becomes weaker as the flow progresses downstream and it subsides totally by the 
third row as shown in Fig (4.2.b). On the other hand, the low frequency component of vortex 
shedding (3.7 Hz) becomes stronger at the downstream rows and is related to vortex shedding 
behind other rows as shown in Fig. (4.3.b) which shows alternating vortex shedding behind the 
second row at the low frequency component. No other frequency components are observed in this 
case.  
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Figure 4.2. Rotated square array results: (a & b) Velocity spectra behind the first and third rows, 
respectively; (c) frequencies of vorticity shedding as function of upstream flow velocity 
showing two Strouhal numbers. Xp = 1.7; from Weaver et al. (1993). 

 

(a) Vortex shedding behind first row (b) Vortex shedding behind second row(a) Vortex shedding behind first row (b) Vortex shedding behind second row

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.3. Flow visualization pictures for rotated square array: Vortex shedding behind a tube (a) 

in the first row and (b) in the third row. Xp = 1.7; Reu ≈ 950; from Weaver et al. (1993). 
 
4.2. Strouhal Number Chart for Rotated Square Arrays 

 
Figure (4.4) depicts the Strouhal number of vorticity shedding as a function of the pitch ratio Xp. 

It is important to recognize that this Strouhal number Su  is based on the upstream flow velocity (Vu):
 
Su = fv d/Vu            (3) 
 

where, fv  is the vortex shedding frequency, d is the tube diameter, and Vu is the flow velocity 
upstream of the array.  
 
The data points in Fig. (4.4) are seen to collapse on two Strouhal number lines. The higher 
corresponds to vortex shedding from the first row, and the lower is caused by vortex shedding from 
other rows. As expected, the Strouhal number decreases when the pitch ratio is increased. 



 
Results in the literature indicate that acoustic or tube resonance can be excited by either of the 

Strouhal numbers documented in Fig. (4.4). It is therefore recommended to use Fig. (4.4) for design 
purposes in order to assess the possibility of acoustic or tube resonance.  
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Figure 4.4. Strouhal number chart for rotated square arrays. Note that the Strouhal number is based 

on the upstream velocity. From Weaver et al. (1993). 
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5. In-Line Tube Arrays 
 
As in the previous case, the flow characteristics for an 

in-line array with intermediate tube spacing ratios will be 
explained first in detail. As shown in Fig. (5.1), the spacing 
ratios of this array are XL = L/d = 1.75 and XT = T/d = 2.25. 
Thereafter, the effect of the spacing ratios on the flow 
mechanisms is discussed.  

   
5.1. In-Line Arrays with Intermediate Tube Spacing 

 
The intermediate spacings array (XL/ XT = 1.75/2.25) is investigated in air and water flows. 

Attention is focussed on the first five rows, within which the vorticity shedding excitation is known 
to reach its maximum level. Here again, extensive correlation measurements are carried out to 
obtain the amplitude and phase distributions of the fluctuating velocity behind several rows. These 
distributions are essential to characterize the spatially growing flow instability inside the tube array. 

 
5.1.1. Strouhal number 

Figure 1.3 shows typical velocity spectra for air and water flows. The hot wire/film was 
diagonally centred between the tubes of the second and the third rows. The velocity fluctuations are 
seen to occur at a well-defined (single) frequency, fv, which increases as the flow velocity is 
increased. In the air tests, a higher harmonic component at the frequency, 2fv, is also present. The 
occurrence of this higher harmonic is an inherent feature of separated flows. According to non-
linear hydrodynamic stability theory and experimental findings (Ziada & Rockwell,1982), higher 
harmonics are generated when the amplitude of the fundamental component exceeds about 4% of 
the mean flow. Since the amplitude of the fundamental component is substantially higher in the air 
tests (as will be seen later), the harmonic 2 fv is well established in the air tests, but not in the water 
tests. As expected, the Strouhal number of the flow periodicity was found to be the same in air and 
water flows, and is equal to S = fv d/Vt = 0.15, where Vt is the gap velocity, i.e. the same as Vg. 

 



 
5.1.2. Effect of Reynolds number 

The effect of the flow velocity on the root mean square (rms) amplitude of the fluctuating 
velocity, v, is shown in Fig. (5.2) for the air and the water tests. The hot wire was located behind the 
second row in the air tests. In the water tests, however, the hot film was moved further downstream, 
behind the fourth row, to allow measurements of the saturation amplitude which was still not 
reached behind the second row at the maximum flow velocity. As the flow velocity is increased, the 
rms amplitude of the fluctuating velocity is seen to increase until it reaches a saturation value of 10 
to 12% of the gap velocity. This saturation of v/Vt occurs when the spatially growing flow 
instability reaches its fully developed phase (e.g. Sato, 1960; Freymuth, 1966; and Miksad, 1972). 
At relatively high velocities, this saturation value decreases slightly, possibly owing to the increase 
in the turbulence level. It is important to point out that increasing the flow velocity causes the ratio 
v/Vt, and not only v, to increase. 

 
Since the ratio v/Vt, at a fixed position, represents the degree of development of the flow 

instability, the results of Fig. (5.2) indicate that the flow instability behind a certain row becomes 
more developed as the flow velocity (or the Reynolds number) is increased. This implies that the 
position at which the flow instability becomes fully developed moves upstream as the Reynolds 
number is increased. 
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Figure 5.2. Dimensionless amplitude of fluctuating velocity v as function of the gap velocity Vt. 

(a) behind row 2 in air tests; (b) behind row 4 in water tests. 
 

5.1.3. Streamwise development of vortivity shedding 
The streamwise development of the velocity fluctuation was measured along a line centred 

between two tube columns of the array tested in water. As shown in Fig. (5.3), the dimensionless 
amplitude increases in the downstream direction until the fifth row, where it reaches saturation 
amplitude of about 13%. Behind each row, the fluctuating velocity grows rapidly, but this rapid 
growth is impeded by the presence of the tubes of the subsequent rows, resulting in the amplitude 
plateaux at x/L = 1, 2 and 3. These plateaux make the evaluation of the disturbance growth rate 
within the array rather difficult. Detailed measurements were therefore carried out between the first 
two rows to gain more insight into the initial stage of the disturbance growth. As shown in Fig. 
(5.4), the fluctuating velocity grows exponentially in the downstream direction before it is hindered 
by the tubes of the second row. This exponential growth accords with the prediction of the 
hydrodynamic stability theory for separated flows, i.e. shear layers, jets and wakes (Michalke 1965; 
Bajaj & Garg 1977).  

