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Many noise and vibration problems in industry are generated by excitation mechanisms involving 
the coupling between a flow instability and an upstream feedback. In the fluid-dynamic mechanism, 
the upstream feedback is generated by the flow impingement on a downstream solid object, 
whereas in the fluid-resonant and the fluid-elastic mechanisms, this feedback is generated by 
acoustic or structural resonances of the associated system. This paper focuses on the fluid-dynamic 
and the fluid-resonant mechanisms; describing their basic features and means of their alleviation. 
As an example of the fluid-resonant mechanism, acoustic resonances of closed side-branches are 
discussed in some detail; including the effect of flow and geometrical parameters, the prediction of 
the onset of resonance, estimation of the resonance intensity as well as practical means of reducing 
the resonance intensity or eliminating it altogether. 
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1. Introduction 
 

Fluid flows in many engineering applications are naturally unstable. This means that small 
disturbances to the flow can be amplified into large vortex-like structures which generate 
fluctuating fluid forces and noise. Numerous theoretical and experimental studies have improved 
our knowledge of how flow instabilities develop in regions of wall bounded and separated shear 
flows such as, boundary layers, free shear layers, wakes of bluff bodies or free jets. A 
comprehensive review of recent advances in the field of flow instabilities has been published by 
Huerre & Monkewitz (1990). When an unstable flow interacts with either the vibration of a nearby 
flexible structure or with the sound waves generated by acoustic resonances, a feedback excitation 
mechanism is initiated which strengthens drastically the structural vibration and the generated 
noise. As an example of the feedback mechanism between flow instabilities and sound waves, the 
pleasant tones of the flute are produced by the coupling between the instability of the air stream 
being blown and the sound waves inside the flute “pipe”. 

 
Unfortunately, when this coupling mechanism becomes active in industrial applications, such as 

power stations, chemical plants, gas and oil pipelines, or marine and aeronautical applications, the 
outcome is not as pleasant as in the case of the flute but rather, deafening noise levels, dangerous 
excessive vibrations, and a large amount of wasted energy can result. This makes the environment 
at the work place and in neighbouring communities intolerable, the safety of the plant is endangered 
in cases of failure due to vibrations, and the efficiency of the industrial process is lowered. 
Additionally, the financial consequences can be devastating if a plant is put out of service to carry 
out repairs or because of safety or environmental concerns. An unscheduled shut-down of a 
400 MW power plant, for example, results in lost revenues of around half a million dollar per day. 
Even when the vibration and pressure pulsation are sufficiently weak to be tolerated, they still cause 
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additional pressure losses and reduce the efficiency. However small these losses might seem in 
percentage terms, they constitute, in absolute values, a significant amount of wasted energy. 

 
The object of this paper is to describe the instability of separated shear flows and its various 

coupling mechanisms with sound waves, which result in the generation of excessive noise and/or 
dangerous vibration in a wide range of industrial applications. Passive and active control methods to 
suppress these coupling mechanisms are also addressed in some details. As an example, the 
excitation mechanism causing acoustic resonances of closed side-branches is discussed and several 
means to alleviate these resonances are described. 
 
2. Excitation Mechanisms Due to Instability of Shear Flows 

 
Free shear flows, such as wakes of bluff bodies, free shear layers and free jets, see Fig. (2.1), are 

inherently unstable and therefore small disturbances introduced near the location of flow separation 
are rapidly amplified downstream into vortex-like structures. The growth and downstream 
convection of these vortical structures generates pressure and velocity fluctuations, which appear in 
the turbulence and pressure spectra as a discrete frequency excitation, whose frequency varies 
linearly with the flow velocity. This excitation is generally referred to in the literature as Strouhal 
excitation or vorticity shedding. 

 
In turbulent flow, which is likely to be the prevalent case in practical applications, vorticity 

shedding resulting from shear flow instabilities is normally incoherent and therefore its excitation 
level is generally weak, unless it is coupled with a feedback mechanism, which perpetuates the 
inducement of coherent disturbances near the location of flow separation. When this occurs, the 
flow oscillations are drastically enhanced such that excessive vibration and/or acute noise problems 
are likely to occur. 
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Figure 2.1. Basic feedback mechanisms which enhance shear flow excitations: (a) feedback due to 

the “locked-in” vibration of the cylinder; (b) new vorticity perturbations (1) are induced by 
the resonant acoustic standing waves (3) which are excited by the shear layer oscillation (2); 
(c) feedback is due to flow impingement on the wedge. 

 
Basically, there are three different mechanisms which generate upstream feedback of 

disturbance (Rockwell & Naudascher, 1979). In the first, the feedback is provided by structural 
vibrations as in the classical case of vortex shedding from flexible bluff bodies, Fig. (2.1(a)). This 
mechanism can generate large amplitude, or ‘lock-in’ vibration when the vortex shedding frequency 
approaches the resonance frequency of the bluff body. The second mechanism, the fluid-resonant 



 
mechanism, is triggered when the frequency of vorticity shedding becomes close to that of an 
acoustic resonator. In this case, acoustic feedback is provided by the resonant sound field as in the 
classical cases of deep cavity resonance, Fig. (2.1(b)), and acoustic resonance of conduits due to 
vortex shedding from bluff bodies, Fig. (2.2). In the third mechanism, the fluid-dynamic 
mechanism, upstream feedback is not caused by resonance effects, but rather by flow impingement 
on a downstream object. The jet-edge oscillator shown in Fig. (2.1(c)) is a classical example of this 
feedback mechanism. The distortion of the vorticity field due to its impingement on the edge 
generates an upstream feedback, whereby new perturbations are induced at the jet exit. All three of 
the above mechanisms can coexist, albeit rarely, but when they do, the problem becomes very 
severe. Ziada and Bühlmann (1991), for example, reported a vibration problem for a long 
corrugated pipe conveying water, in which conditions conducive to the above three mechanisms 
existed: the shear layers spanning the corrugations troughs comprised impinging flow situation, the 
corrugations exhibited significant axial vibration and acoustic standing waves in the pipe were also 
observed. The excitation mechanism in this case is very complex and its details are not yet fully 
understood. 
 

The contents of this paper are organized in the following manner. First, the hydrodynamic 
stability theory of free shear flows is discussed briefly. It is clear that full understanding of this 
phenomenon is essential because the flow instability is the source of excitation in all the above-
mentioned mechanisms. Attention is then focused on the effect of shear flow impingement on 
downstream objects. The main features of the fluid-dynamic excitation mechanism which controls 
the oscillations of impinging shear flows are illustrated by means of several examples of impinging 
mixing layers and jets. Thereafter, the fluid-resonant excitation mechanism, which results from the 
interaction of flow instabilities and sound waves, is demonstrated with reference to the classical 
case of acoustic resonance of deep cavities.      
 

Acoustic standing wave

Flow

Acoustic standing wave

FlowFlowFlow

 
 
Figure 2.2. Vortex shedding from bluff bodies can excite acoustic standing waves in the transverse 

direction of the duct. 
 
3. Hydrodynamic Stability Theory of Shear Flows 
 

The general meaning of stability can be explained by asking the question: Can the system 
physical state endure a disturbance and still return to its original state? If yes, then it is stable. If not, 
then that particular state of the system is unstable. Thus, stability analysis consists of examining the 
effect of a disturbance, with a particular frequency, on a given state of the system. In this context, 
the following applies to fluid flows, and in particular to shear flows. 

 
• Stability is the fluid quality of being immune to small disturbances. These disturbances can 

be either self-induced or externally imposed. 
 
• The decay of an introduced small disturbance is the necessary condition for stability. 



 
 
• The amplification factor (whether temporal or spatial) determines the rate at which an 

infinitesimally small disturbance, once introduced, will amplify or decay (with time, i.e. 
temporal amplification, or space, i.e. spatial amplification). 

 
• The basic equation used to examine flow instability is a perturbation form of the Navier-

Stokes equation (NSE). 
 
• We are interested in finding out the flow response to small disturbances, which is 

representative of the initial phase of instability. 
 
• If the perturbed NSE is linearized, we obtain the Orr-Sommerfeld equation. Neglecting 

viscous effects in the Orr-Sommerfeld equation gives the Rayleigh equation. 
 
