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Abstract. Code accuracy is a very important aspect of Direct Numerical Simulation. Verification of the accuracy
of such codes is often performed by comparison with analytical solutions of selected linear problems. An example of
the procedure is given in the paper. In order to verify the computational code the standing acoustic waves problem
was adopted. This problem can be linearized assuming that the amplitude of the acoustic waves is very small.
However, in many instances the linear analysis becomes a very complicated task, in particular when viscous and
compressible effects are considered. This test gives an estimation of the numerical error. An application of the
method is given a free-shear layer flow.
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1. Introduction

In studies of flows by Direct Numerical Simulation (DNS), the researcher should simulate all scales and
frequencies properly. There are many sources of numerical errors, and, if these errors are not minimized, the
results obtained could not reproduce the physics of the problem. Thus code testing is of paramount importance
in this field.

Transition and turbulent flows possess wide range of space and time scales. Therefore, these kind of flows
requires high accuracy in the numeric solution. This requirement of accuracy can be achieve by the use of
spectral methods (Canuto et al., 1987). The use of this schemes is restricted to flows in simple domains and
simple boundary conditions. In order to overcome these difficulties an alternative numeric representations can
be used, as the Finite Differences Schemes and the Finite Volume Schemes. The Finite Differences Schemes
is justified by the possibility of the use of more general boundary conditions, although the schemes with high
order of accuracy also restricted to the problem with simple domains. The advantage of these schemes in
relation to Finite Volume Schemes is that high order approximations can be used. The Finite Volume Schemes
has advantages in working with complex domains and also with complex boundary conditions. The Finite
difference schemes may be classified as explicit or implicit. According to Mahesh, 1998, implicit schemes are
significantly more accurate for the small scales than explicit schemes with the same stencil width. The implicit
schemes are extremely attractive when explicit time advancement schemes are used.

The accuracy of a code can be performed by comparison with analytical. In this study a solution of the
standing acoustic wave problem with small amplitude was adopted as case test. A very good theory of acoustic
waves can be found in Morse and Ingard, 1968. After the comparison of numerical results with the analytical
solution, the compressible free shear layer problem was simulated. Sandham and Reynolds, 1989, Lessen et al.,
1966 and Blumen, 1970 presents theoretical results with this problem.

In order to solve the spatial derivatives, the implicit schemes also called compact schemes was adopted. The
finite difference approximation to the derivative of the function is expressed as a linear combination of the given
function values on a set of nodes. In compact finite difference schemes the value of f; possess a dependence
with all the values of nodes.

Lele, 1992 emphasizes the importance of using methods of high order and proposes a 3"¢ order approximation



at the boundaries and a 4'" order approximation for points near the boundaries. In this work a different

discretization of the boundary and near boundary points was adopted according to Souza et al., 2002.

The boundary condition adopted in the x direction was periodic. In the y direction is not possible to use
a periodic boundary conditions and thus the Neumann or free-slip boundary conditions was used according
Medeiros et al., 2000 and Souza, 2003. Thompson, 1987 presents non-reflecting boundary conditions. The
idea of these boundary conditions is to consider the characteristic form of the Euler equation at the boundary.
Another possibility is to use an exponential decay, except that this method is only rigorously correct in the linear
regime. In the current work the free-slip boundary condition in the y direction was adopted. This boundary
condition should produce accurate results for a sufficient large distance from the shear layer.

To solve the temporal derivatives a another method was adopted. In agreement with Williamson, 1980,
the time-advance is obtained by a high order Runge-Kutta schemes. This schemes is conditionally stable. In
this study is interesting to capture the transient effects. In order to simulate these phenomena appropriately is
necessary to use a small time increments in the numeric simulation to assure that the criterion of stability was
satisfied. Therefore the restrictions of stability are only two: that due to convection and due to the diffusion.
This same schemes is used by Kloker et al., 1993.

The organization of the paper is as follows. Section 2 presents the formulation adopted in the current work.
The details of the numerical method is described in the section 3. Initial and boundary condition are discussed
and the compact schemes and Runge-Kutta are described with more details. Section 4 presents analysis of the
verification of computational code and shows a numerical simulation of the free shear layer phenomena. The
last section presents the conclusion of this work.

2. Formulation

In this study, the governing equations are the compressible, isentropic, bi-dimensional Navier-Stokes equa-
tions (Sandham and Reynolds, 1991; Eibler and Bestek, 1996). They consist of the momentum equations for
the velocity component (u,v) in the streamwise direction (z) and normal direction (y):
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and the continuity equation:
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where = and y is the Cartesian coordinates and ¢ is the time. The primitive variables (u, v, p and p) are the
velocity component in the x and y direction, the density and the pressure, respectively.
These equations were defined with the following non-dimensionalization scheme:

Ui = —» = = ) = ’ Ty = ’ 4
7 C* p pEk) p pg 0*2 5:)0 3 5:)0 ( )

where c* is the sound speed and pg is the mean flow density, J;, is the vorticity thickness of the initial velocity
given by:
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where the subscript 1 e 2 refers to the upper (y > 0) and lower (y < 0) free stream, respectively. The Reynolds
number of the flow is defined by:
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where p* is the dynamic viscosity.
In the actual stage, an isentropic flow hypothesis was adopted (Sullivan, 1981). Therefore, the equation of
the perfect gases combined with to the equation of energy can be written in the following way:
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where pj is the mean flow pressure and v = ¢, /¢, is the relation of the specific heat.
In the next section is presented the numerical methods and the boundary and initial conditions adopted in
this work. Details about compact and Runge-Kutta schemes are described bellow.