 
The air test facility was used to measure the distributions of the fluctuating velocity amplitude 

within the development region of the flow instability. The measurements were carried out along the 
lines centred between the tube rows, and at a flow velocity of 30.6 m/s (Re = 3.8 x 104). Figure 
(5.5) depicts the distributions across the sixth and the seventh flow lanes (hereafter referred to as 



 
jets). The distributions across the fourth and fifth jets were also measured and were found to be 
similar to those given in Fig. (5.5). As shown in this Figure, the velocity fluctuation behind the first 
row are much stronger at the edges of the jet than in its core. This distribution indicates that the 
flow instability is initiated by the inducement of small velocity perturbations into the shear layers, 
which separate from the tubes of the first row. These velocity perturbations are amplified 
exponentially in the downstream direction, as has been shown already in Fig. (5.4). Because the 
Reynolds number is relatively high, the fluctuation amplitude reaches 13% of the gap velocity 
already behind the second row. Interestingly, the fluctuation amplitude in the middle of the jet 
becomes comparable to that at the jet edges. Further downstream, behind the fourth row, the 
fluctuation amplitude in the middle of the jet becomes substantially higher than that at the jet edges. 
This gradual change in the shape of the amplitude distributions will be discussed later in 
conjunction with the phase measurements and the flow visualization study. 
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Figure 5.3. Development of the velocity fluctuation along a centreline of a flow lane. Water tests; 
Re = 6.8x103. 
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Figure 5.4. Initial exponential growth of the velocity fluctuation. Water tests; Re = 6.8x103. 
 

5.1.4. Phase relations 
Although the amplitude distributions provide considerable insight into the initial stage and the 

streamwise evolution of the flow instability, they do not reveal the type or the mode of this 
instability, neither do they indicate the relationship between the flow oscillations in adjacent jets or 
wakes. In the following, the phasing of events in adjacent jets is detailed. Since the phase (and 
coherence) measurements are often somewhat tedious and time-consuming, detailed measurements 



 
were carried out behind the fourth row only. A faster method was then employed, by using two 
microphones attached to a side wall of the wind tunnel, to show that the phase and coherence 
distributions behind the other rows are similar to those measured in detail behind the fourth row. 
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Figure 5.5. Distributions of the dimensionless amplitude of the velocity fluctuation behind the first, 
the second and the fourth rows. Air tests, Re = 3.8x104. 
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Figure 5.6. Phase distributions of the velocity fluctuation behind the fourth row at x = 7L/2. Air 
tests, Re = 3.8 x 104. (a) ○, φv4; ∆, φv5 + π ; (b) ○, φv6; ∆, φv7 + π ; (c) ○, φv4 and φv5 ; ∆, φv6 

and φv7 ; ●, ▲, reference locations.  
 



 
The phase distribution of the velocity fluctuation behind the fourth row is given in Fig. (5.6). 

The round data points in insets a & b represent the phase variations across jets 4 and 6, respectively. 
The triangular data points correspond to the phase across jets 5 and 7, but after adding a value of π. 
The phase distribution across anyone jet is seen to be symmetric, i.e. the velocity fluctuations 
occurring at one edge of a jet is in phase with that at the other edge. Moreover, the velocity 
fluctuation in any jet as a whole is 180° out of phase with that in the neighbouring jet. The phase 
distributions across the four jets 4 to 7 are presented together in Fig. (5.6.c). This figure emphasizes 
the remarkably organized nature of the flow activities. Jet 5, for example, is in phase with jet 7, but 
is 180° out of phase with the neighbouring jets (jets 4 and 6). Additional measurements behind 
other rows yielded similar results. 

 
5.1.5. Global structure of vorticity shedding excitation 

Flow visualization pictures taken at different locations within the array, but at the same time 
instant of the cycle, were pieced together to construct the development of the flow structure within 
the first five rows. The signal of the hot film, which was kept in a fixed location, was used as a time 
reference. The result of this piece-wise method of flow visualization is shown in Fig. (5.7). The 
flow structure in the flow lane, Fig. (a), displays, very clearly, a symmetric mode of an unstable jet. 
The symmetry with respect to the jet centreline and the clarity of the jet structure are rather 
remarkable. In the tube wakes, Fig. (b), the vortices form in an anti-symmetric pattern. Moreover, 
the vortex pattern in each wake is nearly out of phase with these in the upstream and downstream 
wakes. It should be mentioned here that this anti-symmetric pattern in the tube wakes is 
phenomenologically different from the alternating vortex shedding in the wakes of isolated 
cylinders. 
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Figure 5.7. Flow visualization photographs showing the global flow structure in (a) a flow lane and 
(b) several tube wakes. Re = 1.5x104. 

 



 
 

5.1.6. Description of the flow instability in in-line arrays 
When the tubes are arranged in an in-line pattern, they form free-flow lanes and confined tube 

wakes. As the flow proceeds into the array, a jet-like profile develops continuously along the flow 
lanes, but a wake profile never develops in the tube wakes. Thus, the flow dynamics in the flow 
lanes would be expected to dominate the development of the velocity fluctuations within the array. 
Accordingly, the vorticity-shedding excitation is caused by the instability of the jets which proceed 
along the flow lanes. 

 
The jet instability is initiated at the locations of flow separation from the tubes in the first row. 

In this initial region, the velocity fluctuation is still small and is manifested primarily in the thin 
shear layers of the jet. Between the first and the second rows, the velocity fluctuation undergoes a 
spatial exponential growth, which is in accordance with the linear theory of hydrodynamic stability. 
Furthermore, the amplitude and the phase of the initial velocity fluctuation have symmetric 
distributions with respect to the jet centreline. These initial distributions dictate the symmetric 
pattern of the jet instability developing downstream. The interaction of the developed jet with the 
downstream tubes is fed back upstream, where new perturbations are induced at the initial region 
near separation. 

 
As the flow proceeds downstream, or as the Reynolds number is increased, the amplitude of the 

velocity fluctuation grows until it reaches the non-linear saturation amplitude, typically about 15% 
of the gap-flow velocity. Further downstream, the increase in the turbulence level reduces the 
saturation amplitude slightly. The jet instability occurs at a preferred symmetric mode. Large-scale 
vortices are formed symmetrically at both sides of each flow lane. Because of the kinematic 
constraints imposed by the large size of the formed vortices and the associated mass transfer across 
the wakes, vortices are forced to form anti-symmetrically in the tube wakes. This dictates the phase 
difference between the flow activities in adjacent flow lanes. Thus, the jet instability occurring in 
each flow lane is 180° out of phase with that occurring in the neighbouring lanes. 

 
5.2. Simulation of Resonance by Means of Surface Waves in Water Channel 

 
The acoustic resonance occurring in the wind tunnel can be simulated by a transverse surface-

wave resonance in the water channel. During the water tests on the intermediated spacing case, the 
first mode of the transverse standing waves was excited. This mode consisted of a half wavelength 
spanning the width of the channel as shown in Fig. (2.2). Since the tubes were mounted vertically in 
the channel, the particle velocity of the surface wave, away from the sidewalls, had a predominant 
component in a direction normal to the flow and the tube axes. Moreover, the standing wave was 
found to be confined to the tube bundle; its amplitude being maximum at the mid-depth of the array 
and decreasing in the upstream and downstream directions. These features are similar to those of 
the acoustical modes in the wind tunnel. 

