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Resumo. O monitoramento de máquinas rotativas tem sido amplamente utilizado nos últimos anos 
como forma de prevenir falhas e paradas inesperadas durante a operação. Um eixo rotativo 
flexível suportado em mancais anisotrópicos pode ser submetido, em certas velocidades de rotação, 
a níveis elevados de tensão, possibilitando o surgimento e propagação de trincas por fadiga. Neste 
trabalho, utiliza-se um modelo de trinca transversal para simular o comportamento vibratório de 
um rotor Jeffcott, quando este é acelerado a partir do repouso e passa por suas primeiras 
velocidades críticas. As características da resposta do sistema rotativo são analisadas através de 
uma distribuição tempo-freqüência (TF) direcional, uma vez que este tipo de ferramenta 
proporciona uma melhor compreensão do comportamento espectral variante no tempo. Os 
resultados do rotor contendo uma trinca são comparados aos resultados do rotor sem trinca, 
confirmando que as distribuições tempo-freqüência podem ser utilizadas como uma ferramenta na 
detecção de trincas. 
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1. INTRODUÇÃO 
 
 Nos últimos anos, o comportamento vibracional de rotores trincados tem sido estudado mais 
extensivamente. Máquinas rotativas operando a altas velocidades encontram-se submetidas à fadiga 
e a altos níveis de tensão no eixo devido às cargas cíclicas atuantes. No intuito de prevenir falhas 
repentinas e indesejadas, um sistema eficiente de monitoramento das condições operacionais do 
rotor é necessário para detectar prematuramente o surgimento ou propagação de uma trinca. Desta 
maneira, um modelo de trinca bem elaborado deve proporcionar, com boa aproximação, o 
comportamento dinâmico de um sistema rotativo contendo este defeito. 
 Gasch (1993) propôs um modelo de trinca transversal ao eixo de um rotor de Laval (um disco 
localizado na posição central de um eixo considerado sem massa), suportado por mancais rígidos 
(isotrópicos). Uma vez que a estabilidade do sistema é garantida, o modelo pode ser considerado 
linear, e a trinca passa a atuar como uma fonte de excitação do sistema. A resposta analítica do 
sistema mostra o surgimento de componentes sub-harmônicas em 1/2 e 1/3 da velocidade crítica do 
rotor. 
 



 Sekhar e Prabhu (1998), considerando o trabalho de Gasch (1993), analisaram a resposta do 
rotor de Laval submetido à aceleração. A resposta do sistema passando por sua velocidade crítica 
confirmou alguns resultados anteriores propostos por Gasch (1993), que indica que componentes 
sub-harmônicas em 1/2 e 1/3 da velocidade crítica são excitadas. Verificou-se também que o 
aumento da profundidade da trinca aumenta a amplitude das componentes sub-harmônicas. 
 Zou e Chen utilizaram as características tempo-freqüência da distribuição de Wigner e da 
transformada de Wavelets para identificar trincas num sistema rotativo. A sensibilidade destas 
transformadas às variações de rigidez e desbalanceamento do sistema, na presença da trinca, foi 
investigada. 
 Muitos trabalhos têm usado técnicas diferentes para caracterizar e detectar trincas em sistemas 
rotativos. Chan e Lai (1995) compararam a resposta de um rotor com trinca à de um rotor com o 
eixo assimétrico, a também discutiram a influência da profundidade da trinca, do fator de 
amortecimento e da posição do desbalanceamento em relação à trinca na resposta do sistema. 
Sekhar (2004) utilizou o método dos elementos finitos para modelar o rotor, e a trinca foi 
introduzida considerando-se a flexibilidade local do eixo, na posição da trinca. Imam et al (1989) 
desenvolveram uma técnica de monitoramento e detecção de trincas, e mostraram que, com o 
aumento da profundidade da trinca, a amplitude da componente em 1/2X da velocidade crítica 
aumenta numa proporção maior que as componentes em 1X e 1/3X. Darpe et al (2004) analisaram a 
resposta transiente de um rotor com trinca no eixo, utilizando três modelos numéricos e dados 
experimentais. Foram verificados os comportamentos de abertura e fechamento da trinca e as 
influências da orientação e excentricidade do desbalanceamento, além da quantidade de 
amortecimento no sistema. 
 Alguns estudos (Dias Jr e Allemang, 2001; Miranda et al, 2002) mostram que características 
constitutivas de sistemas rotativos flexíveis, tais como anisotropia nos mancais e distribuição 
espacial do desbalanceamento, podem levar a movimentos catastróficos do eixo. Este é o caso do 
movimento de precessão retrógrada, em que os movimentos de translação e rotação própria do eixo 
ocorrem em sentido contrário, induzindo tensões alternadas em determinada posição do eixo. 
 Neste trabalho, o comportamento dinâmico simulado de um rotor Jeffcott é investigado, 
considerando-se a presença de uma trinca transversal no eixo. A trinca é modelada segundo seu 
comportamento de abertura e fechamento (breathing), similar ao de uma “dobradiça” (hinge model; 
Gasch, 1993). Os suportes são considerados anisotrópicos e a resposta do sistema é obtida quando o 
rotor é acelerado passando por suas primeiras velocidades críticas. A distribuição tempo-freqüência 
direcional é então utilizada para analisar o comportamento do sistema, e as formas orbitais em 
condições estacionárias são mostradas. Os resultados do rotor com trinca são comparados aos do 
rotor sem trinca, sugerindo que as distribuições tempo-freqüência podem ser utilizadas como uma 
ferramenta na detecção de trincas. 
 
