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Abstract. In this work numerical simulation has been carried out to study the computational cost effective when multigrid method is
applied in two-dimensional incompressible and unsteady flows in a driven cavity. A first-order time-accurate fractional-step method
for solving Navier–Stokes equations, in an structured staggered mesh, is used. Different structures of multigrid cycle as V–Cycle,
W–Cycle and F–Cycle are compared with the iterative solver MSI (Modified Strongly Implicit Procedure) for the pressure correction
linear system. Numerical experiments using multigrid V–Cycle algorithms show that one simple acceleration scheme accelerate the
convergence rate in the first iterations but do not modify the final computational cost when SOR (Successive Over Relaxation) and SUR
(Successive Under Relaxation) are used as smoother.
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1. Introduction

In many conventional computers numerical simulation of flows over immersed complex geometries that request the
solution of the incompressible Navier-Stokes equations tends to be prohibitive due to the requirements on memory and
CPU time, mainly when advanced finite difference methods are used to provide adequate resolution which result in large
linear systems.

The multigrid method has been shown to be very effective in solving large linear systems arising from PDE (Partial
Differential Equations) boundary-value problems (Brandt, 1977) due to their efficiency when compared to conventional
iterative solution methods. The essence of multigrid methods is that it do not attempt to solve the linear systems arising
from the discretization of PDE directly but guessing an initial solution and correcting it by means of an estimation of
the error in the approximation, measured on successively coarser grids (Millaret al., 2002). Although the efficiency of
multigrid method is highly dependant on the mechanisms of inter-grid transfer (interpolation and restriction operations)
as well as on the smoother type and sweeps number. For various reasons, the Red-Black Gauss–Seidel method has been
used extensively as a relaxation in the multigrid methods, but knowing the fact that the restriction is sensitive only to under
relaxation, and the interpolation is sensitive only to over relaxation, the Excessive Over-Relaxation Method (SOR/SUR)
can be applied (Zhang, 1995).

In addition to solving two-dimensional Poisson equation with accuracy and efficiency some attempts have been made
when iterative methods are applied. Guptaet al. (1995), suggested a high-order compact difference scheme with multigrid
algorithm to solve convection-diffusion equations with constant coefficients which are known to be stable when classical
iterative methods are used leading to a dramatic improvement in computed accuracy. Zhang (1996) using the multigrid
method to solve linear systems arising from discretized PDE boundary-value problems proposed to optimize the residual
injection operator by choosing an optimal residual injection factor, which provides convergence faster than full-weighting.
A large number of experiments was made by Ngongang (1998) in order to obtain a better performance. The scaled
injection operator as an acceleration technique, the heuristic dynamic injection operator, high-order discretization for 2D
and 3D convection-diffusion equations and many classical smoothers were mentioned as options to present high accuracy
and efficiency.

The present paper uses multigrid technique to evaluate the effective computational cost in solving unsteady incom-
pressible Navier–Stokes equations. A square two-dimensional driven cavity is used, where a first-order time-accurate
fractional-step method leads to a Poisson equation for the pressure correction. Different structures of multigrid cycle as
F–Cycle, V–Cycle and W–Cycle provides convergence faster than MSI (Modified Strongly Implicit Procedure). The main
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advantage occurs at finer grids where the approximate solutions are required to have a high accuracy showing a better
performance.

In many problems it has already been shown that the inclusion of SOR in two-dimensional multigrid solvers can
increase their efficiency up to 30% (Zhang, 1995), but when unsteady flows are considered, where the solution advance in
time in a step-by-step, only the first iterations are affected by relaxation parameter, which do not change the computational
time if a large simulation time is required.

2. Mathematical Formulation

Unsteady incompressible flow in a cartesian square driven cavity domain can be modelled by Navier-Stokes equations:
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whereu is the velocity vector,p is the pressure andν is the kinematic viscosity.
If a driven cavity problem is considered the no-slip condition is imposed at wall, with the velocity components being

set to zero except at the upper wall where a velocity different from zero is imposed. Since the velocity is known at the
boundaries a Neumann boundary condition is imposed for the pressure correction equation.

The numerical solution of this equation represents a difficult computational challenge. The problem arises from the
pressure term in the momentum equations which must be implicitly updated for incompressible flows.