 
5.2.1. Resonant flow structure  

The flow structure in the array from the first to the fifth rows under resonance conditions is 
given in Fig. (5.8). Each photo in this figure has been taken at the same instant of time within the 
oscillation cycle. The photos, therefore, display the global view of the resonant flow structure 
within the array. As illustrated, the vortices behind all tubes have the same sense and phase. This 
synchronization is clearly caused by the surface wave resonance. The size and the swing angle of 
each vortex are related to the resonance intensity at the vortex location. Near the first and last rows 
the vortex size and swing angle are smaller than those at the middle row where the surface wave 
resonance is strongest. 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8. Overview of the resonant flow structure in the array at the same instant of time in a 
period of surface wave resonance. 

 
It would be misleading to relate the observed resonant flow structure to wake instability such as 

that which creates Karman vortices in the wakes of isolated cylinders. The tube wakes in the present 
case are confined, owing to the presence of the downstream tubes. The streamwise gap between the 
tubes, i.e. the extent of the tube wakes, is less than the tube diameter. A wake velocity profile does 
not develop in such a confined wake. Thus, the tube wakes can be regarded as cavities bounded by 
the shear layers, which separate from the tube edges. It is the instability of these shear layers, 
triggered and synchronized by the resonance mode, which generates the observed resonant flow 
structure. 

 
5.2.2. Resonance mechanism 

The resonant flow structure, Fig. (5.8), and the non-resonant flow structure associated with the 
vorticity-shedding excitation in the absence of resonance, Fig (5.7) are compared schematically in 
Fig. (5.9). It is clear that the resonant structure can couple with a fluid resonance, which induces a 
particle velocity in the transverse direction as shown by the arrows in Fig. (5.9.a). The vorticity-
shedding excitation, however, cannot couple with such a resonance. As shown in Fig. (5.9.b) , the 
vortex pattern confined to a tube column is 180° out of phase with those confined to the 
neighbouring columns. The resultant-flow excitation produced by this vortex pattern in the 
transverse direction is, therefore, practically zero.  

 
The above argument can be substantiated further by considering the acoustic power, W, 

generated by an array of vortices in an acoustic field. Howe (1975, 1980) showed that the acoustic 
power generated in a volume œ can be expressed by: 

 
 W = -ρ ∫ ω . (V x u)  dœ          (4) 



 
 

where, ρ is the density, ω is the vorticity, V is the total flow velocity and u is the acoustic particle 
velocity. Since all the vortices in Fig. (5.9.a) have the same sense of rotation, their effect on the 
above integral will be cumulative, resulting in a net acoustic power which sustains the resonance. In 
Fig. (5.9.b), however, the vorticity vector of half of the vortices is opposite to that of the other half. 
This means that half of the vortices will be acoustic sources and the other half will be acoustic 
sinks. The net effect of the above integral will be insignificant. 

 
It should be emphasised that each of the flow patterns given in Fig. (5.9) satisfies well defined, 

but different phase relations. These patterns therefore are associated with different flow instabilities. 
Pattern (b) is the result of symmetrical jet instability, which is the preferred mode of oscillation at 
non-resonant conditions. However, pattern (a) results from shear-layer instability, which is 
triggered and synchronized by the resonant particle velocity. Since the shear-layer mode is 
suppressed at off-resonant conditions, because it is not a preferred mode, the occurrence of 
resonance is dependent on the capability of the flow-duct acoustics to initiate and sustain this shear-
layer mode. 

 
 Since the flow instabilities causing the resonance and the vorticity-shedding excitation are 

different, it is logical to expect them to occur at different Strouhal numbers. This is compatible with 
the experimental observation that the acoustic resonance Strouhal numbers are different from the 
Strouhal number of vorticity shedding. These findings give support to the supposition that Strouhal 
numbers of vorticity shedding should not be determined from resonance cases. 
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Figure 5.9. Schematics illustrating (a) the resonant and (b) non-resonant vortex shedding patterns.  
 

5.3. In-Line Arrays with Small Tube Spacing 
 
When the tube spacing ratios are reduced, the vortices resulting from the symmetric jet 

instability do not form entirely inside the tube wakes as in the previous case, but rather in the thin 
shear layers at both sides of the flow lanes. An example is shown in Fig. (5.10) for which the 
spacing ratios are XL = 1.4 and XT = 1.5. In this case, the vortices have a very small size, especially 
in comparison with the width of the wake, i.e. the tube diameter. The resulting mass transfer across 
the wakes, due to these small size vortices, is therefore negligible. This allows the wake vortices to 
form symmetrically, and therefore adjacent flow lanes oscillate in phase with one another. 

 
For small spacing ratios, the vorticity shedding excitation is found to occur within the upstream 

rows only. Downstream of the third row, these small size vortices diffuse rapidly into small-scale 
turbulence and the flow becomes fully turbulent. This is in contrast with the case of intermediate 
tube spacings for which the vorticity shedding excitation (i.e. the symmetric jet instability) persists 



 
over the whole depth of the bundle. More details of the flow structure for the case of small spacing 
ratios can be found in Ziada et al. (1989). 
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Figure 5.10. Flow structure in an in-line bundle with small spacing ratios. XL = 1.4, XT = 1.5, Re = 
3.7 x 103, flow direction is from left to right. 

 
5.4. In-Line Arrays with Large Tube Spacing 

 
For large spacing ratios, the nature of the vorticity shedding excitation and its Strouhal number 

depend on the upstream turbulence level, Tu, which was controlled by adding a turbulence-
generating grid upstream of the bundle. At low upstream turbulence levels (Tu ~ 0.1 %), the 
vorticity shedding is identical to that observed for intermediate spacing ratios. This fact is shown in 
Fig. (5.11) which depicts the symmetric jet instability for spacing ratios of XL / XT = 3.25/3.75. The 
velocity fluctuations in neighbouring flow lanes (or wakes) are found to be strongly correlated and 
180° phase shifted from one another. As in the case of intermediate tube spacings, this vorticity 
shedding mode dominates over the whole depth of the bundle. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11. Symmetric jet instability producing the first mode of vorticity shedding inside a tube 
bundle with large spacing ratios. (a) Re = 800, (b) Re = 2.6 x 103, both cases without 
turbulence-generating grid. XL = 3.25; XT = 3.75. 

 
The second mode of vorticity shedding occurs when the turbulence level is increased 

(Tu ~ 1.0%). This mode has a higher Strouhal number and dominates at the upstream rows only. It 
is found to be generated by local instabilities of the tube wakes. This is demonstrated by the photos 
given in Fig. (5.12), which were taken at the same flow conditions. In Photo (a), vortex shedding in 
adjacent wakes is out of phase but in Photo (b), it is in phase. This lack of correlation between the 
flow activities in adjacent wakes was also confirmed by means of phase and coherence 
measurements. Further details of the flow structure inside bundles with large spacing ratios can be 
found in Oengoeren & Ziada (1993). 
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Figure 5.12. Second mode of vorticity shedding in a tube bundle with large spacing ratios and high 
upstream turbulence level. Both photos were taken at the same flow velocity (Re = 2.6x103) 
and with a turbulence grid installed upstream of the bundle. XL = 3.25; XT = 3.75. 