• Linear stability theory predicts the most unstable frequency of the disturbance (i.e. the 

frequency which has the largest amplification factor). This frequency dominates transition 
from laminar to turbulent regimes. 

 
3.1. Derivation of the Orr-Sommerfeld equation 
 

• Since previous work showed that Rcr (critical Reynolds number for transition) is lower and 
the amplification rate of disturbances is larger for 2-D flows than those for 3-D flows, we 
confine our analysis to two-dimensional flows. Thus, the 2-D analysis is conservative for 
three-dimensional flows. 

 
• We assume a velocity disturbance function (also two-dimensional) and substitute in NSE 

and since the disturbance amplitude is very small at the initial phase, the equations are 
linearized by neglecting higher order terms. 

 
• Viscous effects are neglected by assuming high Reynolds number. 
 
• The resulting equation is then solved numerically (as an eigenvalue problem) to find: 

(a) The frequency range at which the flow is unstable 
(b) The amplification factor, phase speed, wave number as functions of disturbance 

frequency. 
 
• Results of the linear stability theory are in good agreement with the experimental results 

taken in the initial region of transition, which is where the disturbance is still small. 
 

The two dimensional NSE (without body forces) is written as: 
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The Continuity equation is 
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Where u & v are the velocity components in x & y directions, p is the pressure, ρ is the density 

and ν is the viscosity. 
 
If we assume a two-dimensional parallel flow with a mean flow as shown, the velocity 

components are therefore 
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Assume a two dimensional perturbation of the form 
  
u′(x, y, t),  v′(x, y, t),  p′(x, y, t) , and  w′ = 0    (5)  
 
The resultant motion becomes 
 
u = U(y) + u′ ,    v = v′ ,     w = 0 ,        p = P + p′   (6) 
 
Substitute Eq. (6) into Eq. (1), Eq. (2) and Eq. (3) and neglecting second order terms 
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The mean flow (Eq. (4)) satisfies the NSE. Thus, substituting Eq. (4) into Eq. (1) and Eq. (2) 

and then canceling terms in Eq. (7) and Eq. (8), we obtain 
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Equations (10a & 10b) are the NSE for a small disturbance. 
 



 
3.2. The Orr-Sommerfeld equation 

 
The stream function of a two-dimensional, harmonic disturbance is 
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where complex quantities are indicated by the over bar. Substituting into Eq. (10) and eliminating 
the pressure, we obtain a fourth order, differential equation for the complex amplitude of the 
disturbance function φ  
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This is the Orr-Sommerfeld equation and it is in a dimensionless form.  Assuming high 

Reynolds number flows, the right-hand side of the equation can be neglected (since 1/R is small).  
Then we have the Rayleigh's equation. 
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Here, U and φ  are functions of y. This equation is solved numerically for a given mean velocity 

distribution U(y). 
 
For example, for the hyperbolic tangent velocity profile, which is shown in below, Michalke 

(1965) reported detailed instability characteristics for the profile 
 
 

U(y) = 0

U(y) = 1

U(y)

U(y) = 0

U(y) = 1

U(y)

 
 

U(y) = 0.5 (1 + tanh y)    (14) 

and with the boundary conditions 

0φyat =→±∞=  
 
 
 

3.3. Temporal and spatial amplifications 
 
Depending on the choice of α and C, real or imaginary, we may study the growth of the 

instability wave (i.e. disturbance) with either time (temporal amplification factor βi) or with location 
(spatial amplification αi). 

 



 

(a) Temporal amplification:  If C  is complex and α is real, Eq. (11) gives: 
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The value in the brackets represents the time-dependent amplitude of a wave traveling in the x-

direction with a frequency βr and a wave number α. It is seen that for this amplitude to grow with 
time, i.e. for the flow to be unstable, βi must be positive (βi > 0). 

 

(b) Spatial amplification:  When C is real and α  is complex, Eq. (11) gives: 
 

{ } βt)xj(αxα ri ee(y)φt)y,(x,ψ −−= (16) 
 

 
In this case, the value in the brackets is the spatial-dependent amplitude of a wave traveling in 

the x-direction with a frequency β and a wave number αr. For amplification of disturbance, αi must 
be negative (αi < 0). 

 
Comparison with experiments has shown that the spatial amplification factor is more accurate 

than the temporal factor. 
 
Thus, the relevant parameters for shear flow instability are:  

αi  is the spatial amplification factor of disturbance, i.e. the rate of growth of disturbance in 
the streamwise direction.  

αr is the dimensionless wave number, αr = 2 πθ/λ, where θ is the momentum 
thickness and λ is the wavelength.  

β is the dimensionless frequency, β = 2 πfθ/U 

C is the phase speed, C = β/αr
 

In general, the velocity profile U(y) is known. For each frequency β, we solve Eq. (13) 
numerically to find α and φ which satisfy the boundary conditions. This gives αI, the wavelength 
and the phase speed.  

 
The results of the stability analysis are generally presented in the following form 
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In addition to the above, the stability analysis yields the following general conclusions 

concerning shear flows 
(i) Velocity profiles which possess a point of inflection are unstable. This means that free 

shear layers, jets, and wakes are inherently unstable.  
(ii) The phase speed of the instability wave, i.e. the speed of disturbance propagation, is 

smaller than the maximum velocity of the mean flow. 
 
3.4. Streamwise amplification and transition of a plane mixing layer 

 
Figure (3.1) illustrates the main features of disturbance growth in a mixing layer. The linear 

hydrodynamic theory is applicable for the initial phase only and predicts the growth rate αi. This 
initial region is referred to as the linear growth region although the disturbance grows exponentially 
by several orders of magnitude. Further downstream, the disturbance amplitude saturates and the 
instability wave rolls up into vortex-like structures at the fundamental frequency βo. This is 
associated with the growth of the higher harmonic 2βo, and the sub-harmonic component βo/2. The 
growth of the sub-harmonic component initiates the process of vortex pairing, where every two 
successive vortices join to form a single larger vortex. This results in halving the frequency of flow 
oscillation. These activities take place within the non linear and the transition regions. Further 
downstream, the higher harmonics grow stronger and the organized flow fluctuations break down 
into turbulence (Miksad, 1972). 

 
A frequency spectrum of the velocity fluctuation is shown in the bottom of Fig. (3.1). It is seen 

that not only the fundamental component βo is present, but the sub- and higher harmonics are also 
present. The strength of each of these components depends on both the streamwise and transverse 
location of velocity measurement. The amplification rates obtained from the linear stability theory 
for typical examples of shear flows are summarized in Fig. (3.2). In the next section, the theoretical 
predictions of growth rates for the hyperbolic tangent shear layer, Eq. (14), are compared with those 
obtained experimentally. 
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Figure 3.1. Schematic showing the main features of disturbance growth in a planar mixing layer 

(Lucas el al., 1977). 
 



 

 
 
 
Figure 3.2. Solutions to the Rayleigh equation (i.e. prediction of the linear stability theory) for six 

mean velocity profiles (Lucas el al., 1977). 
 



 
3.5. Comparisons with experiments 

 

 
Flow visualization from Freymuth (1966) 

 
Freymuth (1966) used loudspeakers to excite a round jet and investigated the amplification 

characteristics of the imposed disturbance along the shear layer which separates from the lip of the 
jet. Since it was possible to vary the frequency and the amplitude of excitation, the effect of these 
parameters on the instability of the shear layer was studied in some details. The following figure 
shows a smoke visualization photograph of the jet shear layer development (Freymuth (1966)). 
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Figure 3.3. Dependance of the growth of velocity fluctuation on the Strouhal number.  

 

 
 

Figure 3.4. Growth rate versus Strouhal number. o: axisymmetric nozzle: x: plane nozzle 
(Freymuth, 1966). 



 
By measuring the amplitude of the velocity fluctuations as a function of streamwise location, 

Freymuth (Fig. (3.3)) showed that the initial rate of disturbance growth is indeed exponential as the 
linear theory predicts. Interestingly, the disturbance which receives maximum amplification, for S = 
fθ/U = 0.0176, saturates at about 8% of the mean velocity, U, whereas disturbances receiving lower 
amplifications grow to as much as 20% of the mean velocity. This figure also shows the nature of 
the shear layer instability; it acts as an amplifier whose gain and nonlinear amplitude saturation are 
frequency dependent. Figure (3.4) compares the measured amplification rates, which are the slopes 
of the lines shown in Fig. (3.3), with the linear theory. The agreement is seen to be very good. 
 