2. EQUAÇÕES DE MOVIMENTO 
 
 As equações de movimento do sistema ilustrado na Fig. (1) podem ser escritas, no sistema de 
coordenadas inerciais e considerando aceleração angular, como: 
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( ) U0 P                P        U     U,K      U      C        U       M     +=++ t&&& , (2)
 
em que M e C são as matrizes diagonais de massa e amortecimento, K(U,t) é a matriz de rigidez 
variante no tempo devido à trinca, U é o vetor de deslocamentos do centro do eixo, ε é a 
excentricidade do desbalanceamento, e β é o ângulo entre a excentricidade e a trinca. θ(t) é o 
deslocamento angular, e a trinca está localizada próxima ao disco, na posição central do eixo. 
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Figura 1. (a) Esquema do rotor Jeffcott e (b) sistemas de coordenadas utilizadas. 
 
 A presença da trinca torna a rigidez dependente do tempo e do deslocamento, de tal forma que 
esta pode ser escrita como: 
 

( ) ( tt U,KK  U,K 0 ∆+= ) , (3)
 
em que K0 é a matriz de rigidez do rotor sem trinca, e ∆K(U,t) é a matriz de rigidez adicional 
devido à trinca. 
 O sistema da Eq. (2) apresenta duas componentes de excitação: a força gravitacional e o 
desbalanceamento. A primeira é responsável por uma deflexão estática, U0, e a última proporciona 
o comportamento vibratório do sistema, ∆U(t), de tal maneira que a resposta total do sistema pode 
ser expressa da seguinte forma: 
 

( ) ( )tt UU  U 0 ∆+= . (4)
 
 A deflexão estática, U0, pode ser escrita como 
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e as derivadas do deslocamento são, de acordo com a Eq. (4), 
 

( ) ( ) ( ) ( )tttt U  U    U  U &&&&&& ∆=⇒∆= . (6)
 
 Substituindo as Eqs. (3), (4), (5) e (6) na Eq. (2), 
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em que o termo ∆K(U,t)∆U(t) pode ser desprezado, uma vez que é considerado pequeno e de 
segunda ordem, garantindo a estabilidade do sistema (Gasch, 1993). A equação de movimento se 
torna então, 
 

( ) ( ) ( ) ( ) U00 PU U,KU KU DU M +∆−=∆+∆+∆ tttt &&& . (8)
 
 Esta equação mostra que, se a estabilidade é assegurada, o sistema pode ser considerado linear, 
submetido a duas condições forçadas: uma devida à trinca, e outra ao desbalanceamento. O passo 
seguinte consiste em compreender as implicações do modelo de trinca utilizado sobre a rigidez do 
eixo. 
 



3. MODELO DA TRINCA 
 
 O modelo “dobradiça” (Gasch, 1993) é valido para trincas rasas, em que sua profundidade não 
ultrapassa metade do diâmetro do eixo. Neste modelo, a força gravitacional é dominante, de forma 
que a trinca abre e fecha sucessivamente durante o giro do eixo, conforme mostra a Fig. (2). 
 

 
Figura 2. Comportamento de abertura e fechamento da trinca (modelo “dobradiça”). 

