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Abstract. Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M H2SOy4 solution
using a rotating disk as the working electrode present a current instability region within the range of applied voltage
in which the current is controlled by mass transport in the electrolyte. According to the literature (Barcia, 1992)
the electro-dissolution process leads to the existence of an azial viscosity gradient in the interface metal-solution,
which leads to a deviation from von Kdrmdn’s classical solution for rotating disk flow. On two previous papers,
Pontes et al (J. of the Braz. Soc. Mechanical Sciences, Vol. XXIV, pp. 189, 2002, and Phys. of Fluids, Vol. 16,
No. 8, pp. 707, 2004) showed that stability of the steady flow, affected by a time-independent viscosity gradient
pointing in the azial directions, is strongly affected by the stratified viscosity profile. In this work, we go one
step beyond, by considering the stability of the hydrodynamic field coupled, through the viscosity, to the chemical
field originated by the transport of one species. A phenomenological law is assumed, relating the viscosity to the
concentration of chemical species. The steady state of the problem is obtained and a linear stability analysis of
the coupled fields is made. The resulting eigenvalue-eigenfuction problem is presented, as well as some neutral
stability curves associated with stationary perturbations, for Schmidt numbers Sc = 2000, usually found in the
electrodissolution of iron in sulfuric acid.
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1. Introduction

Electrochemical cells using a rotating disk electrode are a widely used experimental tool in electrochemistry,
due the simplicity of the setup and the fact that the mass flux is independent of the radial position along the
disk, at steady state conditions (Levich, 1962). Furthermore, the rate of transfer of ions close of the electrode is
conveniently controlled by imposing an adequate angular velocity to the electrode. This rate of transfer defines
the maximum steady state current attained in an experiment.

Two current instabilities are observed in the region where the current is controlled by mass transport (Ferreira
et al., 1994). The first instability is intrinsic to the system, while the current instability close to the active-passive
transition is affected by the output impedance of the control equipment. This instability can be suppressed by
using a negative feedback resistance (Epelboin et al., 1979), that gives rise to a continuous transition.

Most explanations presented in the literature for the current instabilities are based on mechanisms proposing
a FeSOy film precipitated at the electrode surface (Russel and Newman, 1986). In fact, changes in the ohmic
voltage drop due to precipitation and dissolution of a FeSOy, film provide an acceptable explanation for the
instability observed in the active/passive transition region, coupled with the output impedance of the control



equipment. However, this model can not be generalized to explain oscillations observed at the beginning of the
current plateau. Indeed, using electro-hydrodynamic (EHD) impedance measurements (Tribollet and Newman,
1983), Barcia et al. (Barcia et al., 1992) studied the electro-dissolution of iron electrodes in 1 M H2SOy at the
current plateau, before and after the first instability region. They propose that the electro-dissolution process
leads to the existence of a viscosity gradient in the diffusion boundary layer, which could affect the stability of
the hydrodynamic field and explain the observed current instability.

To investigate the importance of the hydrodynamics in the electro-dissolution of iron, Ferreira et al. (Ferreira
et al., 1994) and Geraldo et al. (Geraldo et al., 1998) studied the influence of the viscosity on the current
oscillations observed at the beginning of the current plateau region of the above described experiment. These
authors found that increasing the bulk electrolyte viscosity — and therefore decreasing the Reynolds number of
the experiment — by adding glycerol to the solution, the current signals evolve from chaotic to periodic, and
to a stationary regime, where the instability is suppressed. They also found that the current oscillations are
enhanced by an increase in the angular velocity of the electrode.

The existence of a hydrodynamic instability in rotating disk flow has been the object of a number of
investigations, both experimental and theoretical in the case of fluids with uniform viscosity. The main result
shows that the steady flow becomes unstable beyond a certain non-dimensional distance from the axis of rotation.

The flow develops corotating vortices which spiral outward with their axes along logarithmic spirals of angle
90° + ¢ (¢ ~ 13°) with respect to radius of the disk. Malik (Malik, 1986) determined the neutral stability
curve for stationary vortex disturbances, which turn with the angular velocity of the disk. Neutral curves
were presented in the o X R, § x R and ¢ x R planes for zero-frequency disturbances, where o and 3 are the
components of the real perturbation wave-vector along the radial and azimuthal directions and ¢ is the angle
between the perturbation and the radial direction, given by ¢ = tan=! 3/a. The critical Reynolds number was
found to be in good agreement with experimental results, at a value of R = 285.36.

