

IV Escola de Primavera de Transição e Turbulência Universidade Federal do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Porto Alegre, RS, 27 de setembro a 1º de outubro de 2004

ESTUDIO DE ESCURRIMIENTOS TURBULENTOS DE CAPA LÍMITE EN UN TÚNEL DE VIENTO DE CIRCUITO ABIERTO

Gisela Marina Alvarez y Alvarez

Facultad de Ingeniería, Universidad Nacional del Nordeste, Av. Las Heras 727, 3500, Resistencia, Argentina. giselaaya@hotmail.com

Adrián Roberto Wittwer

Facultad de Ingeniería, Universidad Nacional del Nordeste, Av. Las Heras 727, 3500, Resistencia, Argentina. <u>A wittwer@yahoo.es</u>

Mario Bruno Natalini

Facultad de Ingeniería, Universidad Nacional del Nordeste, Av. Las Heras 727, 3500, Resistencia, Argentina. <u>mnatalini@ing.unne.edu.ar</u>

Resumen. Este trabajo está dirigido al estudio de escurrimientos de capa límite turbulenta en general; analizándose en primer lugar la capa límite natural que se desarrolla sobre una superficie lisa utilizando el túnel en vacío. Examinándose, luego, el comportamiento de la capa límite generada al emplear elementos de rugosidad cúbicos dispuestos en el piso del túnel. Finalmente, se realiza la simulación de una capa límite atmosférica neutralmente estable, para un terreno tipo II y III del Reglamento CIRSOC 102, equivalente a la categoría III de la norma NBR-6123, utilizando simuladores tipo agujas sugeridos por Standen. El análisis se realiza en un túnel de viento que posee una cámara de ensayos con una sección transversal cuadrada de 0,48 m de lado y de 4,45 m de longitud. Durante el trabajo experimental, se miden velocidades medias y fluctuaciones de la componente longitudinal de velocidad mediante tubos de Pitot-Prandtl, micromanómetro y anemómetro de hilo caliente, y luego se obtienen las intensidades de turbulencia, escalas integrales y espectros de potencia. Los resultados son comparados con valores de diseño obtenidos de datos atmosféricos y leyes teóricos que permiten determinar la calidad de reproducción del viento simulado.

Palabras clave: túnel de viento, turbulencia, anemometría de hilo caliente

1. Introducción

Muchos de los problemas de ingeniería requieren el conocimiento de los escurrimientos característicos de capa límite turbulenta y de vientos naturales dentro de la capa límite atmosférica. Es muy común que el estudio de los fenómenos aerodinámicos que se producen en dicha capa se realice en forma experimental utilizando túneles de viento y modelos a escala reducida.

El nuevo túnel de viento (TV2) de la Universidad Nacional del Nordeste fue diseñado para reproducir escurrimientos uniformes y de capa límite. En esta primera etapa se realizó un estudio de capa límite lisa, con elementos rugosos y por último se verificó la calidad en la reproducción de una capa límite atmosférica neutralmente estable utilizando rugosidad y simuladores.

De acuerdo a J. Armitt y J. Counihan una descripción adecuada del flujo requiere el reconocimiento de los siguientes parámetros:

- Distribución de la velocidad media en función del espesor.
- · Intensidad de cada componente de la turbulencia en función del espesor.
- Escalas integrales de turbulencia.
- Microescalas de turbulencia
- · Correlaciones entre las componentes de la turbulencia particularmente tensiones de Reynolds u'w'.
- El espectro de turbulencia.

En lo referente a la variación de la velocidad media con la altura existen varias leyes que en general se basan en ecuaciones de balance de masa y de cantidad de movimiento. Para superficies lisas, y suponiendo tensiones de corte constantes y longitud de mezcla proporcional a la altura o espesor analizado, Prandtl llega a la Ec. (1), la cual es válida dentro de la región de la pared.

$$\frac{U}{u^*} = \frac{1}{k} \cdot \ln \frac{z}{z_0} \tag{1}$$

En la Ec. (1) \overline{U} es la velocidad media, u* es la velocidad de fricción, k es la constante de von Kármán la cual se considera igual a 0,4; y z₀ es la altura de rugosidad. En superficies rugosas se produce un desplazamiento del plano de referencia, z_d, por lo cual la ley logarítmica variará según la Ec. (2).