4. Oscillations of Impinging Shear Flows (The Fluid-Dynamic Mechanism) 

 
4.1. Effect of impingment 

 
As stated earlier, the impingement of separated shear flows on solid objects generates a 

feedback mechanism, which sustains oscillations at selected frequencies from within that band of 
frequencies at which the flow is unstable. The effect of impingement is illustrated in Figures (4.1 & 
4.2). The top photo in Fig. (4.1) shows the flow structure of a mixing layer between two streams 
impinging upon an edge, whereas the second photo was taken at the same flow conditions of the 
mixing layer but without the impingement edge. It is clear that the flow is much more organized and 
two-dimensional when the impingement edge is present. The bottom photo shows a large degree of 
streamwise vorticity, which rapidly destroys the two dimensionality of the flow. 

 
(a) Mixing layer-wedge system 

 
U1

U2

U(y)

x
y

U(y)

x
y

U1

U2

U(y)

x
y

U(y)

x
y

U(y)

x
y

U(y)

x
y

 
 
 
 

   (b) Free (non-impinging) mixing layer 
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Figure 4.1. Hydrogen bubble visualization of a mixing layer (a) with impingement wedge, L/θ0 = 

79; (b) without impingement wedge, L/θ0 = ∞,  L is the impingement length, and θ0 is 
momentum thickness at separation (Ziada & Rockwell, 1982). 

 
Measurements of the velocity fluctuations, with and without impingement, of the same mixing 

layer discussed above are shown in Fig. (4.2). The flow impingement is seen to increase the 
velocity fluctuation at separation by at least an order of magnitude. This, together with the 
enhancement of the flow structure as illustrated in Fig. (4.1), results in a substantial increase in the 
saturation amplitude of the velocity fluctuation and therefore the fluctuating energy of the flow 
becomes much stronger when the impingement edge is added. Thus, the upstream feedback, which 
is generated from flow impingement, is seen to increase the amplitude of flow oscillations and to 



 
preserve the two dimensionality of the flow. These are the basic ingredients which contribute to 
intense noise generation and excessive dynamic loading by the flow on neighbouring structures. 
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Figure 4.2. Effect of impingement on velocity fluctuation (u) along a mixing layer impinging upon 
an edge. Cases K& M with edge; Case N without edge. (Ziada & Rockwell, 1982). 

 
4.2. The fluid-dynamic mechanism 

 
As described by Naudascher and Rockwell (1994), the increase in the initial velocity fluctuation 

near the separation edge is due to the upstream feedback of pressure perturbations resulting from 
the downstream impingement of the vortex-like structures on the wedge. This upstream feedback is 
referred to in the literature as the fluid-dynamic feedback mechanism. It does not require any 
resonance effects to sustain the flow oscillation. This mechanism has been observed for a spectrum 
of configurations such as the jet-edge (Fig. (4.3)), jet-wall, jet-slot or hole and many others as 
illustrated in Fig. (4.4). All these flow configuration may exhibit strong oscillations excited by the 
fluid-dynamic mechanism whose basic events are illustrated in Fig. (4.3). 

 

 
 
Figure 4.3. Fluid-dynamic feedback mechanism resulting from flow impingement (Naudascher and 

Rockwell, 1994). 
 



 

 
 

Figure 4.4. Basic configurations of shear layers and impingement-edge geometries that produce 
self-sustained oscillations excited by the fluid-dynamic feedback mechanism (from 
Naudascher and Rockwell, 1994). 

 
At low Mach number flows, the impingement distance L is normally much smaller than the 

acoustic wavelength λa (L/λa << 1). This means that the flow separation location is within the non-
propagating region of the impingement edge and therefore, the disturbances generated by flow 
impingement at the edge are instantaneously felt upstream at the location of flow separation. In 
other words, the upstream effect is purely hydrodynamic at low Mach number. At high speed flows, 
the acoustic wavelength may be comparable with the impingement length. In this case, one should 
take into account the time delay required by the disturbance to travel upstream from impingement 
edge to flow separation. 

 
4.3. Examples of impinging shear flows 

 
Oscillations of impinging shear flows occur at selected frequencies. This is because these 

oscillations have to satisfy a phase condition between flow activities near the separation and the 
impingement locations. When this condition is satisfied, the upstream feedback produces velocity 
fluctuation at separation, which is in phase with the shear layer oscillation. Applying this phase 
condition results in an approximate formula to predict the frequency of oscillations, f, which is 
normally given in terms of the Strouhal number, SL, based on the impingement length, L:  

 
SL ≡ f L /V = (n + ε) C/V,  n = 1, 2, 3, …       (17) 

 
where V is the flow velocity, C is the phase speed of the instability wave and ε is a constant (ε = 0 
to 0.5). In general, ε and C/V depend on the particular system configuration and flow conditions. 
The integer n in Eq. (17) is the mode (or the stage) number. Thus, impinging shear flow oscillations 
occur at several modes, n, which are separated by frequency jumps. For example, as the 
impingement length, or the flow velocity, is increased, the oscillation frequency will change 
gradually until a critical value at which a frequency jump occurs. This jump marks the switching of 
oscillation to another mode. The mode number, n, represents the number of wavelengths (or 
vortices) between the separation and impingement locations. 



 
 

Figure (4.5) shows plots of Strouhal number (fL/V) of the dominant oscillation for three typical 
examples of impinging shear flows: jet-edge, cavity, and shear layer-edge. All three cases show 
remarkable similarities in their frequency behavior as a function of the impingement length. Note 
the occurrence of frequency jumps between different modes (or stages of operation). For further 
details of this class of oscillations, the reader is referred to Rockwell & Naudascher (1978, 1979). 

 

 
 

Figure 4.5. Strouhal numbers, fL/V, for (a) jet-edge oscillations; (b) cavity oscillations; and (c) 
mixing layer-edge oscillations, δ is the boundary layer thickness at separation (from 
Naudascher & Rockwell, 1994). 

 
 

In the top photo, with upstream feedback effect, the velocity fluctuation at the jet exit is stronger 
and therefore the jet develops very rapidly and the transition to small-scale turbulence takes place 
after three shock cells only. Note that the jet-spread rate is remarkably steep.  

 
When the upstream feedback is prevented, the bottom photo shows a much slower jet 

development, a smaller angle of jet spread, and five shock cells before the break down into 
turbulence. This is because the velocity fluctuation at the jet exit was reduced when the upstream 
effect was prevented by means of the reflectors. Thus, the upstream effect is always present, but it is 
weaker for non-impinging flows. 

 
4.4. Feedback control of impinging shear flow oscillations 

 
Since the most important event of the excitation mechanism is the upstream feedback, 

eliminating this feedback would break the cycle of events of the excitation mechanism and thereby 
suppresses the self-sustained oscillations. Ziada (1995) developed an active control technique to 



 
counteract the upstream feedback. The basic idea of this technique is illustrated in Fig. (4.6), which 
shows a block diagram of the excitation mechanism, together with the active control feedback, 
which is added to counteract the fluid-dynamic feedback. In the case of an impinging planar jet for 
example, Fig. (4.7), this can be achieved by using loudspeakers which are focused on the jet exit 
only. The loudspeakers can be activated by the signal of a transducer sensing the jet oscillations, 
such as a microphone. This reference signal must be phase shifted and amplified optimally before it 
is used to activate the speakers. Figure (4.7) shows a simple controller consisting of a filter, a phase 
shifter and an amplifier. A digital controller with adaptive digital filter and a recursive root-mean-
square algorithm was also used in order to be able to impose the proper phase and gain for each 
frequency within the frequency range of interest. The effect of feedback control using a digital 
controller on the jet-edge and jet slot oscillations is illustrated in the following. 

 

 
 

Figure 4.6. Block diagram presentation of the feedback mechanism causing self-excited oscillations 
and the basic idea used to suppress this mechanism by active means. Tu is the broadband 
flow turbulence, V & P are the velocity and pressure fluctuations, and ε is the upstream 
feedback (Ziada, 1995). 

 

 
 

Figure 4.7. Schematic diagram of the test facility showing a two dimensional nozzle, a wedge (or 
edge), loudspeakers, and a flow diagram of the control circuit (Ziada, 1995). 