 
 A função descreve matematicamente o comportamento de “respiração” para pequenas trincas, e 
em geral, depende da posição do centro do eixo em relação à coordenada rotativa, Zζ. Esta função 
pode ser definida como 
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 Uma expansão trigonométrica em série de Fourier da função f(t) permite que esta seja expressa 
da seguinte maneira: 
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4. MATRIZ DE RIGIDEZ 
 
 De acordo com a Eq. (8), é necessário conhecer a matriz de rigidez adicional para calcular a 
excitação do sistema. Para se obter a matriz de rigidez, Eq. (3), faz-se uso da formulação da matriz 
de flexibilidade. Para o sistema a ser analisado, esta matriz é considerada nas coordenadas rotativas 
e está desacoplada nas duas direções, ζ e η. Assim, a matriz de flexibilidade, Hrot, do eixo com a 
trinca totalmente aberta é expressa como se segue, considerando suportes isotrópicos (Gasch, 1993): 
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em que h0 é a flexibilidade do eixo sem trinca, ∆hζ,max é a flexibilidade adicional correspondente à 
trinca totalmente aberta, fζ e fη são as forças atuando no eixo. A Eq. (11) pode ser reescrita, 
chegando-se à matriz de rigidez do eixo, Krot, em coordenadas rotacionais (Gasch, 1993): 
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em que ∆kζ, é a rigidez adicional do eixo, que já inclui parâmetros geométricos como profundidade 
e posição da trinca no eixo. De acordo com a Fig. (1), uma matriz de transformação pode ser 
introduzida, relacionando as coordenadas rotativas às inerciais como se segue: 
 

( ) ( )
( ) ( ) 
















−

=








Y
Z

θθ
θθ

Y
Z

η

ζ

cossin
sincos

 (15)

U             T               U  rot = . (16)
 
 Substituindo a Eq. (16) na Eq. (14), e pré-multiplicando por TT, chega-se à matriz de rigidez 
variante no tempo: 
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em que a matriz de rigidez do rotor sem defeito já leva em consideração a anisotropia nos suportes. 
Substituindo a Eq. (17) na Eq. (8), tem-se a equação final de movimento do rotor Jeffcott contendo 
uma trinca, e suportado em mancais anisotrópicos: 
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5. DIRECIONALIDADE 
 
 A direcionalidade do movimento de um rotor em relação à rotação do eixo geralmente pode ser 
relacionada a um sinal complexo calculado a partir das respostas do sistema em direções ortogonais: 
 

( ) ( ) ( )tZjtYtP  += . (19)
 
 Este sinal complexo corresponde a um vetor girante tomado a partir da origem até o centro do 
eixo, e descreve o movimento orbital do mesmo. Pode-se escrever este sinal na forma polar, a partir 
de uma expansão trigonométrica em série de Fourier dos sinais Y(t) e Z(t) (Han e Lee, 1998), 
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de modo que pode-se evidenciar suas componentes direta e retrógrada. A amplitude relativa entre 
estas componentes define se o movimento de uma posição específica do rotor é de precessão direta 
(translação no mesmo sentido de rotação do eixo) ou retrógrada (translação no sentido contrário ao 
de rotação do eixo), e se a forma orbital é circular, elíptica ou retilínea: 

• |rb(t)| = 0  Movimento circular, precessão direta; 
• |rf(t)| > |rb(t)|  Movimento elíptico, precessão direta; 
• |rf(t)| = |rb(t)|  Movimento retilíneo; 
• |rf(t)| < |rb(t)|  Movimento elíptico, precessão retrógrada; 
• |rf(t)| = 0  Movimento circular, precessão retrógrada. 



6. DISTRIBUIÇÕES TEMPO-FREQÜÊNCIA 
 
 Existem vários tipos de distribuição capazes de transformar a energia de um sinal no domínio do 
tempo para o domínio tempo-freqüência. A maioria delas pertence a um grupo geral, a classe de 
Cohen, que apresenta algumas propriedades e características peculiares. Neste trabalho, apenas uma 
breve discussão a respeito destas características é apresentada, uma vez que as distribuições tempo-
freqüência têm sido discutidas na literatura (Cohen, 1995, Hammond e White, 1996; Han e Lee, 
1998; Miranda et al, 2002). A distribuição de Wigner, utilizada neste estudo, pertence à classe de 
Cohen e é uma das mais comumente utilizadas. Esta distribuição, quando aplicada a sinais que 
apresentam direcionalidade, é chamada distribuição de Wigner direcional (dWD) e foi introduzida 
por Han e Lee (1998). Miranda et al (2002) utilizaram esta ferramenta para identificar movimentos 
simultâneos de precessão direta e retrógrada em diferentes pontos de um rotor flexível anisotrópico. 
 Considerando o sinal complexo, P(t), e sua transformada de Hilbert, , pode-se 
definir os sinais analíticos de precessão direta e retrógrada, p

( ) ( )[ tPHtP =ˆ ]
f(t) e pb(t), como (Han e Lee, 1998): 
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 A distribuição de Wigner pode ser então escrita como (Han e Lee, 1998) 
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em que a barra sobrescrita indica o complexo conjugado. 
 