$$\frac{\overline{U}}{u^*} = \frac{1}{k} \cdot \ln \frac{z - z_d}{z_0}$$
(2)

En ambos casos el z_0 y zd se determinan realizando un ajuste de la función definida por las Ec. (1) o Ec. (2). También se obtiene una buena concordancia con los datos experimentales si se emplea la ley potencial, definida por la Ec. (3).

$$\frac{\overline{U}}{\overline{U_{\delta}}} = \left(\frac{z}{\delta}\right)^{\alpha}$$
(3)

Donde; \overline{U} es la velocidad a la altura z, $\overline{U_{\delta}}$ es por lo general, la velocidad para z igual a la altura de capa límite δ , y α es el exponente de la lev potencial.

La turbulencia es un fenómeno aleatorio, y como tal requiere un análisis estadístico de las fluctuaciones de velocidad que lo originan Como medida adimensional de la energía contenida en las fluctuaciones de velocidad, se emplea la intensidad de turbulencia, la cual se define en la Ec. (4) como el cociente entre la desviación estándar de las fluctuaciones $\sigma_U y$ una velocidad de referencia \overline{U} .

$$I_{\rm U} = \frac{\sigma_{\rm U}}{\overline{\rm U}} \tag{4}$$

La función de autocorrelación, es una medida del intervalo de tiempo en el cual existe una dependencia entre los valores medios de las fluctuaciones de velocidad. Si se divide la función de autocorrelación por la varianza se obtiene la función de autocorrelación normalizada, la cual permite definir la escala temporal de la turbulencia Tc (Blessmann, 1995). Esta escala se define como el área por debajo de la curva de autocorrelación normalizada, y caracteriza la memoria del proceso aleatorio.

La interrelación que existe entre dos señales determinadas en dos puntos diferentes, se determina con la función de correlación cruzada, al dividir este último valor por la varianza, define la función de correlación cruzada normalizada. Análogamente, a la escala temporal, la escala espacial o integral Lu, es definida como el área por debajo de la curva de correlación cruzada normalizada.

La escala integral Lu es un parámetro que está vinculado a las características turbulentas del escurrimiento y es una dimensión promedio de los remolinos más grandes presentes en el escurrimiento. Puede determinarse ajustando el espectro de la componente longitudinal medida al espectro de diseño representativo de los valores atmosféricos. Más aún, cuando la forma del espectro no coincide en su totalidad, el ajuste se puede desviar al rango de frecuencias de interés de acuerdo al tipo de análisis, dándole cierta flexibilidad al método. Con el valor f. Lu/U = 1 en el espectro de diseño, se obtiene la correspondiente frecuencia f en el espectro medido con la que se puede determinar la escala integral se acuerdo a lo citado por Cook (1978) según lo indica la Ec. (5).

$$Lu = \overline{U} / f$$
(5)

De acuerdo a la hipótesis de Taylor la escala longitudinal a una cierta altura z, puede obtenerse multiplicando la velocidad media en esta altura por la correspondiente escala temporal. Es decir:

$$Lu = U . Tc$$
(6)

La función de densidad auto-espectral o espectro de potencia, representa la variación del valor cuadrático medio de una función del tiempo x(t), dada por una serie continua adquirida con un intervalo de tiempo t, como una función de la frecuencia y queda expresada por:

$$S_{u}(f) = \frac{1}{B_{e}.T} \int_{0}^{T} x^{2}(f, B_{e}, t) dt$$
(7)

Donde Be es el ancho de banda (resolución del espectro) y T un tiempo de integración adecuado (Möller, 1988). Cuando se analiza espectralmente un escurrimiento turbulento se obtiene el espectro de turbulencia, y la función x (t) es la fluctuación de velocidad u (t). En este caso, el espectro representa la distribución en frecuencias de la energía de las fluctuaciones.

2. Simulación de la capa límite atmosférica

Simular la capa límite atmosférica en un túnel de viento consiste en desarrollar un modelo físico del escurrimiento turbulento atmosférico de manera tal que los parámetros que lo caracterizan se reproduzcan lo más fielmente posible dentro del túnel.