 
Noise spectra of the jet-edge oscillations with and without control are shown in Fig. (4.8) for 

three values of Reynolds number. It is seen that the feedback control technique eliminated the 
system oscillations entirely, without destabilizing higher order modes. A reduction of about 30 dB 



 
in the narrow band peak was achieved at all three Reynolds numbers. Similar reductions were also 
achieved in the case of the jet-slot oscillator (Ziada, 1995). Flow visualization photos of both the 
jet-edge and the jet-slot with and without control are shown in Fig. (4.9). In both cases, it is seen 
that the lateral oscillations of the jet and the organized vortical structures are totally eliminated by 
the developed control method.  
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Figure 4.8. Effect of the adaptive digital controller on the noise spectra of the jet-edge oscillator 

illustrated for several Reynolds numbers. Thin line: without control; thick line: with control 
(adapted from Ziada, 1995). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9. Flow visualization photos of the jet-edge (left) and the jet-slot (right) with and without 

control. The signal at the top left of each photo shows the microphone signal (Ziada, 1995). 
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The developed control technique has several advantages. First, the energy required to activate 

the control system is substantially reduced because the loudspeakers are focused on a small portion 
of the whole flow field. Secondly, since the jet exit is the most sensitive location and the velocity 
fluctuation is smallest there, the required power to cancel the flow feedback is minimized.  Thirdly, 
in many practical applications, such as combustion oscillations (Ziada & Graf, 1998), the secondary 
sources cannot be installed to act directly on the flow field because of hazardous conditions. 
Connecting the secondary sources to the location of flow separation provides an alternative 
approach in such cases. Finally, since the control circuit is activated by the system response, the 
amount of power needed to suppress the oscillation continuously drops sharply after an initial short 
period. The loudspeakers therefore do not need to be as powerful as in the case of active noise 
cancellation. 
 
5. Flow-Excited Acoustic Resonance 

 
Flow-excited acoustic resonances are often encountered in many engineering applications 

involving internal or external flows. The acoustic pressure associated with such resonances can 
cause severe noise problems and, in some cases, endanger the structural integrity of the installation. 
Flow-excited acoustic resonance can occur in piping systems conveying gases or liquids, flow 
control devices, turbomachines, boilers, heat exchangers, cavities in fast moving vehicles, and many 
other applications. In many of these examples, the resonance is excited by an unstable separated 
flow, such as a shear layer, a jet or a bluff body wake. As mentioned earlier, Rockwell and 
Naudascher (1979) classified this excitation mechanism as fluid-resonant in contrast to the already 
discussed fluid-dynamic mechanism, which generates self-sustained oscillations of impinging shear 
flows in the absence of resonance effects. In the fluid-resonant mechanism, the resonant sound field 
provides the upstream feedback and excites the shear flow at its separation location and thereby 
sustains the oscillation. Although the fluid-dynamic mechanism by itself can generate strong flow 
oscillations, its coupling with an acoustic mode drastically increases the oscillation amplitude. This 
coupling, together with some of its consequences, is discussed in the next section by considering the 
interaction mechanism between a jet-slot oscillator and a deep cavity resonator. 

 
5.1. An example of impinging shear flow coupling with an acoustic resonator 

 
Figure (5.1) shows a planar jet impinging on a slot, which constitutes a jet-slot oscillator excited 

by the fluid-dynamic mechanism. However, in this case, an acoustic resonator is added which 
consists of two well-tuned deep cavities. The acoustic pressure distribution of the first acoustic 
mode of the deep cavities is also shown. This mode consists of a half-wavelength acoustic wave 
with a pressure node at the jet centerline. Attention is now focused on the changes which may occur 
in the nature of jet oscillation when the acoustic resonance is developed, or attenuated, as the flow 
velocity is increased. It will be shown that the occurrence of resonance may be associated with a 
fundamental change in the mode of jet instability, and in some cases, associated also with a jump in 
the frequency of oscillation. 

 
The frequency, f, and the dimensionless amplitude, P, of the dominant component of pressure 

oscillations are plotted in Fig. (5.2) as functions of the flow velocity at the nozzle exit, V. The 
pressure amplitude is normalized by the jet dynamic head, i.e.  

 
P = Prms / (½ ρ V2)           (18) 
 
Here Prms is the root-mean-square amplitude and ρ is the density. The results shown in Fig. (5.2) 

were measured by means of Microphone 1 (see Fig. (5.1)), and have been found to be almost 
identical to those obtained by Microphone 2.  



 

 
 

Figure 5.1. Schematic of the experimental set-up to investigate the interaction mechanism between 
a jet-slot oscillator (with a fluid-dynamic feedback) and an acoustic resonator consisting of 
two well-tuned deep cavities (Ziada, 2001). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resonant Case A: fj≈fr

Non-resonant Case B: fj≠fr

Resonant Case C: fj≈½fr

Resonant Case A: fj≈fr

Non-resonant Case B: fj≠fr

Resonant Case C: fj≈½fr

Figure 5.2. Response of a jet-slot oscillator combined with a cavity resonator: (a) frequency of 
oscillation; (b) normalized acoustic pressure; (c) phase between pulsations in cavities; right-
hand side: visualization of non-resonant case B and resonant cases A & C (Ziada, 2001). 

 



 
 
The phase angle between Microphones 1 & 2 is given in Fig. (5.2(c)). Resonance of the acoustic 

standing waves along the cavity depth, Fig. (5.1), is seen to occur over two ranges of flow velocity, 
between V = 16-19 m/s and at V > 24 m/s. Within these ranges, the oscillation frequency (≈ 292 
Hz) agrees well with that calculated from the formula: 
 

f = c / 2H            (19) 
 
Here c is the sound speed and H is the distance between the cavities closed ends (590 mm). 
 
Outside the resonance ranges, where the flow oscillations resemble the natural oscillation mode 

of the jet-slot oscillator (the fluid-dynamic mechanism), the frequency increases smoothly with the 
flow velocity and the pressure oscillations in the two cavities are in phase. This suggests that the jet 
oscillates symmetrically when the acoustic resonance is not excited. This is illustrated to be indeed 
the case by the flow visualisation photograph corresponding to Case B in Fig. (5.2). At the onset of 
resonance, the pressure amplitude increases sharply with flow velocity and the pressure oscillations 
in the cavities become out of phase with each other as illustrated in Fig. (5.2(c)). Thus, the jet 
oscillation pattern switches to an anti-symmetric mode when the resonance is excited, as can be 
seen from the flow visualisation photos corresponding to the resonant cases A & C. At the onset of 
the first resonance range (V ≈ 16 m/s), the oscillation frequency is approximately doubled. This 
indicates that when the resonance sets in, the jet oscillation switches not only from a symmetrical to 
an anti-symmetrical mode, but also to a higher mode of the jet oscillation, whereby the number of 
the formed vortices along the cavity mouth is increased. The excitation of acoustic resonance by 
higher order modes of the shear layer has been reported for several other cases such as a pipeline 
with two baffles (e.g. Hourigan et al., 1990) and a pipe with closed side branches (e.g. Graf & 
Ziada, 1992; and Ziada, 1993).  

 
As indicated in Fig. (5.2), the oscillation amplitude is increased substantially when the 

resonance is excited. This enhancement is due to the fluid-resonant mechanism, which is described 
in the following section. 

 
5.2. The fluid-resonant mechanism 

 

 
 

Figure 5.3. Main events of fluid-resonant mechanism for deep cavity acoustic resonance excited by 
grazing flow. 

 
The mechanism by which impinging flows excite acoustic resonances is illustrated in Fig. (5.3). 

At the upstream separation edge, the resonant sound field induces velocity perturbations in the shear 
layer. Blevins (1985), for example, has shown that high intensity sound waves can shift the 
frequency of vortex shedding from that of natural shedding. The velocity perturbations, which are 



 
induced at the upstream separation edge, extract energy from the mean flow and grow exponentially 
in the downstream direction into vortex-like structures. Further downstream, near impingement, the 
phase of the sound cycle becomes favourable and the vortex structures generate acoustic energy 
which enhances the resonant sound field. 
 

