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Resumo. A manutenção preditiva tem como premissa básica o acompanhamento da
condição/integridade mecânica das máquinas rotativas através da avaliação das características de
diversos tipos de parâmetros, sendo a vibração o mais utilizado. Este trabalho apresenta uma
aplicação de redes neurais na identificação de defeitos mecânicos em turbomáquinas através da
avaliação da assinatura espectral de vibrações, nas direções radial e axial. Visto que a assinatura
espectral possui um grande número de ordenadas, foi considerada a sua subdivisão em faixas
previamente selecionadas e calculada a vibração média em cada uma destas faixas. Na fase inicial
do trabalho, foram selecionados nove defeitos típicos que podem ocorrer neste tipo de máquina,
sendo os dados para treinamento gerados a partir de variações aleatórias no entorno de padrões
típicos encontrados na literatura. Foram utilizadas três tipos de rede: MLP (Multi Layer
Perceptron), MLP com entrada de dados tipo fuzzy e SOM (Self Organizing Map).  Os resultados
demonstram a capacidade dos diversos tipos de rede realizarem a identificação dos defeitos,
destacando-se a MLP com dados de entrada tipo fuzzy, que apresenta o melhor desempenho.
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1. INTRODUÇÃO

A avaliação da condição pela assinatura da máquina utiliza o espectro de vibração, com as suas
componentes de freqüência, para cada ponto de medição escolhido, consistindo em um gráfico tipo
nível de vibração x freqüência. O acompanhamento do estado mecânico de uma máquina é obtido
pela comparação do espectro de vibração em um determinado instante com um espectro de
referência, normalmente obtido com a máquina nova ou recém saída de uma revisão geral,
denominado espectro de referência da condição mecânica, conforme Mitchel (1993).

O diagnóstico por vibração tem como objetivo detectar um problema mecânico e a sua origem, a
partir de um quadro de sintomas determinado pelas características da vibração. A análise por
assinatura de vibração é um dos métodos mais aplicados atualmente na identificação de falhas. A
sua premissa básica é de que existem certas características espectrais que, em termos gerais
identificam determinados tipos de defeitos, de acordo com Rezende (1991). Esta técnica tem se
constituído em uma metodologia de grande valia para a manutenção preditiva de máquinas



rotativas. Atualmente, um passo essencial para a manutenção preditiva é o aperfeiçoamento e a
automação da capacidade de interpretação dos dados de vibração, representando um vasto campo
para aplicação das técnicas de inteligência artificial, principalmente redes neurais e sistemas fuzzy,
conforme proposto por (Boyce et all, 1998, Parikh et all, 1999, Sohn et all, 2000, He et all, 2001,
Hoffman et all, 2001, MaLauchlan et all, 2001 e Balazinski et all, 2002).

As redes neurais artificiais surgiram a partir de modelos biológicos, na tentativa de simular o
modo de processamento do cérebro humano. Essa técnica possui a capacidade de extrair relações ou
adquirir 'conhecimento' a partir de uma massa de dados coletada. Para isso, a rede passa por uma
fase de treinamento, onde são utilizados os chamados algorítmos de aprendizado, descritos por
Haykin (1994). A teoria dos conjuntos fuzzy surgiu com o objetivo de processar incertezas inerentes
a maioria dos problemas práticos. São as chamadas incertezas lingüísticas. Os conjuntos fuzzy
podem ser aplicados de diversas maneiras, associados às redes neurais, possibilitando, em muitos
casos, um melhor desempenho na classificaçào dos defeitos, conforme (Cox, 1998 e Uhrig, 1993).