Fractional step methods were conceived to minimize most of these computational challenge, and to allow the system to
be solved as a series of individual uncoupled advection-diffusion equations for each of velocity components as a Poisson
equation for the pressure correction (Changet al., 2002). In this method a pseudo-pressure is used to correct the velocity
field such that the continuity equation is satisfied at each computational time step. A explicit euler time-advancement
scheme is used for both the convective and viscous term in Eq. (1). Knowing that this analysis is independent of any
particular spatial discretization, staggered mesh can be applied which eliminates the pressure oscillation. Figure (1)
illustrates the nodes foru andv velocities components and the node for pressure.

Figure 1: Staggered grid.

Applying the factional-step method to Eqs. (1) and (2), the equations to be solved can be written as follow:
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pn+1 = p′n+1 + pn, (6)

whereūi is the estimated velocity components,p′ is the pressure correction and∆t andn are the computational time step
and the sub-step indices, respectively.

The discretization of above equations through second-order finite central difference method in space require especial
care in order to control the accumulation of numerical errors. For this reason the pressure correction equation (Eq. 4) or
Poisson equation is given by:
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where,β = ∆x
∆y .

2.1. The Multigrid Methodology

The multigrid methodology belongs to the fastest and most efficient algorithms for solving linear systems arising from
discretization of elliptic differential equations (Zhang, 1995) and offers a convergence rates independent of the size of the
problem (Guptaet al., 1995). Thus the basic idea of multigrid technique is to work with a hierarchy of consecutively
coarser and coarser grids until convergence is achieved.

There are several possible algorithms for carrying out the basic multigrid idea, each of them with several possible
variations. Here three algorithms are presented: V–Cycle, W–Cycle and F–Cycle.

One iteration of a simple multigrid V–Cycle consists of smoothing the error using a relaxation technique (e.g. Gauss
Seidel and Jacobi which are called smoothers in the multigrid literature) projecting (restricting) the residuals to the coarse
grid, solving an approximation to the smoothing error equation on a coarse grid, interpolating (prolongating) the coarse
grid error correction back to the fine grid, and finally adding the error correction into the approximation. An important
aspect of the multigrid method is that the coarse grid solution can be approximated by recursively using the multigrid
idea, that is, on the coarse grid, relaxation is performed to reduce high frequency errors followed by the projection of the
residuals on another coarser grid, and so on. Thus the multigrid method requires a series of problems to be solved on a
hierarchy of grids with different mesh sizes where a grid reduction factor of2 is generally employed.

Figures (2), (3) and (4) show the schedule for the grids in the order in which they are visited, where the process goes
from the finest grid down to the coarsest grid and back from the coarsest up to the finest, performingη relaxation sweeps
on each level.

Figure 2: Schedule of grids for V-Cycle.

3



Figure 3: Schedule of grids for W-Cycle.

Figure 4: Schedule of grids for F-Cycle.

The simplest projection operators to transfer quantities from fine to coarse grids are the injection operators where
the residuals evaluated on the finest grid are injected to the coarse grid space. For RBGS (Red-Black Gauss Siedel), a
half-injection projection is commonly used transferring the residuals to the coarse grids points weighted by1/2.

More accurate projection operators are full-weighting (FW) and half-weighting (HW). In those technique the residuals
are computed on all of the fine grid (h) and weighted to the coarse grids (2h) points by the formula (Gupta, 1995):
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for FW and HW respectively. where,ri,j is the residual present on the fine grid andr i
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The second class of intergrid transfer functions involves moving vectors from a coarse grid to a fine grid. For two-

dimensional problems the bilinear polynomial is commonly employed, which are given by:
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whereϕ is the variable to be evaluated. The indices (i
2 , j

2 ) identify the variable value on the coarse grid and (i, j) on the
fine grid.

2.2. The Excessive Over-Relaxation Method

Smoothing methods in multigrid algorithms are usually taken from the class of basic iterative methods. Thus when
an iterative method are used, a relaxation parameter may improve the convergency property. But in many situations,
using relaxation parameters is not cost-effective when applied to Gauss-Seidel relaxation. However an optimal relaxation
parameter (w) in SOR (Successive Over Relaxation,w > 1.0) can accelerate the convergence dramatically.
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Despite of SOR efficiency, it is not suitable in multigrid methods due to the fact that when SOR is used on the upswing
of a multigrid V-Cycle the introduction of low frequency errors on the lower grids levels seriously impairs the smoothing
effects of post-relaxation and can result in many extra iterations (Millar et al., 2002). On the other hand under relaxation
reduces the low frequencies but excites the high frequencies. The existing believe that SOR is not suitable for using
as a smoother in multigrid method was contraried by Zhang (1995), where he has shown that in the V-Cycle, the first
(restriction) half cycle is sensitive under relaxation (SUR- Successive Under Relaxation,w < 1.0) only and the second
(interpolation) half cycle to over relaxation (SOR) only.