3. Numerical Method

This section presents the numerical method adopted for a time-developing free shear layer problem. In order
to solve the spatial derivatives, 6t order compact finite difference schemes was adopted. A periodic condition
in the x direction was setted. At the boundaries in the y direction a Neumann condition was adopted. The
objective of this work is to analyze the variation of the amplification rate of the disturbance. In the present work
the variables was decomposed in two parts: temporary mean and small disturbance. This way the primitive
variables can be written in the following way:

u(x,y,t) = U+ ’LL/, (8)
v(z,y,t) = vp+, (9)
p(x,y,t) = po+ pl- (10)

The mean flow is invariant in the longitudinal direction and that to normal component of mean velocity is
null. In other words, the mean flow is locally parallel. It was also assumed that the mean flow is steady along
the time and that the pressure gradients are negligible.

Tests with standing acoustic waves was carry out to verify the numerical code. The accuracy of this code was
performed by comparison with analytical solution. Finding analytical solutions of the Navier-Stokes equations
is not easy due to non-linearity. These difficulties may be overcome when small amplitudes disturbance are used.
Taking this into account, the equations can be linearized to obtain an analytical solution. This assumption is
consistent if the fluctuations are very small. Therefore, with an analytical solution it was possible to evaluate
the order of the numerical method. The analytical solutions of the standing acoustic waves adopted in this case
test was:
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The initial condition adopted for the numerical simulations was extracted of this analytical solution. In the
section 4, more details of test case is described.
These tests are the first stage for the free shear layer simulation. This problem develops from specified initial
conditions (Fortuné, 2000). Hyperbolic tangent mean profile was used:

Uy = <%> tanh(2y),

(17)

where U7 and Uj are the upper (y > 0) and the lower (y < 0) free stream. Along with the velocity profile the

disturbances were defined as:
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where A is the amplitude, « is the wavenumber and o is the spread of the disturbance in the y direction. The
subscript 1 refers to the dominant mode and subscript 2 refers to the subharmonic excitation. Uniform density
is assumed for the initial mean flow (p = 1.2256), so the mean pressure is obtained by the equation 7.

Bellow the discretization used in the streamwise and normal direction are present. The letter 7, j represents
the grid position in x and y direction, which varies from 0 to N, M respectively. In the x direction the 6'* order
implicit (compact) derivatives for 0 < i < N as follows:
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The schemes described bellow was used by Souza et al., 2002. At the boundaries a 5" order asymmetric
approximation was proposed, whereas for points near the boundaries a 6! order asymmetric approximation was
used. For the interior points, a 6" order symmetric approximation was adopted. This schemes was modified to
work with the free-slip boundary condition. The 6" order implicit (compact) derivatives with free-slip boundary
condition for 0 < i < M adopted was:
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Finally the 4" order Runge-Kutta scheme is presented. The discretized transport equations are used to
determine the values of the variables at each point of the computational domain at time ¢,,+1 = t,, + dt. The
schemes here described works in 4 steps, (Ferziger and Peric, 1997):
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The first two steps, Eq. 21 and 22 use a formulation of Euler "predictor" explicit and a formulation of Euler
"corrector" implicit for the same time ¢ + dt/2. The following step (23) is a "predictor" based on the rule of
the medium point for the whole step (¢ + dt) and the last (24), "corrector" is based on Simpson’s rule. The
combination of these steps results in a 4*" order accuracy algorithm.

The next section presents results of the test case with standing wave problem and results obtained with the
free shear layer problem.

4. Numerical Results

This section presents the results obtained with the numerical code. First, for verification of the method,
tests were carry out with stating acoustic wave problem and the results were compared with linear analytical
solution. After the free shear layer problem was simulated with one and two modes.

4.1. Analysis of the Numerical Error

This section presents an analysis of the spatial discretization error. The standing acoustic wave problem was
simulated. The analytical solution was obtained linearizing the adopted equations. Therefore the truncation
error of the spatial approximations was carried out analyzing the results obtained with mesh with different
sizes. In the numeric solution there are many source of errors: the modeling error, due to the linearity of the
equations; the discretization error introduced by the time advance algorithm (temporal error) and the spatial
discretization error. The temporal and spatial discretization error includes the round-off and truncation error.
In order to verify the order of the spatial approximations, one have to assure that the spatial round-off error,
together with the other errors are negligible.