Debido a la necesidad de obtener un viento con propiedades de la turbulencia representativas de la atmósfera real, se han desarrollado varios métodos de simulación; uno de ellos consiste en emplear túneles de viento con secciones de trabajo extremadamente largas, con un piso rugoso con bloques o grava. La capa límite resultante tiene propiedades de turbulencia muy cercanas a la de una atmósfera neutralmente estable, este método tiene la desventaja de que la sección de ensayos debe ser de casi 30 metros de longitud para genera una capa límite de 0,9 m a 1,2 m de espesor.

Como lo que deseaba es generar una capa límite atmosférica en una sección de ensayos de menor longitud, se probaron distintos dispositivos, como barras horizontales o verticales, grillas, entre otros y si bien algunos de éstos reprodujeron exitosamente el perfil de velocidades medias, sin embargo la escala de la turbulencia era muy pequeña (Campbell y Standen, 1969).

Standen (1972) halló que, en general, las espiras proveen una buena aproximación del viento atmosférico por debajo de los 450 metros de altitud, cuando se considera atmósfera neutralmente estable o velocidades del viento elevadas y establece la adición de rugosidad distribuida en el piso del túnel de viento corriente abajo de las espiras, y el uso de una placa separadora fina triangular del lado corriente abajo de la espira, son necesarias para lograr determinadas propiedades predeterminadas de la capa y requiere de ajuste para obtener las propiedades deseadas.

Por su facilidad de realización se optó por el modelo de aguja sugerido por Irwin (1981). La aguja empleada consiste en una placa triangular muy esbelta, normal al escurrimiento; la cual tiene adherida en la cara a sotavento una placa triangular de refuerzo, tal como se observa en la Fig. (3). Para el dimensionado de las agujas se plantea un balance de momento en la sección de ensayos asumiendo que corriente arriba de las agujas existe un escurrimiento uniforme y que en algún punto corriente debajo de las agujas se forma una capa límite de espesor δ y con un perfil de velocidad que cumple con la ley potencial, Ec. (3).

El déficit de flujo de momento en la capa límite y la caída de presión a lo largo de la cámara de ensayo se balancean con el arrastre de las agujas, incluyendo el efecto de bloqueo y el arrastre de la rugosidad del suelo. El resultado es una expresión que permite determinar el área de un conjunto de agujas necesarias para producir una capa límite con los valores de α y de δ requeridos.

Con información empírica adicional, como el coeficiente de arrastre de las agujas y la relación entre la altura de la aguja y la profundidad de la capa límite, se obtuvieron expresiones que relacionan la altura h de la aguja con el ancho b de la base de la misma. Estas dimensiones posibilitarán el desarrollo de la capa límite requerida a una distancia de 6 h a partir del conjunto de agujas.

En este caso se desea reproducir un viento correspondiente a un terreno tipo II y III del Reglamento CIRSOC (1982), equivalente a la categoría III de la norma NBR-6123/1988 (1988): "terreno planos u ondulados como muros y edificaciones bajas dispersas".

El espesor de capa límite $\delta = 6h = 0,36$ m, a una distancia 6h a sotavento de las agujas, se estableció luego del análisis de los resultados obtenidos del relevamiento del túnel en vacío. En función de las características de las curvas de isovelocidad halladas en la sección de ensayos, se pudo establecer hasta que altura podría desarrollarse la capa límite para que no se vea influenciada por la capa límite natural que se genera en el techo del canal.

Una vez elegidos los valores requeridos de α y δ , se calculo la altura del elemento simulador empleando los criterios sugeridos por Irwin (1981). Se adoptaron 2 agujas de 0,445 m de altura h, separadas 0,22 m y a una distancia entre el eje de las mismas y las paredes de 0,13. Finalmente se calcula la relación b/h, y se define el ancho b como 0,05 m. La altura de la capa límite δ en la sección de ensayos, teóricamente será de 0,367 m.

Para mayor compresión de lo expuesto en la Fig. (1) se detalla, de manera esquemática, la ubicación de los simuladores y la variación del perfil de velocidades media a lo largo del túnel. En la Figura (3) se precisan las dimensiones de las agujas.