 
5.5. Strouhal Number Charts for In-Line Arrays 

 
5.5.1. Strouhal number of vorticity shedding (Sv) 

The Strouhal number of vorticity shedding is defined by: 
 
 Sv = fv d / Vt            (5) 

 
where, fv is the frequency of the vorticity shedding peak in the turbulence spectra and Vt is the gap 
velocity. Figure (5.13) gives the value of Sv as a function of the tube spacings (XL and XT). In order 
to reduce the data scatter and therefore improves the reliability of the data, the following approach 
was adopted to construct the Strouhal number chart: 
 

(i) All the data obtained from tube or acoustic resonances were rejected. 
(ii) The data used to construct the chart were all obtained from measurements at high Reynolds 

number (Re > 104). 
(iii) Hot wire/film measurements are considered to be more reliable than other measurements 

(e.g. tube vibrations). 
(iv) Higher harmonics of the vorticity shedding excitation (i.e. 2 fv, 3 fv, ...) were not taken into 

consideration. 
(v) In few cases, several peaks in close proximity to one another were observed (e.g. 0.12, 0.14, 

0.16). An average value was considered representative in these cases (0.14). 
 
Figure (5.13) can be used to determine the critical flow velocity (Vcr = fn d / Sv) at which a tube 
resonance may occur, where fn is the tube mechanical resonance frequency. If this critical velocity 
is found to be within the operating range, the vibration amplitude should be calculated to check 
whether lock- in vibration will or will not occur. 
 
 
5.5.2. Strouhal number of acoustic resonance (Sa) 

As mentioned earlier, acoustic resonances of in-line tube bundles are excited by the unstable 
shear layers which separate from the tubes. Since this mechanism is different from the vorticity 
shedding mechanism, the Strouhal numbers of acoustic resonances (Sa) must be different from the 



 
vorticity shedding Strouhal numbers. Therefore, any reliable design guidelines must include two 
Strouhal number charts; one for vorticity shedding excitation, Fig. (5.13), and another for acoustic 
resonance excitation. 
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Figure 5.13. Strouhal number chart for vorticity shedding excitation in in-line arrays, Sv = fv d / Vt
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Figure 5.14. Strouhal number chart for acoustic resonance in in-line arrays, Sa = fa L / Vt
 



 
The Strouhal number at which acoustic resonances occur is given in Fig. (5.14). This Strouhal 

number is based on the streamwise tube spacing L and the frequency of the acoustic mode fa. 
 
 Sa = fa  L / Vt            (6) 
 
 The usage of L as the characteristic length results in a nearly constant Sa over a wide range of 

XL and XT. This nearly constant value is about 0.5, which is similar to the Strouhal number at which 
acoustic resonances in deep cavities occur. Since the excitation mechanisms of the two cases are 
somewhat similar, it is logical that the Strouhal numbers are also similar. For large spacing ratios 
(XL, XT > 3.0), acoustic resonances are excited by the vorticity shedding excitation, and therefore 
the vorticity shedding Strouhal number, Fig. (5.13), can be used to design against acoustic 
resonances. The critical flow velocity at which acoustic resonances may occur can be obtained 
from: Vcr = fa  L / Sa. If Vcr is found to be less than the maximum flow velocity, the acoustic 
resonance frequency fa  should be increased by installing antiresonance baffle plates. 

 
5.6 Summary of Results for In-Line Tube Bundles 

 
Basically, there are three different types of flow instabilities, which can generate periodic flow 

excitations in in-line tube bundles, these being: symmetric jet instability; wake instability and shear-
layer instability. In the following, in-Iine tube bundles are classified according to the flow 
instability which dominates in each class. 

 
5.6.1. Large tube spacings (XL > 2.7) 

 Vorticity shedding in in-line tube bundles with large spacing ratios can occur at either a global 
jet mode or a local wake mode. These two modes have different Strouhal numbers and do not occur 
simultaneously. The occurrence of either mode depends primarily on the turbulence level in the 
approach flow.  
 

At low upstream turbulence level, the symmetric instability of the jets issuing between the tube 
columns dominates. This mode of vorticity shedding persists over the whole depth of the bundle 
and is identical to that occurring inside in-line tube bundles with intermediate spacing ratios. The 
flow activities in adjacent wakes or flow lanes are found to be well correlated and to satisfy well-
defined phase relations. Due to these features, this first mode may be regarded as a "global" flow 
instability. 

 
When the upstream turbulence level is high, the vorticity shedding switches to a "local" wake 

instability mode. Alternating vortex shedding in each wake becomes more or less independent from 
those in adjacent wakes. This mode occurs only at the upstream rows. Downstream of the fifth row, 
it is totally replaced by a broadband turbulent excitation at a different frequency. The wake 
instability mode of vorticity shedding is capable of exciting acoustic modes, when its frequency 
approaches a resonance frequency. At resonance, i.e. at lock-in, vortices in all wakes are 
synchronized with the particle velocity of the resonant mode. As in the case of intermediate tube 
spacings, the jet instability mode of the vorticity-shedding excitation cannot excite the acoustic 
modes which consists of standing waves in the transverse direction. During the water tests, the 
occurrence of free surface resonance was associated with flow switching from the jet mode to the 
wake instability mode. 

 
Since the upstream turbulence level in practical applications is relatively high, the wake 

instability mode of the vorticity-shedding excitation is expected to dominate in tube bundles with 
large spacings. This may not be the case for bundles with intermediate spacing ratios, for which the 
jet instability mode occurs also at relatively high upstream turbulence level.  

 



 
5.6.2. Intermediate tube spacings (1.75 < XL < 2.7) 

Vorticity shedding in tube bundles with intermediate tube spacings is generated by a global jet 
mode and it persists over the whole depth of the bundle. The occurrence of acoustic resonance in 
this case is caused by the coupling between the resonant acoustic mode and the instability of the 
shear layers which separate from the tubes. This shear layer mode, however, does not occur, i.e. it is 
suppressed, at off-resonance conditions.  

 
5.6.3. Small tube spacings (XL < 1.5) 

When the tube spacings are made smaller, the jet instability becomes weaker and, if it 
materializes at all, it occurs at the upstream rows only. As in the previous case, acoustic resonances 
in this case also are excited by the shear layer instability. 

 
 

6. Parallel Triangle Tube Arrays 

Figure 6.1. Definitions of parallel
Triangle layout of tube bundles

Figure 6.1. Definitions of parallel
Triangle layout of tube bundles

 
Since parallel triangle tube bundles have a staggered 

pattern of tube layout, Fig. (6.1), they have been treated in 
early literature under the general category of staggered tube 
arrays. However, as illustrated in Fig. (1.1) parallel triangle 
arrays allow the flow to proceed along the free lanes between 
adjacent columns, which is rather similar to the in-line case. 
As a result of these combined geometrical constraints, i.e. 
free flow lanes through staggered array of tubes, the 
mechanisms of flow instabilities are expected to be more 
complex in parallel triangle arrays. As in previous cases, the 
flow characteristics will be discussed for each category of 
tube spacing separately. 