A comprehensive review of the literature on the subject, concerning research made until 1989 can be found
in the paper by Reed and Saric (Reed and Saric, 1989).

Faller (Faller, 1991) determined the neutral stability curves for setup configurations consisting of rotating or
stationary disks and flows approaching the disk with (rotating flow) or without (stationary flow) bulk angular
velocity. Critical Reynolds number for the case of rotating disk and stationary fluid was found as 69.4.

Lingwood (Lingwood, 1995) presented the neutral curve for vortices turning with several angular velocities
and theoretical results concerning the asymptotic response of the flow to an impulsive excitation exerted in the
flow at a certain radius at ¢ = 0. Additionally, Lingwood’s work addresses the case where the wavenumber
component along the radial direction, «, is complex, leading to an exponential growth along that direction. The
curve for this case defines the region of absolute instability, with a critical Reynolds number of R = 510.625.

It is well known that boundary layers can be destabilized by increasing the viscosity close to the wall
and stabilized by decreasing, through heating or cooling the wall (Schlichting and Gersten, 1999). Schéfer et
al. (Schafer et al., 1995) deduced an asymptotic expression for the critical Reynolds number for moderate
temperature differences in boundary layers developed over flat plates, taking into account the temperature
dependency of the viscosity. Turkyilmazoglu Cole and Gajjar (Turkyilmazoglu et al., 1998) studied the influence
of heat transfer on the convective and absolute instability of compressible boundary layers in rotating disk flow.

On two previous papers, Pontes et al. (Pontes et al., 2002, Pontes et al., 2004) showed that stability of
the steady flow, affected by a time-independent viscosity gradient pointing in the axial directions, is strongly
affected by the stratified viscosity profile. In this work, we go one step beyond, by considering the stability of
the hydrodynamic field, coupled through the viscosity, to the chemical field originated by the transport of one
species. A phenomenological law is assumed, relating the viscosity to the concentration of chemical species.
The steady state of the problem is obtained and a linear stability analysis of the coupled fileds is made. The
resulting eigenvalue-eigenfuction problem is presented, as well as some neutral stability curves, for Schmidt
numbers Sc = 2000, usually found in the electrodissolution of iron electrodes in sulfuric acid..

Four linear stability analysis are presented in this work. All four cases address the stability of base state
with respect to perturbations turning with the angular velocity of the rotating electrode. The first case, denoted
as case No. 1, refers to fluids with constant viscosity (see Malik, 1986 and Pontes et al., 2004) and is presented
for purposes of comparison with the new results. The three other cases refer to fluids with variable viscosity
and Schmidt number Sc¢ = 2000, corresponding to the the Schmidt number found in the actual electrochemical
problem. Case No. 2 refers to problems with sensitivity factor v = V(io) j—g = 0.05. Cases Nos. 3 and 4
refer to problems with v = 1 and 5, respectively, the last one corresponding to the value found in the actual
electrochemical problem. All variable viscosity cases where studied assuming the same phenomenological law
relating concentration of the relevant chemical species and fluid viscosiy, as discussed below.




2. The Base State

The steady hydrodynamic field coupled to the transport of a chemical species is an extension of the well
known von Karméan (von Karman and Angew, 1921) exact solution of the continuity and Navier-Stokes equations
for laminar rotating disk-flow, written in a rotating coordinate frame turning with the disk angular velocity 2.

The continuity, momentum, and concentration equations on a rotating frame are given by:

divv =0 (1)
D 1 1

FZ:72va75gradp+;diVT (2)
D

Fj — div (Dgradc) (3)

where 7 is the Newtonian viscous stress tensor.
Assuming that the stationary chemical species concentration depends only on the axial direction, the sta-
tionary coupled fields are governed by:
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where c is the chemical species concentration and D is its diffusion coefficient in the electrochemical cell elec-
trolite.
The steady solution takes the form:

o = rQF(z) 9)
79 = rQG(2) (10)
v, = (v(co) )2 H(2) (11)
p = pr(c0)P(z) (12)
c = COO + (Co — Cx)C(2) (13)

where v(oo) is the bulk viscosity, far from the electrode surface. Equations (9-13) are introduced in the
dimensional continuity and Navier-Stokes equations. Defining the bulk Schmidt number Sc¢ = v(c0)/D(0),

and the sensitivity factor v = (io) jg leads to the following system of equations for F', G, H and P:
2F+H = 0 (14)
—(G+1)?*+HF = V'F'+~FC (15)
2F(G+ 1)+ HG = v'G"+~G'C’ (16)
P +HH' = 2yC'H' +v*H" (17)
1 1
SC HCI = FC” + F’Y(Cl)2 (18)

Here, we refer to the nondimentional viscosity »* = v(z)/v(o0), and to the nondimensional diffusivity
D* = D(z)/D(c0). We assume that the Stokes-Einstein equation is strictly valid, which implies that D*v* =1
and that dv*/dC is constant. The bulk Schmidt number, Sc, and the sensitivity factor -, define the slope of
the viscosity profile close to the electrode surface.