Figura 1. Disposición de los elementos simuladores de la capa límite atmosférica y desarrollo del perfil de velocidades en el túnel

Para el dimensionamiento de la rugosidad se partió de expresiones que Counihan (1969) determinó experimentalmente. Se adoptaron como elementos rugosos, prismas de base cuadrada de 0,012 m de lado y de 0,009 m de altura, distribuidos al tresbolillo con una separación transversal y longitudinal entre centros de 0,03 m, tal como puede apreciarse en la Fig. (4).

3. Descripción de los experimentos

Los experimentos se realizaron en un segundo túnel de viento (TV2) de pequeñas dimensiones, recientemente diseñado de la Universidad Nacional del Nordeste, Argentina (Alvarez y Alvarez et al, 2003). Es un túnel de circuito abierto cuya longitud total es de 7,50 m, su cámara de ensayos consiste en un conducto de sección cuadrada de 0,48 m de lado y de 4,45 m de longitud y se indica en la Fig. (1). La máxima velocidad del escurrimiento en el canal vacío es aproximadamente 18 m/seg y emplea un ventilador centrífugo accionado por un motor trifásico de 1450 rpm y 10 CV de potencia.

Figura 2. Túnel de viento TV2 de la Facultad de Ingeniería.

Figura 3. Vista de los elementos simuladores en el túnel . Todas las dimensiones están expresadas en metros.

El escurrimiento turbulento en el túnel de viento se evalúa midiendo la distribución de velocidades medias y los parámetros turbulentos. Para describir la turbulencia se utilizan espectros de potencia, funciones de correlación y distribuciones de probabilidad, y en general, en la evaluación experimental de los escurrimientos, se determinan otras características relacionadas con éstas, como son la intensidad de turbulencia, la función de autocorrelación y la escala integral de la turbulencia.

Los valores de velocidad media se determinaron a partir de la presión dinámica media. Para ello se empleó un tubo de Pitot – Prandtl, un micromanómetro tipo Betz, y un transductor de presión Honeywell. Para la medición de velocidades fluctuantes se utilizó un anemómetro de hilo caliente Dantec, un osciloscopio digital de dos canales, un amplificador Stanford con filtros analógicos pasa-bajos y pasa-altos, una placa conversora analógico-digital Keithley Metrabyte DAS-1600 y un multímetro digital Keithley. El sistema permite la determinación de velocidades medias, intensidades de turbulencia, funciones de autocorrelación y espectros de potencia. Para el análisis espectral y de autocorrelación, se obtienen las series numéricas a partir de la digitalización de la señal de salida del anemómetro, que luego son procesadas mediante programas computacionales.

4. Resultados

A continuación se presentan las distribuciones de velocidad media, intensidad de turbulencia, espectros y funciones de autocorrelación medidos en el escurrimiento turbulento de la simulación parcial de una capa límite atmosférica correspondiente a un terreno rural.

En la Figura (4) se muestra el perfil de velocidades medias correspondiente al túnel en vacío, solo con los elementos de rugosidad y finalmente con los elementos de rugosidad y agujas, determinado en el centro de la sección de ensayos. En esta figura se aprecia el crecimiento que experimentó la capa límite, la cual originalmente era de 0,15 m en el túnel en vacío, luego de 0,16 m al agregar rugosidad y finalmente de 0,33 m al adicionar los simuladores.

Figura 4. Perfil de velocidades medias

En la Figura (5) se presenta el perfil de velocidades medias adimensional simulado en el túnel, con el piso liso; hasta la altura de la capa límite, además se lo compara con la ley de Prandtl y la ley potencial. El índice de la ley potencial obtenido es de 0,08.

Análogamente en la Fig. (6) se muestra el perfil de velocidades medias adimensional determinado con los elementos de rugosidad dispuestos en el piso del túnel; hasta la altura de la capa límite, además se lo compara con la ley de Prandtl y la ley potencial. Para determinar la altura de rugosidad z_0 y el desplazamiento z_d del plano cero, el perfil de velocidades medias mediao se ajusta a la ley logarítmica dada por la Ec. (2). A partir de los valores medidos de velocidad media, desde el piso del túnel hasta la altura correspondiente al 15 % del espesor de la capa límite, la velocidad de fricción u* puede obtenerse según Blessmann (1973) con la Ec. (8).

$$u^* = \frac{U(\delta) - U(z)}{-5.6.\log(z/\delta) + 2.5}$$
(8)

Como existe una pequeña dispersión en los valores de u* hallados para las distintas alturas, se realiza un promedio, llegando al valor, u* = 1,42 m/seg. El resto de los valores que produce el ajuste a la ley logarítmica son z_0 = 0,88 mm y z_d = 1,614 mm.