 
6.1.  Parallel Triangle Arrays with Intermediate Tube Spacing 

 
A parallel triangle array with Xp = 2.08 is selected to elucidate the flow mechanisms in 

intermediate spacing arrays. For this array, pressure spectra measured at a front (row 1) and a rear 
row (row 5) are displayed for different Reynolds numbers in Fig. (6.2). Although the dominance of 
a single frequency component is observed in the spectra of both rows, these components have 
different Strouhal numbers and therefore they belong to different flow periodicities occurring at 
these rows. The component detected at row 1 has a Strouhal number of S2 = fv2 d/Vg = 0.48, whereas 
the one measured at row 5 corresponds to S1 = fv1 d/Vg = 0.28. Both of these components exist 
simultaneously in the array regardless of the Reynolds number indicating that a transition takes 
place from the periodic structure S1 to S2 as the flow proceeds downstream in the array. The 
component S1 (or fv1) is enhanced at higher Reynolds numbers, and is an order of magnitude higher 
than S2 at Re = 18000. It is noteworthy that at Re = 18000, an enhancement of the first acoustic 
mode fa1 is observed in both spectra, indicating the onset of acoustic resonance although the 
component fv1 is still significantly lower than the resonance frequency, fa1, and the fv2 component 
has already passed this frequency without inducing resonance. 

 
The same tube array geometry (Xp = 2.08) was also tested in water. Two photos displaying the 

flow patterns behind the first two rows at a Reynolds number of Re=1870 are shown in Fig. (6.3). 
The Strouhal number corresponding to the well-defined vortices observed in this figure are 
determined to be 0.46 from the video counting. This Strouhal number is very close to S2, which is 
measured at the first row in air tests. As observed in Fig. (6.3), vortex shedding behind the first row 
can occur at two patters, either symmetric or antisymmetric. The change from one mode to the other 
occurs randomly but the vortices of both modes are shed at the same frequency.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results of air tests, Xp = 2.08

(a) Row 1 (b) Row 5

Frequency (Hz)

Pr
es

su
re

 fl
uc

tu
at

io
ns

 (P
a)

Re

Re

Results of air tests, Xp = 2.08

(a) Row 1 (b) Row 5

Frequency (Hz)

Pr
es

su
re

 fl
uc

tu
at

io
ns

 (P
a)

Results of air tests, Xp = 2.08

(a) Row 1 (b) Row 5

Frequency (Hz)

Pr
es

su
re

 fl
uc

tu
at

io
ns

 (P
a)

Re

Re

 
Figure 6.2. Pressure spectra measured at (a) row 1 and (b) row 5 in a parallel triangle array with 

intermediate spacing, Xp = 2.08, and for a Reynolds number range of 6900< Re < 18000.  
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Figure 6.3. Flow visualization photographs showing the flow patterns associated with the flow 
periodicity S2. Parallel triangle array with intermediate spacing, Xp = 2.08, and for a 
Reynolds number of 1870. 

 
 
The photos of the flow pattern occurring in the same array at a relatively high Reynolds number 

(Re = 12300) are given in Fig. (6.4). These photos were taken at the same time instant of the vortex 
shedding cycle and therefore they represents the global flow structure developing in the array at this 
Reynolds number. In Fig. (6.4), minimal flow unsteadiness is observed behind the first two rows. 
The dye boundary marking the shear layers separating from the first row tubes is reattached to the 



 
tubes in the third row and does not exhibit lateral oscillations. There is considerable shear layer 
oscillations behind rows 3 and 4, however, coherent vortices do not form in this region as can be 
seen in the photos of these rows. Coherent vortices first appear behind the fifth row. The formed 
vortices are as large as the tube pitch and are shed at a Strouhal number of ≈ 0.24, as counted from 
the video monitor. This value is close to S1 of the air tests suggesting that they represent the same 
flow periodicity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.4. Development of the flow structure associated with the flow periodicity S1. Parallel 

triangle array with intermediate spacing, Xp =2.08, and for a Reynolds number of 12300. 
 
 

6.2.  Parallel Triangle Arrays with Small Tube Spacing 
 
A tube array with Xp = 1.44 is discussed here in detail as a representative example of parallel 

triangle arrays with small pitch ratios. In Fig. (6.5), a series of pressure spectra measured at the fifth 
row in this array is shown for a Reynolds number range of 940 to 6590. As seen in this figure, 
similar to the intermediate spacing array, the flow has a multiple frequency nature over a relatively 
large Reynolds number range. However, the peaks appearing in Fig. (6.5) are found to be associated 
with different flow structures and, therefore, they are designated as fv3 and fv4, instead of fv1 and fv2 
as in the intermediate spacing case. This designation is made because the Strouhal numbers 
corresponding to the former peaks are much higher than those of the latter. 

 
As seen in Fig. (6.5), the flow activities appear first as a single frequency event, fv3, at very low 

Reynolds numbers, Re < 1000. As the Reynolds number is increased over 1000, a second 



 
component, fv4, appears in addition to fv3 in the pressure spectra. This component is much sharper 
and stronger than fv3. It gains in strength within the range 1400< Re < 3290, and subsides abruptly 
when Re is increased over this range. These characteristics suggest that this component is caused by 
a local periodic flow phenomenon, which appears to move (upstream) along the depth of the bundle 
as the flow velocity is increased. On the other hand, the fv3 component survives in a larger range of 
Reynolds numbers, 0 < Re < 5165. However, following some enhancement at the lower values of 
this range, it gradually turns into a broad-banded event and then ceases to exist when Re is 
increased over 5165. The pressure spectrum measured at row five for Re = 6590 displays the 
characteristics of a turbulent flow. 
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Figure 6.5. Typical pressure spectra obtained at different Reynolds numbers at the fifth row of a 
parallel triangle array with small spacing ratio, Xp = 1.44. 

 
In order to clarify whether or not the periodic events disappear throughout the whole bundle, the 

pressure spectra measured at the first two rows are shown in Fig. (6.6) in comparison to that of row 
5 for a Reynolds number of 17000. The frequency components, fv3 and fv4, do not exist in any of the 
three spectra obtained at rows l, 2 and 5 as seen in this figure; all three spectra display the 
characteristics of a fully turbulent flow. The peak appearing in the spectra of rows 1 and 2 around a 
frequency of 324 belongs to the first acoustic cross mode of the test-section, fa1. 