Boundary conditions for F', G, H,and Care F=H=P=G=0,C=1whenz=0, F =H' =C =0,
G = —1 when z — o0.
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3. Perturbations of the Base State Figure 1: Dimensionless viscosity, v, and velocity profiles F, G

and H. Curves No. 1 refer to constant viscosity fluids. Curves
No. 1 refer to constant viscosity fluids. Curves No. 3 and 4, to
variable viscosity fluids. Curves No. 3: v = 1; Curves No. 4:
~ = 5. In all cases, Sc = 2000.

We turn now to the question of the sta-
bility of the steady configurations of the
hydrodynamic field described in Sec. (2),
with respect to infinitesimally small distur-
bances.

Variables are made non-dimensional as follows: radial and axial coordinates are divided by the reference
length (v(00)/)'/2, velocity components are divided by the reference velocity 7., pressure is divided by the
reference pressure p(r.£))?, viscosity is divided by the bulk value, v(co0) and time and the eigenvalue of the
linearized problem are divided by the time required by a particle, turning with the azimuthal velocity .92, to
move a distance equal to the reference length, (v(c0)/Q)'/2. Here, 7. is the dimensional coordinate along the
radial direction where the stability analysis is made. We define also the Reynolds number by the relation:

Q \/2
nen () o
v(0)
The nondimensional concentration is defined by
C* _ CVT - Coo
- Cs—Cy

where Cs and C, are the saturation and bulk concentrations of the relevant chemical species.
Therefore, dropping the asterisks, the equations in nondimensional form are given by:

divv =0 (20)
0 2 1

a—‘t’—l—v-gradv:—ﬁezxv—gradp—&—ﬁdivr (21)
oe +v-gradc= 1 div (D gradc) (22)
ot 8 "~ RSc 8

The hidrodynamic field is written in the form of the von Karmén solution plus a perturbation. The steady and
perturbation variables are identified with a bar and a tilde, respectively. Therefore:

Vp =0 +0p Vg=10Vg+ 0V V=70 +70,
p =p+p Cr =c+c
The perturbed variables are introduced in the evolution equations. Subtracting the steady state solution, and

neglecting the nonlinear terms containing products of the perturbations, the small amplitude perturbations
evolution equations are given by
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Expanding the stress tensor components and simplifying using the continuity equation, results in

10, 108 00,
rar )t TG g =0
090, _ 00, _ 0, vy OV, VgUy _ 00, _ 0v, Vo op
T L) _9 T ) b
ot UT@T +UT(9T+T 00 r +”Zaz Tt 0z R 8T+
1 [ /0%, n 1 029, n R n 1 0%, 2 O0vg Uy dv [ 00, 00, n
— |y = 2% 2 9% _ Ur V=
R or? r2 002 022 r Or rZ 00 r2 dz \ Or 0z
. 020, 100, o, +28@T@+@6@T
022 r or  r2 or Or 0z Oz
00y ) _ Oy Vg OUg UV + UrVg _ Oty _ Ovg Uy 190p
v g% % . T Y% | Trb T Urvo v Y6 _ _olr _ IC°F
ot " "ar T ar T o8 T T R ro6 "
l - 020y i@Qﬁg R 15259 zaf)r _ f)_g n @ laﬁz n % n
R or? r2 062 022 r Or r2 00 r2 dz \r 00 0z
(P A0 w200 0von
v 022 r Or r2 r2 00 0z 0z
90, *%4_*% 6_96{)’24_{)%4’_@6@2—_@4_
o ar " Uar T a9 o T e T o
1 [ /0%, n 1 0%%, 020, n 18{;2 2@ ov,
R v or? r2 002 022 r or dz 0z
2~82172+@ 8ﬁz+8m +1@ %+1852 +2@8@Z
Yo Tor\ar "0z ) Troo\ oz o0 9z 02
o¢ % vg O¢ _ O

ot

Tt e s

o YT 9z 0:

dD 9c - d%c ab@]

The perturbed field is assumed as
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where C' and c are functions of z. Re-writing the variables in Eq. (33) in nondimensional form, the perturbed
non-dimensional velocity components, pressure, and concentration are written as:
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where w is a complex number, with R(w) and 3(w) being, respectively, the frequency and the rate of growth of
the perturbation. Parameters oo and 3 are the components of the perturbation wave-vector along the radial and
azimuthal directions. For a given time, the phase of the perturbation is constant along branches of a logarithmic
spiral, with the branches curved in the clockwise direction if 3/« is positive and counter-clockwise, if negative.
The structure turns counter-clockwise if w/(3 is positive and clockwise, if negative.