El coeficiente α de la ley potencial que mejor ajuste produce resulta igual a 0,33.

Para análisis comparativo del perfil de velocidades medias obtenido con la simulación, se emplea la ley potencial, tal como se observa en la Fig. (7). En este caso el valor del coeficiente α resultó ser igual a 0,17, menor al valor esperado de 0,20. El espesor de capa límite obtenido es de 0,33 m, valor próximo al determinado teóricamente.

Para los tres casos analizados se determinó la distribución de la intensidad local de turbulencia, en el centro de la sección de ensayos. Los valores obtenidos se encuentran en la Fig. (8). Si bien no se realizan comparaciones, los valores medidos para el caso de simulación de la capa límite atmosférica son adecuados para el tipo de perfil de velocidades medias hallado.

La Figura (9) muestra los espectros de potencia, o funciones de densidad espectral Su, medidos en tres posiciones en el centro de la sección de ensayo y para el caso de la capa límite empleando solo elementos de rugosidad. Las posiciones inferiores muestran buena definición de la región de generación de vórtices y de la región inercial. En la posición superior , fuera de la capa límite, la definición es menor, producto de las pequeñas fluctuaciones de rugosidad. La determinación de la Función de densidad espectral Su para el caso de simulación de capa límite atmosférica se realizó para seis posiciones, también medidas en el centro de la sección de ensayos, Fig (10), obteniéndose una buena definición de los espectros en todas las posiciones. En ambas determinaciones el número de valores obtenidos fue de 90000, la frecuencia de adquisición de 3000 Hz, y el tiempo de registro de 30 segundos. En dos de las posiciones se realizó un filtrado de la señal con un filtro pasa bajos a 1000 Hz. En la Figura (11) se presentan los espectros obtenidos con y sin filtrado, lo que permite apreciar el efecto de "aliasing" en las frecuencias más altas (Wittwer & Möller, 2000).

En la Figura (12), se indican las funciones de autocorrelación normalizada correspondientes a las alturas de 6 mm y 40 mm medidas desde el piso del túnel; a partir de la cual y mediante la Ec. (6) permite calcular la escala integral Lu en ambas posiciones. Los valores obtenidos de escala integral Lu se encuentran indicados en esta figura.

Figura 7. Perfil de velocidades medias determinado con rugosidad más simuladores

Figura 8. Perfil de Intensidad local de turbulencia

Figura 9. Espectros determinados solo con rugosidad en tres posiciones

Figura 10. Espectros determinados con rugosidad y simuladores en seis posiciones

Figura 11. Función de densidad espectral determinada con rugosidad y simuladores en dos posiciones con y sin filtrado.

Figura 12. Función de autocorrelación normalizada determinada con rugosidad y simuladores a una altura de 6 mm y 40 mm medidas desde el piso del túnel.

En las Figuras 13 y 14 se compara dos de los espectros adimensionales medidos en el túnel de viento con los espectros atmosféricos Kaimal y de von Kármán. El espectro de Kaimal se define con la Ec. (9), la cual da una buena aproximación en la zona inercial del proceso en cascada (Balendra, et al, 2002). En dicha ecuación f es la frecuencia y f_z es la frecuencia reducida, que se define como f.z/ \overline{U} .

$$\frac{f.S_{u}(f)}{\sigma^{2}_{u}} = \frac{100.f_{z}}{3.(1+50f_{z})^{5/3}}$$
(9)

La escala integral obtenida empleando este espectro no es proporcional a la altura, z, excepto hasta una altura de 50 m por sobre el nivel del suelo. Por este motivo también se empleó el espectro de von Kármán que se obtiene mediante la Ec. (10) en la cual $f_L = f_L L_u^x / \overline{U}$.

$$\frac{f.S_{u}(f)}{\sigma^{2}_{u}} = \frac{4.f_{L}}{\left(1+70.8\ \overline{f_{L}}^{2}\right)^{5/6}}$$
(10)

Figura 13. Comparación del espectro adimensional (z = 6 mm) con los espectros atmosféricos.