Substantial progress in understanding and modelling this excitation mechanism has been 
achieved since Howe (1975, 1980) formulated his acoustic analogy in which vorticity is identified 
as a source of sound. He showed that the instantaneous acoustic power, Ƥ, generated by vorticity, 
ω, convecting within a sound field is given by 

 
Ƥ = - ρ ∫ ω . (v x u) d∀                      (20) 
 

where ρ is the fluid density, v is the fluid velocity, u the particle velocity of the sound field and ∀ is 
the volume containing the vorticity field. Whether vorticity acts as acoustic source or sink (i.e. 
whether acoustic energy is generated or absorbed) depends on the triple product ω. (v x u). 
Resonances are self-sustained if the integral of the sound power over an acoustic cycle is positive, 
and this implies that a favourable timing of vorticity convection with respect to the sound cycle 
must be maintained. Stoneman et al. (1988), Bruggeman (1987), Hourigan et al. (1990) and others 
have used Howe’s theory to explain several features of flow-excited acoustic resonances, especially 
for the case of impinging shear flows. For example, the feature that resonances always occur within 
a certain range of Strouhal numbers is found to be related to the fulfilment of the above-mentioned 
phase condition over this range of Strouhal numbers, and therefore a net positive sound energy is 
produced over a complete cycle. 
 
6. Acoustic Resonance of Closed Side Branches 

 
6.1. Introduction 

 
As an example of the fluid-resonant mechanism, the phenomenon of acoustic resonance in 

closed side-branches is considered in some detail. This particular example is rather important 
because closed side-branches are often encountered in gas and oil pipelines, steam, gas and water 
piping in power plants and chemical industry, exhaust gases conduits of boilers and engines, and 
many other industrial applications. The flow over the mouth of the branch can excite strong acoustic 
resonance of the side branch (see Fig. (5.3)). A pipe system is very much more liable to acoustic 
resonances if it has multiple closed branches in close proximity. An example of safety valves 
attached to a fresh steam pipe in a power plant is shown in Fig. (6.1). This pipe arrangement is a 
combination of co-axial and tandem branch arrangements as shown in Fig. (6.2). These 
arrangements can generate very strong acoustic resonance and dangerous pipe vibration (Ziada & 
Buehlmann, 1992)). Another example of multiple closed side-branches, which is often encountered 
in practical applications, is the piping system used in power plants to bypass the turbine. The branch 
pipes of this system are usually closed by means of the bypass control valves during normal 
operation of power plants. This section focuses on several aspects related to the phenomenon of  
acoustic resonance of single and multiple side-branches, prediction of the critical flow velocity for 
the onset of resonance, estimation of the pulsation amplitude, and possible counter-measures to 
reduce the pulsation amplitude. For further details, the reader is referred to a detailed study reported 
by Ziada (1993). 

 
6.2. Characteristics of acoustic resonance 

 
Figure (6.2) shows four typical arrangements of side-branches together with schematic 

presentations of their lowest acoustic resonance modes. The patterns of the acoustic flux associated 



 
with these modes are shown in Fig. (6.3), which considers the cases for which both the distance 
between the branches, ℓ, and the main pipe diameter, D, are much smaller than the wavelength of 
the acoustic modes. 

 
 

Figure 6.1. An example of four relief valves attached to a fresh steam line in a power plant. 
 
 
 

 
 
Figure 6.2. Typical geometries of side-branches and simplified patterns of acoustic pressure 

distributions of the resonance modes (Ziada & Buehlmann, 1992). 
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Figure 6.3. Single, tandem and co-axial closed side-branches showing the acoustic flux of the 

resonant acoustic mode (Ziada 1994). 
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Figure 6.4. Acoustic response of two tandem branches as function of the flow velocity showing the 
frequency, the Strouhal number and the amplitude of various acoustic modes of the 
branches (Ziada & Buehlmann, 1992). 



 
 

 

 
 

Figure 6.5: Flow visualization of the shear layer at the mouth of the branch whilst the resonance is 
excited. Top: first mode of the shear layer (n = 1); bottom: second mode (n = 2). Adapted 
from Ziada (1994). 

 
In the single branch case, Fig. (6.3(a)), the pulsation amplitude in the branch is strongly 

influenced by the acoustic radiation into the main pipe, and consequently by the friction and heat 
losses in the main pipe as well as by the radiation losses at the main pipe terminations. For example, 
increasing the diameter of the branch, d, with respect to that of the main pipe, D, which increases 
the acoustic radiation into the main pipe, is associated with a rapid reduction in the pulsation 
amplitude at resonance.  

 
In the case of two branches, Fig. (6.3(b & d)), which are well tuned (i.e. of equal length) and in 

close proximity, i.e. ℓ ≪ λ, the acoustic flux at the mouth of one branch is equal but opposite to 
that at the mouth of the other branch. In the case of the co-axial branches for example, Graf & Ziada 
(1992) found that only 2% of the branches acoustic power is radiated into the main pipe. The two 
branches therefore strongly couple and form a subsystem with negligible radiation losses into the 
main pipe. Thus, the pulsation amplitude in the case of two (or multiple) branches can be drastically 
higher than that in the case of a single branch. Ziada & Bühlmann (1992) and Ziada (1999) have 
shown that this is particularly the case for large values of d/D.  

 
As an example, Fig. (6.4) shows the acoustic response of two tandem branches as a function of 

the flow velocity. It is seen that the resonance modes are excited consecutively, and during the 
resonance of each mode, the frequency remains constant, i.e. locked-in to the resonance frequency. 
During this process, the Strouhal number, S = fd/V, remains within the range of 0.4 to 0.5. As will 
be shown later, the Strouhal number at the onset of resonance is not constant, but is strongly 
dependant on the diameter ratio, d/D, and the approach flow conditions. 

 
Figure (6.5) shows flow visualization pictures of the oscillation of the shear layer at the mouth 

of the branch whilst the resonance is excited. The resonance can be excited by the fundamental 
shear layer mode (top photo, n = 1) as well as by the higher modes (bottom photo, n = 2). 

 



 

 
 

Figure 6.6: Effect of the diameter ratio on the critical Strouhal number at the onset of resonance and 
on the intensity of resonance for tandem side-branches. □, d/D = 0.135; ◆, 0.25; ○, 0.57 
(Ziada & Shine 1999). 

 
6.2.1. Effect of the diameter ratio 

 
Figure (6.6) shows typical resonance curves of tandem branches with different diameter ratios. It 

is clear that the resonance range, and in particular the onset of resonance, So, shifts to a lower 
Strouhal number (i.e. to a higher velocity) when the diameter ratio, d/D, is decreased. The critical 
Strouhal number, So, is defined as: 

 
So = f1 d / Vo           (21) 
 
Here f1 is the lowest resonance frequency, d is the branch diameter, and Vo is flow velocity in 

the main pipe at the onset of resonance. The effect of d/D on So is seen to be quite strong and should 
be taken into account when evaluating the liability of a system to resonance. 

 
The relation between So and d/D stems from the alteration of the convection velocity of the 

vortices forming at the branch mouth when d/D is varied. This is because the size of the formed 
vortices scales with the diameter of the side-branch (Ziada, 1994). Since the boundary layer 
thickness in the main pipe is independent of the side-branch diameter, a larger size vortex formed at 
the mouth of the branch-pipe will experience a higher mean velocity and will be swept faster along 
the branch mouth. The phase condition for the onset of oscillation, i.e. the favourable phasing 
between the vortex convection velocity and the acoustic oscillation, will therefore be achieved at a 
lower reduced velocity when the diameter of the side-branch (and consequently the vortex size) is 
larger. 

 
6.2.2. Effect of upstream elbows 

 
Resonances are initiated when the convection velocity of the shear layer vortices is increased to 

an appropriate value such that a net positive acoustic energy is generated over a complete cycle. 
Thus, when the mean velocity profile in the main pipe is not uniform, one would expect the onset of 
oscillation to be related to the "local" flow velocity at the mouth of the branch. In order to 
investigate this aspect, an elbow with a radius of 3D was installed upstream of the branch. The 
distance ℒ between the elbow and the branch was varied from 1.8 to 10D. The effect of the 
upstream elbow was investigated for the cases of single, tandem and co-axial branches. As an 
example, the acoustic response of a single side-branch (d/D = 0.135) excited by a uniform flow 
(ℒ /D = ∞) is compared in Fig. (6.7) with that excited by the (non-uniform) flow at the outlet of the 
elbow. The figure shows the results when the side-branch was installed first at the inner and then at 



 

the outer side of the elbow. The relative amplitude (P/1/2ρV2) and the Strouhal number are based on 
the average velocity calculated from the measured flow rate. The elbow is seen to affect the lock-in 
range and the amplitude of pulsation. 