Perturbation and steady state variables are introduced in the evolution equations, resulting in
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Introducing the parallel flow hypothesis, eliminating the pressure, and dropping terms of order R~2, leads to:
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Eqgs. (40 to 42) can be re-written as AX = wR BX:
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where the missing elements in the above matrices are null and the operators A;; and B;; are given by:
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with coefficients given by:
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Boundary conditions of the problem require non-slip flow and vanishing axial component of the velocity at the
electrode surface. These conditions are already fulfilled by the base-state, so the hydrodynamic field cannot be
modified by the perturbation at the electrode surface. In consequence we must require g =h =c=0in £ = 0.
Moreover, we conclude from Eq. (35) that h' = 0 at the electrode surface. In £ — oo we require that the
perturbation vanishes (¢ = h = ¢ = 0) and that 4’ = 0. Eq. (43) defines a generalized eigenvalue/eigenfunction

h & h
%&

n | =wR n

C C

Figure 2: Structure of the operators of the discrete eigenvale-eigenvector problem.

problem. The eigenfunctions are the normal modes of the model, the imaginary and real parts of each eigenvalue
being, respectively, the rate of growth and the angular velocity of the perturbation relative to the angular velocity
of the disk. The operators are discretized by second order finite difference approximations. The matrix structure
of the operators of the resulting discrete eigenvale-eigenvector problem is shown in Figure 2

The parameter space of the problem contains five variables: the Reynolds number, the Schmidt number, the
sensitivity parameter 7, and the perturbation wavevector components « and (.

4. Results

The effect of viscosity stratification is analyzed by comparing stability properties of constant viscosity fluids
with the properties of the variable viscosity configuration discussed in Sec. (2).

The results are summarized in Fig. 3. Figure 3 shows the neutral stability curves.

The neutral curves were evaluated in domains with length z,,,, = 40, using grids with 801 uniformly spaced
points. Larger domains do not significantly affect the presented results.

Curves No. 1 in Figs. 3 refer to constant viscosity fluids (v = 0), the remaining ones, to variable viscosity
fluids: Curves No. 2, 3 and 4 refer to fluids with viscosity profiles obtained with v = 0.05, 1 and 5, respectively
and Sc = 2000.

The curves shown in fig. 3 are relative to stationary disturbances (w, = 0) and represent an extension of
Malik’s (Malik, 1986) work by including the variable viscosity cases.

These results must be interpreted as preliminary, as the accuracy of the simulations for high Schmidt number
presented in this work was not completely assessed. We believe, however, that the results are qualitatively
correct.
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The above results are, qualita- Figure 3: Neutral curves of stationary perturbations, for constant and
tively, in agreement with the experi- variable viscosity fluids. Curves No. 1 refer to constant viscosity fluids.
mental ones. Indeed, the system be- Curves No. 2, 3 and 4, to variable viscosity fluids. Curves No. 2: v =

comes more unstable as the angu- 0.05; Curves No. 3: v = 1; Curves No. 4: v = 5. In all cases, Sc = 2000.
lar velocity of the electrode increases,

and more stable as the bulk viscosity increases, with addition of glycerol.
The results show that even a very small sensitivity factor (as low as 0.05) can produce a significant reduction
in the critical Reynolds number for the values of Schmidt number found in actual electrochemical cells.

R

5. Conclusions

In this work we analyzed the behavior of the most unstable modes in rotating disk flow with a stratified
viscosity depending on the concentration of a chemical species transported by the flow, and compared the results
with existing results for the constant viscosity case.

The main conclusions of this work may be summarized as follows:

1. The proposed coupled hydrodynamic-chemistry model, with a stratified viscosity profile depending on
the concentration of the chemical species, shows that, in all cases considered, the system becomes more
unstable as the sensitivity factor increases.

2. The results show that even a very small sensitivity factor (as low as 0.05) can produce a significant
reduction in the critical Reynolds number for the values of Schmidt number found in actual electrochemical
cells.
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