Este trabalho busca demonstrar a capacidade de aprendizado das redes neurais na interpretação
das assinaturas de vibração de turbomáquinas, através da utilização de três tipos de topologia:
- uma rede do tipo Multilayer Perceptron (MLP);
- um sistema híbrido, utilizando uma MLP com dados de entrada tipo fuzzy.
- uma rede do tipo Self-Organizing Map (SOM);

2  VIBRAÇÃO EM TURBOMÁQUINAS

De maneira geral, são consideradas turbomáquinas os equipamentos acionados por turbinas e
que funcionam em regime de alta rotação. São, geralmente, de grande porte e elevado grau de
importância nos processos produtivos. Estão neste grupo as turbinas a vapor e a gás, os
compressores centrífugos e axiais e turbogeradores. Estas máquinas estão presentes, entre outros,
em indústrias petroquímicas e plataformas de petróleo.

Através da vibração é possível a detecção e identificação de uma série de problemas de origem
mecânica ou dinâmica da máquina. Podem ser destacados os seguintes problemas:
desbalanceamento, desalinhamento (pré-carga), instabilidade de filme de óleo (oil whirl),
instabilidade de atrito (friction whirl), roçamento, problemas de mancal, problemas de acoplamento
e carcaça ou suporte frouxos, conforme (Mobley, 1990 e Barron, 1996).

As faixas de freqüência consideradas como de interesse para a discriminação dos defeitos
relacionados são as seguintes: 0~40% da Freqüência de Rotação (FR), 40-55% da FR, 55~90% da
FR, 90~110% da FR (1xFR),  190~210% da FR (2xFR) e 290~310%+390~410%+490~510% da
FR (nxRF). Geralmente, as turbomáquinas operam em uma faixa constante de rotação.

Existem diversas formas de processar os sinais de vibração que poderiam auxiliar na obtenção
de um diagnóstico mais seguro. Alguns trabalhos atuais sugerem a compressão de dados a partir do
histórico temporal e espectral da máquina, utilizando algorítmos de extração de características
como, por exemplo, a Análise de Componentes Principais ou Algorítmos Autoregressivos, descritos
em (Dron, 1998 e Pusey, 1999). Esses algorítmos reduzem a dimensão do vetor de entrada da rede
minimizando a perda de informações importantes.

No presente trabalho, as variáveis para entrada das redes neurais para classificação de defeitos
serão oito, divididas da seguinte forma:
- 6 (seis) entradas relacionadas às faixas de freqüência do espectro;
- 2 (duas) entradas correspondentes à quantificação da vibração nas direções radial e axial.

Para o treinamento do classificador neural, necessitamos de um conjunto de dados onde o tipo
de padrão já esteja correlacionado com o defeito. No diagnóstico por vibração, esses dados devem
ser obtidos a partir de situações que melhor representam o real comportamento dos diversos tipos de
equipamentos. Dados de campo são geralmente escassos, o que sugere a utilização de dados
artificialmente criados a partir de Modelos de Elementos Finitos e de Simuladores de Falhas,
conforme Edwards (1998). No presente trabalho, optou-se pela geração dos dados de treinamento a



partir de variações no entorno das distribuições espectrais características dos defeitos escolhidos.
Tal opção é baseada nos seguintes argumentos:
- as distribuições espectrais características das falhas representam anos de experiência de técnicos e
engenheiros e devem ser levadas em conta mesmo em sistemas de classificação mais apurados;
- o espectro típico (padrão) de um defeito, como o próprio nome diz, representa o espectro mais
comum, por isso, mais provável em uma larga gama de espectros que um defeito pode apresentar;
- a geração de um conjunto de dados tendo como base variações aleatórias com relação a cada
padrão médio é uma forma de gerar os conjuntos de dados para o treinamento da rede neural, de
modo que o classificador adquira a robustez necessária para a realização eficiente da sua função.

A Tabela (1) apresenta os defeitos com seus respectivos padrões, nas faixas de freqüência de
interesse, e a relação de vibração nas direções axial e radial, após reescalonados, sendo
considerados desbalanceamento(1), roçamento(2), desalinhamento angular(3), desalinhamento
paralelo(4), mancal (5), mancal ou suporte frouxos(6), acoplamento(7), whirl por atrito(8) e whirl
por óleo(9), fundação(10), rotor(11) e selagem(12). As oito informações de entrada para o
classificador compõem o vetor-padrão do defeito. Estes dados foram extraídos de Mitchel (1993).