 

 
Figure 6.7. Effect of an upstream elbow on the acoustic response of a single branch. ○, branch at the 

outer side of the elbow; *, at the inner side; ◆, no elbow. d/D = 0.135, f1 = 490 Hz, ℒ/D = 
1.85, test pressure = 3 bar (Ziada & Shine 1999). 

 
When the branch is at the outer side of the elbow, curve 1 in Fig. (6.7), the local velocity is 

higher than the average velocity. The resonance therefore starts at a lower flow rate, i.e. at a higher 
So  (≈ 0.45). Moreover, the relative amplitude becomes higher than the case of uniform flow (curve 
3 for which So ≈ 0.37). This increase however is rather superficial because the relative amplitude is 
based on the average velocity, which is lower than the local velocity at the mouth of the branch, 
which excites the resonance. Conversely, when the branch is at the inner side of the elbow, curve 2 
in Fig. (6.7), the onset of resonance is delayed, So ≈ 0.33, i.e. it occurs at a higher flow rate, and the 
relative amplitude becomes (superficially) smaller.  

 
The effect of the elbow on the critical Strouhal number is weakened when the distance ℒ/D 

between the elbow and the branch is increased. This feature is depicted in Fig. (6.8), which shows 
measurements of a single branch with d/D = 0.25 located at different distances from an upstream 
elbow. It is noteworthy that the effect of the elbow is still discernible also when it is located at 10D 
upstream of the side-branch. 

 

 
Figure 6.8. Pulsation amplitude verses Strouhal number for a single branch located at the outer side 

of, but at different distances (ℒ) downstream of an elbow. d/D = 0.25, f1 = 326 Hz; ○, ℒ/D 
= 1.8; ◆ , 6.2; ◇ , 10; * , ∞. 



 
 

In the case of tandem branches also, the elbow promotes the onset of resonance and increases 
the relative amplitude of pulsation, whereas in the co-axial case, it has only a negligible effect. This 
difference seems to be due to the fact that the local flow velocities at the mouths of both branches 
are similar, and higher than the mean velocity, in the tandem case, but different in the coaxial case. 
Further details can be found in Ziada & Shine (1999). 

 
6.3. Prediction of resonance 

 
Assessment of the liability of a piping system to flow-excited acoustic resonance consists of two 

steps. First, the critical flow velocity for the onset of resonance is estimated. If this velocity is found 
to be within the operating range, the pulsation amplitude should be estimated to evaluate whether 
suitable counter-measures are needed. 

 
6.3.1. Prediction of critical flow velocity 

 
It has been shown that the main parameters that influence the Strouhal number at the onset of 

resonance (So) are the diameter ratio d/D and the distance from an upstream elbow (ℒ/D), if there is 
any. Although the radiation and viscous losses strongly influence the maximum amplitude at 
resonance and the width of the lock-in range, they have been found to have a negligible effect on So 
(Ziada & Shine, 1999). The Strouhal number data are therefore plotted as a function of the distance 
ℒ/D in Fig. (6.9), where the ratio d/D is taken as a parameter. It is seen that the value of So varies 
over a wide range (0.35 < So < 0.62). Thus, there is not a single value of So which is applicable for 
all diameter ratios. In fact, the author observed lower values of So in industrial applications with 
very small diameter ratios (d/D < 0.1). 

 

 
 

Figure 6.9. Design chart of critical Strouhal number at the onset of resonance adapted from Ziada & 
Shine (1999). For proper use see comments in the text. 

 
The critical flow velocity (Vo) for the onset of resonance can be calculated from Eq. (21), where, 

So is the value obtained from Fig. (6.9). If the maximum flow velocity of the installation Vmax is 
lower than Vo, resonance will not occur. Whenever Vo is found to be lower than Vmax, design 
modifications should be adopted to make Vmax < Vo. This can be achieved by enlarging the branch 
diameter at the junction or by shortening the branch length to increase f1. If these simple 
modifications are not possible, or they do not result in a sufficient increase in Vo, the pulsation 
amplitude at resonance should be estimated as outlined by Bruggeman (1987) or Graf & Ziada 



 
(1992). The estimation of the pulsation amplitude indicates whether it is necessary, or not, to 
implement additional counter-measures such as those described by Ziada (1993). 

 
Several remarks should be made here regarding the use of the Strouhal number chart given in 

Fig. (6.9). First, when single or tandem branches are installed at the inner side of an upstream 
elbow, the critical Strouhal number is lower than that for ℒ/D = ∞, see Fig. (6.7). In such cases, the 
use of a value corresponding to ℒ/D = ∞ is recommended because it results in conservative designs. 
Secondly, since the effect of upstream elbows on the critical Strouhal number of co-axial branches 
is negligible, a value corresponding to ℒ/D = ∞ should be used for co-axial branches regardless of 
their position with respect to upstream elbows. Thirdly, it should be noted that Fig. (6.9) is 
developed from the test results of one elbow radius. However, since this radius is relatively small 
(3D), the present results would be conservative for many practical applications which may involve 
an elbow with radius larger than 3D. If the radius is smaller than 3D, the designer should consider 
an additional margin of safety. 

 
The developed chart can be used also for side-branches with square or rectangular cross-

sections. However, the diameter d in the Strouhal number formula must be replaced by the 
equivalent diameter proposed by Bruggeman (1987): 

 
de = (4/π) H             (22) 
 
where H is the width of the branch mouth in the flow direction. 
 
When the corners of the branch mouth are rounded with a radius of curvature r, the critical flow 

velocity scales with (d + r) instead of d (Bruggeman (1987)). Figure (6.9) however, can still be used 
to estimate Vo by means of the formula: 

 
Vo = f1 (d + r)/So              (23) 
 
Finally, the value corresponding to d/D = 0.57 can be used for larger diameter ratios. This 

suggestion is based on the fact that the Strouhal numbers reported by Peters (1993) for  
d/D = 1 are similar to the present results for d/D = 0.57. 

 
6.3.2. Estimation of resonance amplitude 

 
When the side-branch is at resonance, the excitation mechanism becomes highly non-linear. In 

order to estimate the amplitude of pulsation, the shear layer instability and its interaction with the 
resonant sound field must be described by means of the non-linear theory. This rather complex 
approach does not seem suitable for industrial applications. 

 
Graf & Ziada (1992) proposed a new approach to predict the pulsation amplitude at resonance. 

They modeled the integrated effect of the shear layer excitation by a complex source term, Q, and 
measured its amplitude and phase for a wide range of Strouhal number. Figure (6.10) shows the 
measured source term in a complex Q-plane. The Strouhal number and the pulsation amplitude, U, 
are taken as parameters. The pulsation amplitude U represents the ratio between the acoustic 
particle velocity at the branch mouth (u) and the mean velocity (U = u/V). Since the excitation 
mechanism is non-linear, the source term is a function of the pulsation level U. 

 
The source term represents the ratio between the induced acoustic pressure difference across the 

shear layer ∆P and the acoustic particle velocity at the mouth of the branch. This ratio is normalized 



 
by the dynamic head and the mean velocity. Thus, Q has the form of a dimensionless acoustic 
impedance: 

 
Q = ∆P / (½ρV2U)          (24) 
 
In Fig. (6.11), the predicted amplitudes using the measured source term Q are compared with the 

experimental data for three cases of symmetric co-axial branches (L1 = L2 = 0.61, 1.105 & 1.585 
meter). The agreement is seen to be very good. 

 

 
 

Figure 6.10. Experimentally determined source term Q presented in the complex plane. The level of 
acoustic pulsation (U = u/V) and the Strouhal number (S = fd/V) are taken as parameters 
(Graf & Ziada, 1992). 

 
 
 
6.4. Counter-measures 

 
6.4.1. Rounding off the branch corners 

 
The effect of rounding the corners at the branch mouth on the fluid resonant mechanism is 

somewhat complex. Whether it increases or decreases the pulsation amplitude depends on the mode 
shape of the excited mode, i.e. whether the side branch is coupled with the upstream or the 
downstream section of the main pipe, see Fig. (6.12). Rounding off the edges affects also the critical 
flow velocity at which the resonance starts. In the following, these aspects are considered in some 
detail. 
 