In that case using SUR on the second and third finest levels of the down swinging side, where the majority of the
low frequency components are removed and SOR where the high frequency components are introduced, that is on the
up swinging half cycle, it is possible to accelerate the convergence of the solver. It is important to note that the use of
SOR/SUR on the top or bottom levels of the cycles should be avoided. In the finest level the main effort is to smooth the
high frequency errors and the employment of a parameter might reduce the effect of smoothing. In case of coarsest grid
the residuals are already small and an acceleration helps little (Zhang, 1995). For those cases RBGS (w = 1.0) is more
suitable. The figure (5) shows both operators (RBGS, SOR and SUR) required at each level to the V-Cycle.

Figure 5: The multigrid V-Cycle showing grid size and operators required at each point in the cycle.

3. Numerical Results

To test the multigrid method and its efficiency the developed code, in the present work, is applied to present a classic
benchmark problem in two dimensional unsteady internal flow, in a uniform cartesian grids. In the results presented here
a scaled injection which is a injection operator, multiplied by factor equal to2.0 and a bilinear interpolation are used
as projection operators to transfer quantities from fine to coarse grids and vice-versa. It is noted that the use of scaled
injection significantly reduces the number of iteration when Gauss-Seidel is used (Ngongang, 1998). The Navier–Stokes
equations are dicretized by the usual five-point 2nd-order central difference scheme. All the experiments are done on a
PC single processor using FORTRAN 90 programming language in double precision. The program finishes when the
residual on the finest grid inL2 norm is less than10−7 and residual mass is less than10−6.

3.1. The Driven Cavity Flow

The driven cavity problem has long been used to as a test case for Navier–Stokes solvers, due to simplicity of the
geometry and boundary conditions. The two-dimensional square cavity has no slip boundary conditions on all walls. The
flow is driven by the top wall sliding over the cavity. The sides and bottom walls are static.

For the current study the problem was solved for a Reynolds number of100 and1000 and compared with the results of
Ghiaet al., (1892) which were generated using a finite difference vorticity-streamfunction solver using a central difference
approximation.

The vorticity contours for the flow calculated on a32× 32 mesh using fractional-step method are shown in figure (6).
It provides insight into some general features of the flow field as the Reynolds number increases. As theRe −→∞ one
would expect thin boundary layers to develop along the solid walls, with the central core in almost inviscid motion. This
is indeed seen in the figure (6). AsRe increases, there is a clearly visible tendency for the core fluid to move as a solid
with uniform vorticity (Shankar and Deshpande, 2000).
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Figure 6: Vorticitty contours in a square driven cavity at (a)Re = 100 and (b)Re = 1000.

Plots ofx andy components of velocity atRe = 100 andRe = 1000 using F-Cycle are given in the figures (7) and
(8) in order to examine the accuracy of the numerical method. For Re=1000 the values were either calculated on mesh
64× 64 which show better convergence when compared with Ghiaet al., (1892).

Figure 7: Profiles of velocityu along the vertical centreline for (a)Re = 100 and (b)Re = 1000.
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Figure 8: Profiles of velocityv along the vertical centreline for (a)Re = 100 and (b)Re = 1000.

3.2. Computational Cost

For a comparison of computational cost between multigrid method using RBGS as smoother which performs 4 relax-
ation sweep on each level and other iterative solver, the MSI (Modified Strongly Implicit Procedure) is applied considering
a simulated time of0.1s on a mesh of32× 32 andRe = 100.

More sophisticated adaptive cycling strategies besides of V-Cycle, such as W- and F-Cycle are either evaluated but
did not offer advantage at the Reynolds of interest. The table (1) shows the CPU time evaluated at each case quoted
previously.

Table 1: Performance comparison on IBM PC among different structures of multigrid cycles and MSI solver.

CPU (s)
Grid size F-Cycle V-Cycle W-Cycle MSI
16× 16 3.645 2.503 3.064 2.103
32× 32 13.039 9.494 10.005 11.086
64× 64 59.647 48.782 51.525 322.117
128× 128 336.290 338.850 336.763 1734.492

The values above can be plotted to understand the exponential solvers behavior (Fig. 9). It is found that in the coarsest
grids there is no advantage between the solvers but in the followings grids a very lower computational time is verified at
V-Cycle when compared with the MSI solver.