 
 The flow periodicities, fv3 and fv4, are further investigated in the water channel with a tube 

bundle model having the same array geometry as the one described above which was tested in air. 
Figure (6.7) shows the flow pattern visualised in a flow lane from the first to the eleventh row at a 
Reynolds number of 580. The flow proceeds mainly in the free lane between the two tube columns 
displayed in this figure. The shear layers developing on both sides of the flow lane are clearly 
traced by the streak lines on each side. The amount of unsteady flow activities is minimal behind 
rows 1 to 4; no unsteady motion could be seen on the video screen at this portion of the flow lane in 
this case. The flow becomes gradually more active as it moves deeper inside the bundle. In fact, 
some rotational motion of the flow is apparent in the shear layers on both sides of the flow lane 
behind the fifth row. These activities develop into well-defined vortices behind rows 7 and 8 as 
observed in Fig. (6.7). The nature of this flow unsteadiness is displayed in the two hot-film spectra 



 
given at the bottom of Fig. (6.7). Both spectra contain clear peaks, although visually little unsteady 
activity is observed behind row 1. The peaks have the same frequency, but the amplitude of the 
peak measured behind row 1 is an order of magnitude weaker than that measured behind row 5. 
These features, in addition to the flow visualisation, illustrate the developing nature of flow 
periodicity from front to the rear rows at low Reynolds number. The frequency of this flow 
periodicity corresponds to the component fv3 observed in the results of the air tests already 
addressed in Fig. (6.5).  
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Figure 6.6. Typical pressure spectra measured at rows l, 2 and 5 at a Reynolds number of Re=17000 
in a parallel triangle array with small spacing, Xp = 1.44. 
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Figure 6.7. Flow patterns observed in a flow lane of a parallel triangle array with a small spacing, 
Xp = 1.44, at a Reynolds number of 580 and corresponding hot film spectra measured in 
water flow behind rows 1 and 5. 

 



 
6.3.  Parallel Triangle Arrays with Large Tube Spacing 

 
Figure (6.8) shows three spectra of the fluctuation pressure measured on a tube in the first row 

of a parallel triangle array with large spacing, Xp = 3.41. Because these tests were carried out in the 
wind tunnel, the Reynolds numbers corresponding to these spectra are relatively high; 15000, 
30000 and 43700, respectively. Each of these spectra displays only one flow periodicity peak 
corresponding to a Strouhal number of S = 0.22. Pressure measurements at other rows revealed this 
peak at S = 0.22 to be the only periodic component existing in the whole array regardless of the 
measurement location. It persists and preserves its narrow-banded character deep inside the array.  
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Figure 6.8. Pressure spectra showing the flow periodicity S1 at the first row of a large spacing 
parallel triangle array, Xp = 3.41. 
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Figure 6.9. Frequency components of flow periodicity observed behind rows 1 & 5 in a large 
spacing parallel triangle array (Xp = 3.41), and two hot film spectra measured behind row 1 
at velocities corresponding to points A & B. ■, ●, behind row 1; ▲, behind row 5. 

 



 
The results of the arrays with intermediate and small pitch ratios have shown that a high-

frequency component often appears at relatively low Reynolds numbers and subside when the 
Reynolds number is increased over ~ 6000. The lowest Reynolds number attainable in the air tests 
of this large spacing array was 5400. Therefore, in order to find out whether the high-frequency 
component also exists in this large spacing array at low Reynolds numbers, additional tests of an 
array with similar geometry were carried out in a water channel. The Reynolds number range of 
these tests was 0 < Re < 6500. The frequency components of the flow periodicities measured by a 
hot film behind rows 1 and 5 of this array are plotted against the gap velocity in Fig. (6.9). Two 
flow periodicity components are detected in this Reynolds number range, Sl = 0.22 and S2 = 0.31. 
The component Sl corresponds exactly to that measured in air. As observed in Fig. (6.9), the high-
frequency component occurs mainly behind the front rows and at low Reynolds number (Re < 
2750), whereas the low-frequency component exists behind the inner rows at all Reynolds numbers. 
The high-frequency component disappears altogether when the Reynolds number is increased over 
2750 and thereafter the low-frequency component dominates the whole array. This agrees with the 
general features of vorticity shedding excitation that a high frequency component exists at front 
rows and a lower component at the rear rows. 

 
6.4.  Strouhal Number of Vorticity Shedding in Parallel Triangle Arrays 

 
The Strouhal numbers of the flow periodicities (vortex shedding) in parallel triangle arrays are 

given in Fig. (6.10). Since the data obtained from resonance cases may not always represent those 
of the natural flow periodicities, they are not included in this figure. 

 
The Strouhal number in this chart is based on the frequency of flow periodicity, fv, and the tube 

diameter, d, and is given by the Eq. (1): 
 
S = fv d/Vg             (1) 

 
where the gap velocity, Vg, is given as a function of the upstream velocity  Vu: 
 

Vg = Vu [(2 Xp  cos 30) / (2 Xp  cos 30  - 1)]        (7) 
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Figure 6.10. Strouhal number chart for vorticity shedding observed under non-resonant flow 

conditions in parallel triangle arrays. 
 



 
 The Strouhal number data are seen to collapse mainly around three different Strouhal number 

lines in Fig. (6.10). The line S1 is associated with the lowest frequency observed. It corresponds to 
the frequency component fv1, which dominates at deeper rows but is hardly discernible behind front 
rows at low Reynolds numbers. This component has been observed in the spacing range of 1.38 < 
Xp < 4.17. S1 has a value of 0.4 for Xp = 1.38 and it approaches a value of ≈ 0.2 in arrays with pitch 
ratios larger than 3.  

 
The Strouhal number line S2 in Fig. (6.10) corresponds to the frequency component fv2. It is 

found to exist simultaneously with the Sl component and appears to be bound to the front rows only. 
The Strouhal number designated with the line S3 appears to be the characteristic of relatively small 
spacing arrays (Xp < 2). A wide scatter is observed in the data belonging to this group of Strouhal 
number. This Strouhal number is associated with the shear layer vortices developing in the flow 
lanes between the adjacent tube columns from the first row towards the rear rows. Therefore, the 
occurrence of this component is strongly Reynolds number dependent. While it is detected 
throughout the array at very low Reynolds numbers, it disappears totally at high Reynolds numbers. 

 
6.5.  Acoustic Response of Parallel Triangle Arrays 
 

The acoustic response of normal triangle arrays is found to be somewhat similar to that of in-
line arrays. In the majority of tested arrays, specially the small and intermediate spacing ratios, the 
onset of acoustic resonance did seem to be related to the vorticity shedding excitation which is 
observed before the onset of resonance. An example is shown in Fig. (6.11) for Xp = 1.44. The main 
frequency component of vortex shedding fv3 is shown by the solid line and the dashed lines 
represent the acoustic Strouhal numbers, Sa, which are based on the resonance frequency and the 
flow velocity at the onset of resonance. 
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Figure 6.11. Acoustic response of a parallel triangle array with Xp = 1.44.  +, vorticity shedding fv3; 

●, ■, ◆, response of the first, second and third acoustic modes.  
 