 

 
 

Figure 6.11. Comparison between measured and predicted pulsation amplitude as a function of flow 
velocity for several cases of symmetric co-axial branches (L1=L2= 0.61, 1.105 & 1.585 
meter). 
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Figure 6.12. Acoustic flux in the T-junction when the branch is coupled with (a) the downstream 

section and (b) the upstream section of the main pipe. 
 
 

Figure (6.13) shows the influence of the radius of the branch edge (r) on the acoustic response of 
a single branch (Bruggeman (1987)). The Strouhal number at resonance becomes independent of r 
when the branch diameter d is replaced by (d + r), where r is the radius of the upstream corner. 
Thus, rounding the corners, or enlarging the branch diameter at the T-Junction, increases the critical 
velocity for the onset of resonance, as is already described by Eq. (23). 

 
It can also be seen in Fig. (6.13(a)) that the amplitude of pulsation is decreased by rounding off 

the edges. This is because the acoustic particle velocity at the branch mouth becomes smaller when 
the edges are rounded. This feature together with the effect of (r) on the Strouhal number have 
promoted the general notion that rounding off the edges is, in general, an effective counter-measure. 
However, Bruggeman (1987) has shown that this is not always the case. In some of his experiments, 
rounding off the edges increased the pulsation amplitude by a factor of more than 5. It is very 
helpful therefore, to separate the effect of rounding off the upstream edge from that of the 
downstream one. 
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Figure 6.13. Influence of the radius of the branch corners on the amplitude of pulsation. Single 

branch with square cross-section (Bruggeman, 1987). 
 

 

 
 

Figure 6.14. Influence of edge radius on pulsation amplitude of two tandem branches (Bruggeman, 
1987). 

 
As shown in Fig. (6.13(b)), from Bruggeman (1987), rounding off the upstream edge alone has a 

negligible effect on the maximum amplitude of pulsation, but rounding off the downstream edge as 
well reduces substantially the pulsation level. This is because the highest acoustic particle velocity 
is at the downstream corner, which is due to the fact that the acoustic flux is predominantly between 
the branch and the downstream section of the main pipe. Rounding this corner therefore reduces the 
maximum particle velocity and also the acoustic energy produced by its interaction with the shear 
layer vortices near the downstream corner.  

 
The relationship between the effect of rounding off the edges and the shape of the acoustic mode 

is well demonstrated in Fig. (6.14). In the case of two tandem branches with ℓ ≈ 2L ≈ λ/2, the 
acoustic flux is predominantly in the subsystem consisting of the two branches and the main pipe 
section between them. Rounding off all edges of the upstream and the downstream branches 
increases the pulsation amplitude! Moreover, the pulsation level is seen to be reduced effectively by 



 
using sharp edges at the mouth of the downstream branch.  This is because the sharp upstream edge 
of the downstream branch increases the local particle velocity, and this increases the sound 
absorption by the vortex forming at this edge. This phenomenon of sound absorption by vortex 
shedding from an edge at large amplitude acoustic pulsation is referred to in the literature as “vortex 
damping” (Bruggeman, 1987; Ziada, 1993). 

 

 
 

Figure 6.15. Influence of detuning two tandem branches on the maximum amplitude of resonance. 
○, Upstream; □, downstream branch. 

 
 
Figure (6.15) shows test results for the case of tandem branches with ℓ << λ/2. In these tests, the 

length of one branch was increased in steps while that of the other branch was decreased by an 
equal amount to keep the frequency of the acoustic mode constant. In this way, the location of the 
maximum particle velocity, which was initially centred between the side branches, could be shifted 
towards either branch. Figure (6.15) gives the maximum amplitude at resonance as a function of ∆L 
= L1 – L2. The pulsation level is seen to decrease much faster when the location of the maximum 
particle velocity becomes closer to the downstream branch (i.e. negative ∆L). Moreover, the 
pulsation amplitude in the downstream branch is seen to be smaller than that in the upstream branch 
for all values of ∆L. These results support the supposition of Bruggman (1987) that the attenuation 
of the pressure pulsation shown in Fig. (6.14) is caused by the increased sound absorption by vortex 
shedding from the upstream edge of the downstream pipe. 

 
6.4.2. Detuning the branches 

 
As it has been shown already, acoustic resonances of piping systems containing multiple side-

branches can be very strong; the pulsation amplitude can exceed the dynamic head in the main pipe 
by more than one order of magnitude. An effective way to avoid these resonances is to detune the 
resonance frequencies of the branches, by making one branch shorter (or longer) than the other. For 
example, in the case of tandem branches shown in Fig. (6.15), the pulsation amplitude becomes 
negligible when the difference between the lengths of the branches approaches the distance between 
them, i.e. when L1 – L2 ≈ ℓ. It should be noted that it is preferable to make the downward branch 
longer because the pulsation amplitude decreases faster with ∆L, as is illustrated in Fig. (6.15). 

 
6.4.3. Effect of spoilers 

 
It is well known that shear layer excitation can be weakened by breaking its two-dimensionality 

in an early stage. This may be achieved by increasing the turbulence level (see the following 



 
section) or adding spoilers near the separation point of the shear layer. The spoilers, also called 
vortex generators, are surface irregularities introduced to generate three-dimensional disturbances at 
the initial stage of the instability wave. In this way, the flow development becomes incoherent and 
the transition to turbulence is accelerated. 
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Figure 6.16. Geometry of the spoilers used by Bruggeman et al. (1991) to alleviate the pulsation. 
 
Bruggman et al. (1991) investigated the effect of the spoilers shown in Fig. (6.16). The 

maximum pulsation amplitudes with and without spoilers are given in Fig. (6.17) as functions of the 
test pressure. The performance of the spoilers is seen to be pressure dependant, especially when 
they are placed at the upstream branch. The unsatisfactory performance of the spoilers at high 
pressures may be attributed to the fact that the scale of turbulence they generate (≈ 0.1d) is much 
smaller than the size of the formed vortices, which scale with the branch diameter d (see Fig. (6.5)). 
Adding the spoiler on a flat plate (0.1d long) at the downstream branch seems to suppress the 
resonance for a wide range of test pressures. This is because vortex shedding at this edge is 
combined with the maximum particle velocity for the fundamental mode of the tandem side-branch 
resonator. As can be seen from Fig. (6.17), the addition of spoilers at the downstream branches 
reduces the pulsation amplitude by as much as 30 dB. 

 
6.4.4. Effect of turbulence level 

 
Ziada and Buehlmann (1992) investigated the effect of the turbulence level in the main pipe on 

the resonance of tandem and co-axial branches. The turbulence was generated by means of an 
upstream orifice whose diameter was 70% of the main pipe diameter. Varying the distance between 
the orifice and the branches varied the turbulence level.  

 
As the orifice plate was positioned closer to the branches, the amplitude of the pressure 

pulsation became smaller, but the resonance peaks became wider. This trend continued until the 
system response reached its minimum when the orifice was 5.5D upstream. When this distance was 
further reduced, the pulsation amplitude started to increase again and the resonance peak became 
much wider, i.e. the pressure pulsations occurred over a wider velocity range. This indicated that 
the turbulence level produced by the orifice was so high that it excited the system resonance. The 
system response in this case can be described as a forced response of a resonator (i.e. the side-
branches) to broadband turbulence excitation. This phenomenon is referred to in the literature as 
“turbulent rumble”. 

 



 

 
Figure 6.17. Effect of spoilers on the maximum amplitude at the resonance of two tandem branches. 

The figure shows the effect of the test pressure on the efficiency of spoilers (Bruggeman, 
1987). 

 

 
 

Figure 6.18. Amplitude of pressure pulsation of two tandem branches with and without an orifice 
plate at 5.5 diameters upstream. ∆, without; ●, with orifice (Ziada & Buehlmann, 1992) 



 
 
When the orifice is positioned at the optimum location, 5.5D, it reduces the pulsation amplitude 

by an amount of approximately 12 dB. This is illustrated in Fig. (6.18) for the tandem branches. As 
mentioned earlier, the orifice should not be positioned too close to the branches; otherwise the 
turbulence it generates may become an excitation source in itself. 
 