Figure 9: Performance comparison among different structures of multigrid cycles and MSI solver.
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3.3. Computational Cost at Excessive Over Relaxation

Based on foregoing analysis, results for two acceleration scheme are presented here. The V-Cycle algorithm with SUR
and SOR as smoothers which embed under-relaxation (w1 < 1.0) and over-relaxation (w2 > 1.0) on their second and
third finest level is applied in a driven cavity flow considering a simulated time of0.1s, Re=100 and different mesh sizes.

To evaluate the effect of excessive over relaxation, some parameters are defined at the first iteration or at the first time-
step where the convergence is more difficult to be attained. Due to this difficult the number of multigrid V-Cycles, denoted
by CN required to satisfy a given error tolerance (10−7) is an important factor to test the computational efficiency and
their high values occur at the first iterations. Other parameter, the contraction number,k, or the average residual reduction
factor is defined by the equation (13):

k =
(
‖rn‖2
‖ro‖2

) 1
CN

, (13)

where the‖ro‖2 is the initial discrete error inL2 norm and‖rn‖2 is the final discrete error.
Those parameters are dependent of the mesh sizes and of the sweep numbers. In tables 2, 3 and 4, the parametersk

and the computational time given in seconds (CPU ) are shown for sweep numbers going from 1 to 4, and for three mesh
sizes -16 × 16, 32 × 32 and64 × 64, respectively. It is important to note that the under (w1) and over (w2) relaxation
coefficients are the optimum values found, for this problem and either dependent of the mesh size, through experiments
analysis.

Table 2: Performance comparison between RBGS and SOR/SUR on a16× 16 mesh size.

1 sweep 2 sweeps 3 sweeps 4 sweeps

w1 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9
w2 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5
CN 21 15 12 9 9 7 7 6
k 0.606 0.475 0.424 0.289 0.335 0.222 0.287 0.187
CPU(s) 1.983 1.873 2.103 2.083 2.314 2.253 2.583 2.523

Table 3: Performance comparison between RBGS and SOR/SUR on a32× 32 mesh size.

1 sweep 2 sweeps 3 sweeps 4 sweeps

w1 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9
w2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2
CN 26 22 15 12 11 9 9 8
k 0.645 0.580 0.470 0.388 0.383 0.299 0.331 0.244
CPU(s) 7.300 6.970 7.582 7.470 8.523 8.392 9.414 9.304

Table 4: Performance comparison between RBGS and SOR/SUR on a64× 64 mesh size.

1 sweep 2 sweeps 3 sweeps 4 sweeps

w1 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9
w2 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1
CN 32 28 18 15 13 12 11 10
k 0.675 0.641 0.507 0.460 0.421 0.357 0.366 0.307
CPU(s) 107.580 106.315 57.654 46.718 51.224 48.062 49.662 48.392

Regarding the values shown above, the use of SOR/SUR in multigrid is actually dependent of the sweep number. The
major efficiency occur at one relaxation sweep, where the number of multigrid V-Cycles decreases drastically, but do not
show computational time advantages when one more relaxation sweep is considered for coarser grids. If a fine grid is
considered more than one sweep relaxation leads to a better performance. However the average residual reduction factor
tends to decrease if a sweep number increases. In theory it could affect the mass conservation, but it was observed that
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this aspect do not change the final computational time neither the residual mass in each iteration of the step-fractional
method.

Other aspect demonstrated in the results is that only two relaxation sweep is sufficient when RBGS or SOR/SUR are
considered which supplies the major percentual gain in CPU time.

4. Conclusions and Remarks

In this work a effective computational cost analysis has been performed to the Navier-Stokes equations for unsteady
flow. The step-fractional method with a central difference scheme in primitive variables and the Neumann boundary
condition for the pressure on a staggered grid were used to solve these equations.

The numerical results were carried out for multigrid method and its different structure cycles as F-Cycle, V-Cycle and
W-Cycle. Other iterative solver (MSI) was used to compare the efficiency of multigrid method on a range of grids. The
results performed on a driven cavity flow were compared with the existing solutions showing a very good agreement.

Both cycles have been tested and showed similar CPU time reduction rates with excellent rates, when compared to the
MSI. It is important to note that when refined grids are applied, the reduction rates behavior in CPU time are exponential
which confirm the high multigrid method efficiency. However, the excessive over relaxation in which under and over
relaxation is adopted on the smoother do not show advantage over RBGS if two sweep relaxation is used. The results
implies that only two relaxation sweeps are needs for a given level of accuracy leading to faster solution times.
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