As can be seen, despite the presence of a well-defined flow periodicity in the array, fv3, the first 
acoustic mode is excited not at the point of frequency coincidence but at a substantially higher 
velocity (about 60% higher than the coincidence velocity). As the flow velocity is increased further, 
the second and third acoustic modes are also excited. In fact, the resonances of these modes are 
relatively strong and have wide ranges of lock-in, although no periodic flow activities exist at these 
high velocities. The resonances seem to occur according to an acoustic Strouhal number relation 



 
(the dashed lines), which could not be associated with the natural flow periodicity. Similar features 
were observed for other spacing ratios as reported by Ziada & Oengoeren (2000). 
 
6.6.  Acoustic Strouhal Number of Parallel Triangle Arrays 

 
The acoustic responses of parallel triangle arrays indicated that for most of these arrays, the 

critical velocities for the onset of acoustic resonances cannot be predicted from the Strouhal 
numbers of the natural flow periodicities, which are detected at non-resonant conditions. This 
feature is different from that of normal triangle arrays, for which the acoustic Strouhal numbers 
have been found to approximate those of the natural flow periodicities (Oengoeren & Ziada, 1998). 
On the other hand, the acoustic behaviour of parallel triangle arrays is similar to that of in-line 
arrays. This similarity seems to stem from the fact that both array patterns allow the flow to proceed 
freely along the flow lanes between the tube columns.  

 
In order to be able to predict the onset of acoustic resonance in parallel triangle arrays, an 

acoustic Strouhal number chart has been developed and is given in Fig. (6.12). The acoustic 
Strouhal number, Sa, is defined as: 

 
Sa = fa  L / Vg           (8) 
 

Where fa  is the acoustic resonance frequency and Vg is the critical gap velocity at the onset of 
acoustic resonance. As observed in Fig. (6.12), multiple acoustic Strouhal numbers exist in arrays 
with Xp < 1.71. Although some of these Strouhal numbers are associated with the resonance of all 
modes (from 1 to 3), some are related to only one mode. To avoid any misunderstanding, the 
acoustic modes excited by each Strouhal number are noted near each data point in Fig. (6.12). The 
curve displayed in this figure is the upper limit to the acoustic Strouhal numbers of the tested cases 
and should be treated as a design value to avoid acoustic resonances over the whole velocity range.  
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Figure 6.12. Acoustic Strouhal number chart for parallel triangle arrays. The acoustic modes 
excited are also provided near each data point. 

 
The usage of the acoustic Strouhal number chart for design purposes can be demonstrated by 

considering the case with Xp = 1.44, which is illustrated in Fig. (6.11). As the flow velocity was 
increased, the lowest three acoustic modes were excited in a rather complex order. After the 



 
resonance of modes 1 and 2, mode 1 was excited again. This was followed by mode-3 resonance, 
and finally mode 2. The acoustic Strouhal numbers of these resonances are indicated in Fig. (6.11). 
From a practical point view, estimation of the critical flow velocities corresponding to these 
Strouhal numbers is of little use. Instead, the designer should ensure that the Strouhal number based 
on the maximum flow velocity and any acoustic frequency is higher than the design limit given by 
Fig. (6.12). 

 
The upper bound of the acoustic Strouhal numbers in Fig. (6.12) may appear similar to the 

envelope of the Strouhal numbers of the natural flow periodicities which are depicted in Fig. (6.10). 
However, this is true only for large spacing ratios, Xp > 2.3, which is to be expected, since 
alternating vortex shedding becomes dominant. For smaller spacing ratios, S3 can be up to 54% 
higher than the acoustic Strouhal number. 

 
6.7.  Summary of Results for Parallel Triangle Arrays 

 
Natural flow periodicities in parallel triangle arrays occur at three different Strouhal numbers, 

S1, S2 and S3. The highest Strouhal number, S3, is associated with the instability of the shear layer 
which develops on the sides of the flow lanes between the tube columns. This type of flow 
periodicity exists only in arrays with pitch ratios smaller than 2. Moreover, they are sustained only 
at relatively low Reynolds numbers. The Strouhal number S2 is associated with alternating vortex 
shedding behind the first two rows. It subsides when the Reynolds number is sufficiently increased 
and is replaced by the periodicity S1. The Strouhal number S1 is associated with alternating, large-
scale vortex shedding in the wakes of the inner tubes. It is observed in arrays with Xp > 1.4 in this 
study and in the literature. At high Reynolds numbers, this periodicity dominates in the whole array, 
i.e., also at the front rows. A Strouhal number chart is provided for the natural flow periodicities in 
parallel triangle arrays. 

 
For the arrays with Xp ≤ 2.42, the onset of acoustic resonances could not be related to the natural 

flow periodicities which are observed before the onset of resonances. This contrasts with the 
acoustic response of normal triangle arrays for which the resonance has been found to be excited by 
the natural flow periodicities. A chart for the acoustic Strouhal number for parallel triangle arrays is 
provided. The excitation mechanism of acoustic resonance in parallel triangle arrays seems to be 
similar to that of in-line arrays. The reasons for this similarity must lie in the fact that both arrays 
allow the flow to proceed along the free-flow lanes between the tube columns, which result in a 
similar interaction mechanism between the flow instability and the sound waves. 

 
 

7. Dynamic Fluid Forces on the Tubes 
 
The dynamic fluid forces acting on the tubes of any bundle are caused by two mechanisms; 

vorticity (or vortex) shedding and flow turbulence. The first is controlled by the nature of vorticity 
shedding, which has been already discussed for all tube patterns. For example, staggered arrays 
generally have a high Strouhal number at the front rows and a low one at the inner rows. In contrast, 
in-line arrays have a single vorticity component. The turbulence spectra at the inner rows for all 
arrays are expected to have some common features because, deep inside the bundle, the tubes are 
the main turbulence generators. Thus, the main parameters which control the maximum level of the 
fluid forces are the pitch ratio and the Reynolds number. In this section, the fluid forces acting on 
the tubes are addressed and the highest levels of these forces are deduced. This requires force 
measurements at many rows to make sure that the maximum values are captured. Only selected 
results of dynamic fluid forces are given here and the reader is referred to Oengoeren & Ziada 
(1992b, 1998) for further details. 
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Figure 7.1. Normalized power spectral densities of dynamic lift forces (ΦL) measured on rows 2 to 
8 in normal triangle arrays with (a) Xp= 1.61, (b) Xp= 2.08 and (c) Xp= 3.41  for two 
Reynolds numbers. 

 
7.1. Spectral Densities of Dynamic Forces 
 

Oengoeren & Ziada performed extensive measurements to obtain the power spectral densities 
(PSD) of the dynamic lift and drag forces for in-line and staggered arrays with different spacing 
ratios. For each array, forces on the first 8 rows at three different Reynolds numbers were made to 
insure capturing the maximum level of fluid forces which is a function of tube location and 
Reynolds number. As an example, the results of normal triangle arrays are discussed here. 