Tabela 1. Padrão médio dos defeitos considerados

Defeito 0-40 40-55 55-90 1xRF 2xRF NxRFr Radial Axial
1 0 0 0 0,9 0,05 0,05 0.9 0.1
2 0,11 0,22 0,11 0,22 0,11 0,22 0.7 0.3
3 0 0 0 0,4 0,5 0,1 0.4 0.6
4 0 0 0 0,4 0,5 0,1 0.6 0.4
5 0,09 0,06 0,05 0,3 0,2 0,3 0.7 0.3
6 0,6 0,4 0 0 0 0 0.9 0.1
7 0,1 0,2 0,1 0,2 0,3 0,1 0.7 0.3
8 0,8 0,1 0,1 0 0 0 0.9 0.1
9 0 0,7 0 0,3 0 0 0.9 0.1
10 0 0,2 0 0,5 0,2 0,1 `0,9 0,1
11 0,4 0,4 0,1 0 0 0,1 0,9 0,1
12 0,13 0,13 0,14 0,3 0,15 0,15 0,7 0,3

3. GERAÇÃO DOS CONJUNTOS DE TREINAMENTO

Os dados foram gerados a partir de variações aleatórias nos componentes dos vetores-padrões
dos diferentes defeitos. Pelo gráfico da Fig. (1) podemos notar que a inserção de um ruído aleatório
gera variações em torno do vetor-padrão até que ele começa a ser desfigurado, perdendo a
capacidade de caracterizar o defeito. Como os dados gerados devem se aproximar da melhor forma
possível os dados experimentais, o ruído obedece ao critério de variação do vetor-padrão em todas
as suas componentes, considerando o peso de cada componente, conforme Adejoro (2004).
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Figura 1. Variação do padrão de desbalanceamento



O procedimento de inserção de ruído nos padrões dos defeitos foi feito, basicamente, pela
adição de um vetor de números aleatórios. Sabendo-se que as seis primeiras componentes dos
padrões correspondentes à relação de componentes em freqüência que possui somatório unitário, a
definição do nível de ruído inserido foi feita simplesmente pelo somatório das componentes do
vetor-ruído. Por exemplo, 20% de ruído significa que foi inserido um vetor aleatório, cujo o
somatório de componentes foi de 0.2. Este mesmo procedimento foi adotado para as duas últimas
componentes de um vetor-padrão, pois os ruídos foram inseridos de forma independente nos dois
casos. Para o treinamento dos diferentes classificadores neurais foram gerados 600 exemplos, sendo
50 exemplos para cada defeito. Para o conjunto de teste foram gerados 360 exemplos distribuídos
em quantidades iguais entre os padrões. O conjunto de avaliação (conjunto utilizado para avaliação
do desempenho  dos classificadores em fase pós-treinamento), foi criado a partir da geração de 30
exemplos para cada padrão de defeito, de acordo com Adejoro (2004).

Durante o processo de avaliação preliminar, para efeito de comparação entre as configurações
de rede adotadas, foi calculado o erro de classificação sobre todo o conjunto de avaliação para cada
configuração considerada. Esse erro foi obtido a partir da Eq. (1) indicada a seguir:
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onde: Desejadaij = resposta desejada para o exemplo i com relação à classe j;
          Redeij = resposta da rede para o exemplo i com relação à classe j;

4.  DESEMPENHO DAS REDES NEURAIS

Após uma série de avaliações, a configuração escolhida para o classificador MLP, com oito
parâmetros de entrada, foi a seguinte: 15 x 15 neurônios intermediários e 12 neurônios na saída.