Figura 14. Comparación del espectro adimensional (z = 40 mm) con los espectros atmosféricos.

5. Conclusiones

El trabajo apunta a la caracterización experimental de los escurrimientos de capa límite turbulenta en un túnel de viento. Los perfiles de velocidad media obtenidos en la capa límite sobre superficie lisa y rugosa, se ajustan bastante bien a las leyes logarítmica y potencial. En el caso de la simulación de la capa límite atmosférica, el ajuste a la ley potencial determina un exponente de 0,17 correspondiente a un terreno suburbano.

Las intensidades de turbulencia son inferiores al 10 % en la capa límite sobre superficie lisa e inferiores al 25 % sobre superficie rugosa. Los valores obtenidos en la simulación de la capa límite atmosférica se adecuan a la distribución de velocidades medias determinadas.

Los espectros hallados, en general, presentan una buena definición en las frecuencias de interés. La comparación de los espectros adimensionales con los espectros de diseño de Kaimal y von Kármán, en el caso de la simulación de la capa límite atmosférica, indican una buena concordancia en función de la posición en que fueron obtenidos.

Esto permite concluir que el túnel de viento (TV2) de la Universidad Nacional del Nordeste es adecuado para estudios de escurrimientos de capa límite turbulenta en general, y para la simulación de capa límite atmosférica correspondiente a la condición de estabilidad neutra.

6. Referencias

- Alvarez y Alvarez, G. M, Castro, H. G., Wittwer, A. R., Marighetti, J. O., De Bortoli, M. E.; Natalini, M. B., 2003, "Diseño y construcción de un canal de aire en la Facultad de Ingeniería de la Universidad Nacional del Nordeste" Jornadas de Ciencia y Técnica de la Universidad Nacional del Nordeste, Argentina.
- Armitt, J., Counihan, J., 1967, "The simulation of the atmospheric boundary layer in a wind tunnel", Atmospheric Environment 2, 49 71.

Associação Brasileira de Normas Técnicas "Forças devidas ao vento em edificações NBR 6123", ed. 1988.

- Balendra, T., Shah, D., Tey K., Kong, S., 2002, "Evaluation of flow characteristics in the NUS-HDB Wind Tunnel", Journal of Wind Engineering and Industrial Aerodynamics, vol. 90, pp. 675-688.
- Blessmann, J., 1973, "Simulação da Estrutura do Vento Natural em um Túnel Aerodinâmico", Tese para obtenção do Título de Doutor em Ciências, São José dos Campos, São Paulo.
- Blessmann, J., 1995, "O vento na engenharia estrutural", Editora da Universidade, UFGRS, Porto Alegre.
- Campbell, G. S. y Standen, N.M., 1969, "Progress report ii on simulation of earth's surface winds by artificially thickened wind tunnel boundary layers".
- Centro de Investigación de los Reglamentos Nacionales de Seguridad para las Obras Civiles: Reglamento CIRSOC 102: Acción del Viento sobre las Construcciones, 1984, INTI, Bs. As.
- Cook, N. J., 1978, "Determination of the Model Scale Factor in Wind-Tunnel Simulations of the Adiabatic Atmospheric Boundary Layer", Journal of Industrial Aerodynamics, vol. 2, pp. 311-321.
- Counihan, J., 1969, "A method of simulating a neutral atmospheric boundary layer in a wind tunnel", Central Electricity Research Laboratories, Surrey. Nº 48.
- Irwin, H.P.A.H. "The design of spires for wind simulation", Journal of Wind Engineering and Industrial Aerodinamics, 7 (1981) 361-366.
- Möller, S. V., 1988, "Experimentelle Untersuchung der Vorgänge in engen Spalten zwischen den Unterkanälen von Stabbündeln bei turbulenter Strömung", Dissertation Universität Karlsruhe (TH), Karlsruhe, RFA.
- Standen, N. M., 1972, "A spire array for generating thick turbulent shear layers for natural wind simulation in wind tunnels", Report of National Aeronautical Establishment, Canada, LTR-LA-94.
- Wittwer, A. R., Möller, S. V., 2000, "Characteristics of the low speed wind tunnel of the UNNE", Journal of Wind Engineering & Industrial Aerodynamics, 84, pp. 307-320.