7. RESULTADOS NUMÉRICOS 
 
7.1. Identificação da trinca 
 
 O comportamento dinâmico de um rotor Jeffcott contendo uma trinca transversal em seu eixo é 
investigado sob condições não-estacionárias. O sistema da Fig. (1) é analisado numericamente com 
os seguintes parâmetros: m=50 kg, c=2000 Ns/m, k0,Y=1x106 N/m, k0,Z=2x106 N/m, ∆kζ=5%, 
ε=1x10-6 m, β=0 rad. O sistema é sujeito a uma aceleração angular constante de aproximadamente 
26,2 rad/s2, em que a velocidade de rotação do rotor varia de 0 a 2500 rpm em 10 segundos. Os 
sinais da resposta nos eixos y e z, e da amplitude do centro do eixo, P(t), são mostrados na Fig. (3). 
 Pode-se perceber que o rotor sem trinca apresenta duas velocidades críticas, devido à anisotropia 
nos suportes nas direções horizontal e vertical. A Figura (3a) mostra que quando o sistema atinge a 
primeira velocidade crítica, em aproximadamente 5,5 segundos, a amplitude da resposta é de cerca 
de 4µm, enquanto a amplitude na segunda crítica atinge 5µm em aproximadamente 7,8 segundos. Já 
a Fig. (3b) indica claramente a presença de componentes antes inexistentes no sinal temporal. 
Embora as velocidades críticas nas duas direções ocorram aproximadamente nos mesmos instantes, 
percebe-se que suas amplitudes aumentaram consideravelmente para cerca de 25µm e 35µm, 
respectivamente. A Figura (4) ilustra o plano tempo-freqüência de cada um dos sinais não-
estacionários de resposta do rotor: eixo sem trinca e eixo com trinca. 
 Os mapas tempo-freqüência mostram que o rotor contendo a trinca apresenta componentes 
harmônicas em 1X, 2X e 3X a velocidade de rotação, tanto nas componentes diretas (freqüências 
positivas nos gráficos), quanto nas componentes retrógradas (freqüências negativas). Estas 



harmônicas excitam o sistema quando o rotor atinge, respectivamente, 1X, 1/2X e 1/3X as 
velocidades críticas, nas duas direções, confirmando os resultados propostos por Gasch (1993). 
 

(a) (b) 

Figura 3. Resposta temporal do rotor acelerando através das velocidades críticas: (a) eixo sem 
trinca, (b) eixo com trinca (β=0 rad, ∆kζ=5%). 

 
 Os gráficos das distribuições tempo-freqüência também podem ser utilizados para se ter uma 
idéia da direcionalidade da órbita do rotor (Han e Lee, 1998; Miranda et al, 2002). Para isso, a 
distribuição de energia nas freqüências positivas e negativas devem ser comparadas no instante 
desejado. Se a magnitude da distribuição na componente de freqüência positiva for maior que a da 
componente negativa, então o movimento é de precessão direta. Caso contrário, o movimento é de 
precessão retrógrada. 
 Para o caso do rotor sem trinca, Fig. (4a), pode-se perceber que as velocidades críticas ocorrem 
em aproximadamente 1350rpm (22,5Hz) e 1910rpm (31,8Hz). Entre as duas críticas, a componente 
em freqüências negativas se mostra mais acentuada que a componente em freqüências positivas, o 
que indica um movimento de precessão retrógrada. Nos outros intervalos (antes da primeira crítica e 
após a segunda), a componente nas freqüências positivas possui amplitudes maiores que a das 
freqüências negativas, sugerindo o movimento de precessão direta. Para o caso do rotor contendo a 
trinca, Fig. (4b), existem múltiplas harmônicas, o que impossibilita uma análise direcional adequada 
através dos mapas tempo-freqüência da Fig. (4b). Entretanto, é possível realizar uma análise orbital, 
juntamente com o gráfico tempo-freqüência, do rotor operando a uma velocidade de rotação 
constante, como mostra a Figura (5). 
 Considerando a Fig. (4b), foram escolhidas três freqüências para análise orbital (e direcional, 
quando possível) em rotação constante. A Figura (5a) mostra a órbita do rotor e o plano tempo-
freqüência do sinal do rotor a uma velocidade de 480rpm (8Hz). O mapa tempo-freqüência mostra a 
presença de componentes harmônicas em 1X, 2X e 3X a rotação nas freqüências positivas, e em 2X 
e 3X a rotação nas freqüências negativas. Mesmo se for feita uma comparação entre amplitudes das 
componentes correspondentes, nas freqüências positivas e negativas, não é possível especular a 
respeito da direcionalidade da órbita, como mostra o gráfico. Quando a velocidade de rotação é de 
750rpm (12,5Hz), o gráfico tempo-freqüência, Fig. (5b), mostra a componente em -2X a rotação 
mais acentuada que a componente em 2Xrpm, nas freqüências positivas. Além disso, observa-se 
que o mapa orbital mostra um movimento em precessão retrógrada, seguido de precessão direta, em 
uma revolução do eixo. Finalmente, a Fig. (5c) ilustra a presença apenas da componente em 1X a 
rotação (1650rpm). Neste caso, é possível assegurar que, como o mapa tempo-freqüência apresenta 
a componente em freqüências negativas com amplitude maior que a componente em freqüências 
positivas, o movimento é elíptico e retrógrado. O gráfico da órbita mostra que o movimento se dá 
em sentido anti-horário. 