 
 
6.4.5. Anti-Vortex Inserts 

 
Jungowski and Studzinski (1989) developed several inserts that can be placed at the mouth of 

closed side-branches to disturb the process of vortex formation, and thereby dampen the resonance. 
The geometries of the inserts and how they should be installed at the branch mouth are illustrated in 
Fig. (6.19). The inserts proved very effective in suppressing the resonance of side-branches. A 
reduction of up to 40 dB was achieved. 

 

 
 

Figure 6.19. Geometries of anti-vortex inserts developed by Jungowski & Studzinki (1989) to 
dampen flow-excited resonances of side-branches, and a sketch illustrating their positioning 
at the side-branch mouth. 

 
 
7. Concluding Remarks 
  

The fluid-dynamic and the fluid-resonant mechanisms have been introduced and discussed for a 
wide range of flow configurations. The two main events of these mechanisms are the inherent 
instability of shear flows and the upstream feedback, which is needed to enhance the oscillations at 
selected frequencies. The first event is reviewed for typical shear flows, such as free shear layers, 
jets and wakes. Flow impingement, acoustic resonances or structural vibrations generate the 
upstream feedback. As an example of the fluid-resonant mechanism, the phenomenon of acoustic 
resonance in closed side-branches is also presented. This example details systematic methods to 
predict the critical flow velocity for the onset of resonance, to estimate the amplitude of oscillations, 
as well as to implement reliable counter measures. 



 
 
The following is a list of selected case histories of industrial problems involving the excitation 

mechanisms discussed in this paper. References, which describe these cases, are also provided. The 
list is just a selected collection of the author’s industrial experience. Most of these case histories 
involved measurements in industrial plants and laboratory tests on small-scale models. These model 
tests were essential in many cases in order to be able to diagnose the excitation mechanism and 
develop effective counter-measures.    

 
CASE 1:  Acoustic resonance in a turbo-compressor (Ziada et al., 2000) 
 
CASE 2:  Vibration and noise of a high-pressure by-pass control valve (Ziada et al., 1989) 
 
CASE 3:  Vibration and noise of a high-pressure turbine control valve (Ziada et al., 1989) 
 
CASE 4:  Acoustic fatigue of a steam piping excited by valve noise (Michaud et al., 2001) 
 
CASE 5:  Vibration of a piping system due to flow in a spherical elbow (Ziada et al., 2001) 
 

 
8. References 

 
Blevins, R.D. 1985  The effect of sound on vortex shedding from cylinders. Journal of Fluid 

Mechanics 161, 217-237. 
Bruggeman, J.C. 1987 Flow induced pulsation in pipe systems. Doctoral Dissertation, Eindhoven 

University of Technology, The Netherlands. 
Bruggeman, J.C., Hirsch berg, A., Van Dongen, M.E.H Wijnands,A.P.J & Gorter, J. 1991 Self-

sustained aero-acoustic pulsations in gas transport systems:Experimental study of the influence 
of closed side branches. Journal of Sound and vibration 150, 371-393. 

Freymuth, P., 1966, “On Transition in a Separated Laminar Boundary Layer,” Journal of Fluid 
mechanics 25, pp. 683-704. 

Graf, H.R. & Ziada, S. 1992  Flow-induced acoustic resonance in closed side branches: An 
experimental determination of the excitation source. In Proceedings of ASME International 
Symposium on Flow-Induced Vibration and Noise, Vol. 7: Fundamental aspects of fluid-
structure interactions (ed M.P. Paidoussis, T. Akylas & P.B. Abraham), AMD-Vol. 51, pp. 63-
80, New York: ASME. 

Hourigan, K., Welsh, M.C., Thompson, M.C. & Stokes, A.N. 1990  Aerodynamic sources of 
acoustic resonance in a duct with baffles. Journal of  Fluids & Structures 4, 345-370. 

Howe, M.S.  1975 Contribution to the theory of aerodynamic sound, with application to excess jet 
noise and the theory of the flute. Journal of Fluid mechanics 71, 625-673. 

Howe, M.S.  1980 The dissipation of sound at an edge. Journal of Sound and Vibration 70, 407-
411. 

Huerre, P. and Monkewitz, P. 1990  Local and global instabilities in spatially developing flows. 
Annual review of Fluid mechanics 22, 473-537.  

Jungowski, W.M. & Studzinski, W. 1989 Damping pressure pulsations in piping systems. US 
Patent No. 486 7190 

Lucas, M.J., Noreen, R.A., Sutherland, L.C., Cole, J.E. & Junger, M. C. 1977 Turbomachinery 
Cavities, ASME, New York. 

Michalke, A. 1965  On spatially growing disturbances in an inviscid shear layer. Journal of Fluid 
Mechanics 23, 521-544. 

Michaud, S., Ziada, S. & Pastorel, H. 2001 Acoustic fatigue of a steam dump pipe system excited 
by valve noise. Journal of Pressure Vessel Technology 16.  



 
Miksad, R.W. 1972  Experiments on the non-linear stages of free-shear-layer transition,” Journal of 

Fluid Mechanics 59, 695-719. 
Naudascher, E. & Rockwell, D. 1994 flow-induced vibrations: an engineering guide. Rotterdam: 

A.A. Balkema, 1994. 
Peters, M.C.A.M. 1993 Aeroacoustic sources in internal flows. Doctoral Dissertation, Technische 

Universität Eindhoven, Eindhoven, The Netherlands. 
Rockwell, D. & Naudascher, E. 1978 Review-Self sustaining oscillations of flow past cavities. 

ASME Journal of Fluids Engineering 100, 152-165. 
Rockwell, D. and Naudascher, E. 1979  Self-sustained oscillations of impinging free shear layers. 

Annual Review of Fluid mechanics 11, 67-94. 
Stoneman, S.A.T., Hourigan, K., Stokes, A.N. & Welsh, M.C. 1988 Resonant sound caused by flow 

past two plates in tandem in a duct. Journal of Fluid Mechanics 192, 455-484. 
Ziada, S. 1993 Flow-excited resonance of piping systems containing side-branches: Excitation 

mechanism, counter-measures and design guidelines. International Seminar on Acoustic 
Pulsations in Rotating Machinary, 1-34, AECL CANDU, Canada. 

Ziada, S. 1994 A flow visualisation study of flow-acoustic coupling at the mouth of a resonant side-
branch, Journal of Fluids and Structures 8, 391-416. 

Ziada, S. 1995  Feedback control of globally unstable flows: Impinging flows. Journal of Fluids 
and Structures 9, 907-923. 

Ziada, S. 2001 Interaction of a jet-slot oscillator with a deep cavity resonator and its control. 
Journal of Fluids and Structures 15, 831-843. 

Ziada, S. & Bühlmann, E.T. 1991 Flow-induced vibration in long corrugated pipes. Flow Induced 
Vibrations. Publication by the Institution of Mechanical Engineers, IMechE 1991-6, 417-426. 

Ziada, S. & Bühlmann, E.T. 1992 Self-excited resonances of two side-branches in close proximity. 
Journal of Fluids and Structures 6, 583-601. 

Ziada, S, Bühlmann, E.T. & Bolleter, U. 1989 Flow impingement as an excitation source in control 
valves. Journal of Fluids and Structures 3, 529-549. 

Ziada, S. & Graf, H. 1998  Feedback control of combustion oscillations. Journal of Fluids and 
Structures 12, 491-507. 

Ziada, S., Oengören, A. & Vogel, A. 2000 Flow-excited acoustic resonance in the inlet scroll of a 
turbocompressor. Proceedings of the 7th International Conference on Flow-Induced Vibration 
(eds. S. Ziada & T. Staubli), Lucerne, Switzerland, June 2000, in press.  

Ziada, S. & Rockwell, D. 1982 Self-excited oscillations of a mixing layer-wedge system. Journal of 
Fluid Mechanics 124, 307-334.  

Ziada, S. & Shine, S. 1999 Strouhal numbers of flow-excited acoustic resonance in side branches. 
Journal of Fluids and Structures 13, 1-16. 

Ziada, S., Sperling, H. & Fisker, H. 2001 Vibration of a high-pressure piping system due to flow in 
a spherical elbow.  Journal of Fluids and Structures 15, 751-767. 

 


	In addition to the above, the stability analysis yields the 