In order to obtain the analytical solutions it is necessary to linearize the involved equations. Thus can give
error due to the non-linearity behavior of the Navier-Stokes equations. These equations implemented in the
numerical code includes the non-linear terms. During the simulations we had to assure that the magnitude of
these non linear terms was very small. To estimate the modeling error, simulations with the linear and non-
linear equations were carried out and the difference between the two solutions for several wave amplitudes were
calculated. Figure 1 shows that the modeling error increases with the wave amplitude. It can be concluded that
this error becomes negligible for amplitudes smaller than 10~8. Similar results were obtained for the density
and pressure.

In this analysis it was also required to work with a time step (d¢) much smaller than the distance between
two consecutive points in the z direction — (dz). According with this assumption the temporal discretization
error persist small in comparison with the spatial discretization error. For the tests the time step (dt) was 1075.

Finally the spatial discretization error is the combination of the round-off and truncation error. As shown
in Fig. 2 the truncation error increases with the distance between two consecutive points (dz), whereas the
round-off error decreases. It is difficult to estimate the values of the round-off error in relation to the truncation
error, but one can estimates where each error is more significant. Figure 3 shows the sum of the round-off and
truncation error called total error.

In the same way the predominance of the total error with the numeric solutions was estimated. Figure
4 shows the behavior of the maximum numerical error in function of the spatial discretization interval (dz).
In order to assure that the round-off error adopted was much smaller than the truncation error, the distance
between two consecutive points had values superior to 0.01.

To estimate the order of the spatial approximation schemes two different meshes were used, one with dx = 0.1
and the other with dz = 0.2. Mode details of the estimation of the order can be found in Souza, 2000. Figure 5,
6 and 7 presents the spatial approximation schemes for velocity component, density and pressure respectively.
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Figure 4: Numerical Total Error (round-off Error + Truncation Error)
In these figures, it can be observed that the schemes used to calculate the spatial derivatives produced results

with approximately 6" order of accuracy. It was not possible to estimate the order of the numerical schemes
with dz < 0.1, due to the predominance of the round-off error.
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4.2. Free Shear Layer

Here the numerical results with the free shear layer problem are presented. In the current stage of this
work it was carried out the analysis of the amplification rate in linear regime. The results were compared with
analytical linear result. In the non-linear regime, first, it was simulated a flow using a small disturbance of a
stipulated mode. In order to reproduce the secondary instability, it were selected small disturbances composed
by a dominant and a subharmonic mode.

The evolution of small disturbance in a free shear layer of the hyperbolic tangent profile was simulated. In
the y direction, a free-slip boundary condition was adopted. In the x direction a periodic boundary condition
was used. An important aspect to the considered in these simulations is the treatment of the vertical diffusion.
This diffusion increases the width of the free shear layer during the simulation, which implies in a variation
of the mean flow. Thus, there should be a variation of the amplification rate, even in the linear regime. The
strategy adopted here, to avoid this diffusion, was to cancel the vertical diffusions terms.



The wavenumber of the disturbance used in the simulation was o = 7/8 & 0.39, the initial disturbance
amplitude was 1076, the Reynolds number was 400, and the Mach number was 0.4. Sandham and Reynolds,
1991 shows the amplification rate for a inviscid flow at Mach number 0.4 is approximately 0.3. Figure 8 shows
the numerical solution obtained in this work.
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Figure 8: Amplitude Evolution

Figure 9 shows the sequence of the evolution of disturbances in time of a free shear layer flow. The boundary
conditions were the same of the linear tests. The disturbance was composed by only one mode with wavenumber
a = 7/8 .The amplitude of this mode was 10~2. Tt can be observed that the disturbance thickness increases
until the limit cycle oscillation. Figure 10 shows the evolution in time of the disturbance composed by two
modes: oy = 7/8 and az = a1 /2 = 7/4 (subharmonic mode). The amplitude of the dominant mode was 1073,
while the amplitude of the subharmonic mode was 10~%. The secondary instability can be observed in these

frames with the expected pairing of the vortices.
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Figure 9: The linear and non-linear evolution of disturbance (v) composed of only mode.



C—— e - -

Figure 10: The linear and non-linear evolution of disturbance (v') composed of dominant mode and a subhar-
monic mode.

5. Conclusions

In this work numerical simulation of a standing acoustic waves was performed. The mathematical model
was the Navier-Stokes equations for a isentropic one-dimensional flow. This problem was selected with the
objective of estimate the order of the spatial approximations for the derivatives. The results were very good
and the order obtained with this analysis was 6'”. This test case was very important tool for the verification
of the computational code. This test was the first step of a research that aims the simulations of transitional
compressible flows. The shear layer compressible flow was simulated giving some interesting results. In the
linear regime was possible to obtain an good amplification rate in agreement with another works. The secondary
instability also was simulated. The results for all cases with the free shear layer problem were good. Future
works will present more detailed analysis of this phenomena.
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