 

(a) (b) 

Figura 4. Distribuição tempo-freqüência da resposta do rotor acelerando através de suas velocidades 
críticas: (a) eixo sem trinca, (b) eixo com trinca (β=0 rad, ∆kζ=5%). 
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7.2. Variação do ângulo de orientação do desbalanceamento, β 
 
 Nesta seção, será analisada a influência do ângulo de orientação do desbalanceamento em 
relação à trinca, β,além da sensibilidade das distribuições tempo-freqüência à modificação destes 
valores. A Figura (6) mostra o sinal de resposta do sistema, nos domínios do tempo e tempo-
freqüência, quando β assume valores iguais a π/2 e π rad. Tomando-se o sinal da Fig. (3b) como 
referência, pode-se perceber que, para β = π/2 rad e β = π rad, as amplitudes de vibração da 
componente principal são menos severas que no caso em que β = 0 rad, quando o desbalanceamento 
encontra-se na mesma direção da trinca. Os mapas tempo-freqüência também indicam que as 
componentes sub-críticas, em 1/3X e 1/2X a velocidade crítica, encontram-se mais acentuadas que 
no caso de β = 0 rad. Estes resultados confirmam alguns dados fornecidos na literatura (Gasch, 
1993; Darpe et al, 2004). 
 
8. CONCLUSÕES 
 
 A análise numérica do comportamento vibracional de um rotor Jeffcott contendo uma trinca 
transversal no eixo proporciona uma interpretação satisfatória da resposta do sistema operando em 
condições não estacionárias. A distribuição tempo-freqüência direcional mostrou ser uma 
ferramenta adequada para detecção de trincas, uma vez que é evidenciado o comportamento 
espectral do sistema variante no tempo. Algumas de suas vantagens podem ser listadas a seguir: 

• É possível obter uma interpretação compreensiva do comportamento dinâmico da resposta do 
rotor trincado em aceleração. A Figura (4) mostra a identificação de componentes harmônicos 
em 1X, 2X e 3X a velocidade de rotação, e também as freqüências que são excitadas por estas 
componentes (1X, 1/2X e 1/3X a velocidade crítica, respectivamente). 

• A distribuição tempo-freqüência pode se mostrar útil também na análise a velocidade de 
rotação constante, para se identificar a direcionalidade do movimento do eixo. 

• É possível perceber a influência da variação do ângulo β na amplitude de vibração do sistema 
operando na velocidade crítica e suas sub-componentes. 

 Vale ressaltar que alguns dos resultados obtidos utilizando as distribuições tempo-freqüência 
confirmam estudos anteriores de Gasch (1993), Sekhar e Prabhu (1998) e Darpe et al (2004). 
 



 

 
(a) (b) (c) 

Figura 5. Distribuições tempo-freqüência e órbitas em velocidade de rotação constante: (a) 480rpm, 
(b) 750rpm, (c) 1650rpm. 
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Figura 6. Variação do ângulo de orientação do desbalanceamento: (a) β = π/2rad, (b) β = π rad. 
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Abstract. Monitoring of rotating machinery vibration has been widely used as a tool to prevent 
sudden malfunctions during operation. A flexible shaft supported on anisotropic bearings is 
subjected, under certain rotational speeds, to high levels of stress, providing possible fatigue 
failures due to crack growth in such element. In this study, the hinge model of a breathing crack is 
used, once it provides a comprehensive approximation of the vibrational behavior of this system. 
The characteristics of a cracked Jeffcott rotor are obtained when it is accelerated through its 
critical speeds. The time-frequency (TF) features are analyzed, once this tool provides a better 
understanding of time-varying spectral behavior. The results of the cracked rotor response are 
compared to the results of the uncracked rotor. 
 
Keywords: breathing crack, rotor vibration, anisotropic support, time-frequency. 