 
The normalized PSD of the lift force, ΦL, for two Reynolds numbers are plotted in Fig. (7.1) for 

the three arrays discussed in Section 3. The normalized PSD is defined by: 
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where FL is the power spectral density of the dynamic lift force, ρ is the fluid density and l is the 
tube length. It is seen that the normalization of PSD reduces the data of each array to a 
characteristic distribution. 

 
For the intermediate spacing array, Xp = 2.08, ΦL at the lower Reynolds number value, Fig. 

(7.1.b1), has two peaks around the Strouhal numbers of 0.26 and 0.4 which correspond to the 
components fv1 and fv2 of vortex shedding. The higher frequency peak fv2 appears only at rows 2 and 
3, whereas the lower frequency peak fv1 is dominant at the inner rows. At the higher Reynolds 
number value, Fig. (7.1.b2), the fv1 peak becomes stronger, narrow banded and dominant, whereas 
the fv2 component subsides. These features of the force are in accordance with the characteristics of 
the developing flow as discussed in Section (3). 

 



 
As the tube spacing is reduced to Xp = 1.61, the fv1 component becomes much weaker as 

observed in Fig. (7.1.a). The fv2 component remains, however only at the front rows. The PSD data 
of the rear rows collapse to a single distribution having a form similar to that generated by a 
turbulence excitation. The effect of neither the Reynolds number nor the row depth is significant on 
the magnitude of the PSD. 

 
In contrast with the small spacing case, as the spacing is increased to Xp = 3.41, the fv2 peak 

disappears from the PSD distributions for the Reynolds numbers considered in Fig. (7.1.c). Here, 
the peak appearing around S = 0.2 corresponds to the component fv1. In this array, the row depth 
does not have any effect on the PSD at the low Reynolds number value, Re = 13300. However, at 
the high Reynolds number value, Re = 53300, an order of magnitude difference is observed 
between the PSD of the front and the rear rows.  

 

Strouhal number, S

Φ
L

fv2

fv1

fv1

fv2 Xp = 1.61

Xp = 2.08

Xp = 3.41

Bound spectrum

Lift

(a)

(b)

(c)

Strouhal number, S

Φ
L

fv2

fv1

fv1

fv2 Xp = 1.61

Xp = 2.08

Xp = 3.41

Bound spectrum

Lift

Strouhal number, S

Φ
L

fv2

fv1

fv1

fv2 Xp = 1.61

Xp = 2.08

Xp = 3.41

Bound spectrum

Lift

Strouhal number, S

Φ
L

fv2

fv1

fv1

fv2 Xp = 1.61

Xp = 2.08

Xp = 3.41

Bound spectrum

Lift

(a)

(b)

(c)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2. Normalized power spectral densities of dynamic lift force in normal triangle arrays 

with three different spacing ratios. The results cover a Reynolds number range of 13300< Re < 
53300 and tubes in rows 2 to 8.  

 
After it was introduced by Mulcahy (1984), the so-called bound spectrum concept has emerged 

as an adequate tool for the prediction of the turbulent forces exerted on the tubes of heat exchanger 
arrays (Taylor et al. 1988, Axisa et al. 1990 and Oengoeren and Ziada 1992b). In order to obtain 
these bound spectra, first the PSD of the dynamic forces for all measured rows (2 to 8) and for all 
Reynolds numbers covered in the experiment were compiled on one graph as shown in Fig. (7.2). 
Then, a spectral bound which envelopes all the data except the vorticity shedding peaks was 
determined for each spacing ratio. The bound corresponding to each case is drawn as a solid line in 
Fig. (7.2). The peaks of vorticity shedding excitation are excluded from the bound spectra because 
such an excitation is strongly dependent on the spacing ratio and Reynolds number. A vortex 
shedding peak which exists in large spacing arrays does not necessarily exist in small spacing arrays 
of similar pattern. Furthermore, the Strouhal numbers of such peaks are also spacing ratio 
dependent. Therefore, the inclusion of these peaks in the bound spectra makes the use of such 
spectra very impractical and would result in very conservative designs of closely packed arrays. 

 



 
The bound spectra of the three spacing ratios are reproduced in Fig. (7.3) and their equations are 

listed in the table attached to the figure. The highest level of dynamic forces in the lower frequency 
range (S < 0.4) is measured in the large spacing case. As the spacing ratio is reduced to the 
intermediate and the small spacing cases, the level of the dynamic forces decreases. However, the 
difference in the levels of bound spectra of these two cases is negligibly small. Furthermore, the 
dynamic forces of all geometries seem to approach to the same bound in the upper frequency range 
(S > 0.4). As expected, the drag forces were found to be substantially smaller than the left forces 
and are therefore not given here for the sake of brevity. Similar information for in-line tube bundles 
can be found in Oengoeren & Ziada (1992b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3. Bound spectra of dynamic lift force for three normal triangle arrays with small, 
intermediate and large spacing ratios. The table shows the equations of the bound spectra. 
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7.2. Dynamic Lift and Drag Coefficients 

 
The overall effect of the dynamic forces exerted on the tubes, including the effect of vortex 

shedding excitation, can be represented by classical force coefficients. In the following, the root 
mean square (rms) values of the dynamic lift and the drag coefficients are presented. The force 
coefficient, C, is defined as: 

 
C = ( ∫ Φ dS)1/2                       (10) 
 

where Φ is the normalized PSD and S is the Strouhal number. The upper limit of the integration 
corresponds to the upper frequency limit of the force measurements, which was 800 Hz.  

 
The lift and the drag coefficients calculated from the PSD distributions are plotted in Fig. (7.4) 

for three normal triangle arrays with different spacing ratios. A strong dependence of the force 
coefficients on the spacing ratio is observed in this figure such that at a given row the level of the 
lift and the drag coefficients increases gradually with increasing spacing ratio. In all three 
geometries, the maximum level is reached around the second or the third rows. The force 



 
coefficients belonging to the inner rows are lower to varying degrees, depending on the spacing 
ratio. 

 
The maximum values of the lift coefficient, taken from Fig. (7.4), are compiled as functions of 

the Reynolds number and the spacing ratio in Fig. (7.5) to provide a design chart for tube vibration 
calculations. As observed in this figure, the Reynolds number has insignificant effect on the lift 
coefficient for the arrays with spacing ratios less than 1.6. For spacing ratios larger than 1.6, the lift 
coefficient becomes dependent on the Reynolds number which has the most pronounced effect in 
the intermediate spacing case. 
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Fig. 7.4: Total dynamic lift and drag coefficients (CLT & CDT) as functions of row depth in (a) small, 

(b) intermediate and (c) large spacing normal triangle arrays. ○, Re = 13300; ◊, 17300; 
∆, 26600; □, 33300; ●, 53300. 
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Figure 7.5. Distribution of maximum dynamic lift coefficients (Max CLT) as functions of Reynolds 
number for three normal triangle arrays with the spacing ratios Xp = 1.61, 2.08 and 3.41. 
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