No caso da rede fuzzy-MLP, para cada componente do vetor de entrada (por exemplo 1xRF),
foram criadas 5 funções de pertinência, de formato triangular, representando cinco conjuntos
lingüísticos possíveis (("MuitoAlta", "Alta", "Média", "Baixa", "MuitoBaixa"). Com isso, o número
de entradas da rede passa de 8 para 40 (5x8). Esse procedimento processa a informação de modo a
reduzir a importância das pequenas variações para o classificador. Após uma série de avaliações, a
configuração escolhida para o classificador fuzzy-MLP, com oito parâmetros de entrada, foi a
seguinte: 50 x 50 neurônios intermediários e 12 neurônios na saída.

No caso da rede SOM, os parâmetros de treinamento foram especificados a partir de uma série
de avaliações práticas e são os seguintes: 20 x 20 x 20 neurônios.

5. RESULTADOS

Os resultados estão apresentados sob forma gráfica, tendo sido utilizados 30 vetores de
avaliação para cada um dos defeitos considerados. Para a interpretação dos gráficos, deve se
considerar que caso todas as classificações fossem perfeitas, os círculos referentes a cada um dos
defeitos teriam todos a mesma cor. Por exemplo, caso todos os casos de desbalanceamento fossem
perfeitamente classificados, os 30 círculos seriam vermelhos. No caso de um círculo possuir uma
parte da cor de outra classe, a relação entre as áreas é proporcional ao acerto na classificação.

5.1 Rede MLP

Na Figura (2) estão apresentados os resultados iniciais obtidos para a rede MLP, com topologia
8x15x15x12. Podemos observar, neste gráfico, que a rede não conseguiu uma separação adequada
para as classes "desalinhamento angular" e "desalinhamento paralelo", no total de 6 classificações
erradas em um total de 180 dados de entrada do conjunto de avaliação (erro=3.4%).



Figura 2.  Rede MLP /resultado final /conjunto de avaliação

5.2 Rede fuzzy-MLP

Na Figura (3) estão apresentados os resultados para a rede fuzzy-MLP, com topologia
40x50x50x12. Comparando-se estes resultados de classificação com o da rede MLP, observamos
que não houve dificuldade para a classificação dos defeitos de uma maneira geral, pois todos os
conjuntos foram classificados corretamente. A rede fuzzy-MLP é capaz de classificar vetores que
estão situados em região próxima da fronteira de classes de uma forma mais suave, isto é, uma
pequena variação no exemplo não causa uma mudança brusca de classe. Este tipo de classificação
se aproxima melhor do comportamento do ser humano, que não promove sempre uma classificação
do tipo sim ou não. A fuzzificação dos dados de entrada permitiu a ocorrência de erro zero.

Figura 3. Rede fuzzy-MLP /resultado final /conjunto de avaliação



5.3 Rede SOM

Através do gráfico da Fig. (4) podemos constatar que a rede SOM, da mesma forma que a rede
MLP, também não conseguiu compor uma fronteira de classes bem definida para todos os defeitos
considerados. É importante ressaltar que a saída da rede SOM, assim como das redes anteriores, foi
considerado binária (0,1), implicando em que os círculos têm apenas uma cor, sendo que esta
hipótese, do ponto-de-vista do diagnóstico, nãp considera todas as possíveis falhas que o exemplo
pode representar. Conforme podemos observar, 5 exemplos foram classificados de forma errada.

Figura 4. Rede SOM /resultado final /conjunto de avaliação

6.  CONCLUSÕES

Este trabalho tem por objetivo aplicar técnicas de redes neurais ao diagnóstico de falhas
mecânicas de turbomáquinas. A capacidade de cada tipo de rede neural classificar os defeitos foi
demonstrada, através da sua capacidade de aprendizado e do seu comportamento em diversas
situações de classificação. Foram abordados três tipos de classificadores: uma rede do tipo MLP,
uma rede que incorpora o conceito de números fuzzy à uma rede MLP e uma rede tipo SOM, tendo
sido verificado que a rede com o melhor desempenho é a do tipo fuzzy-MLP. Embora os dados
utilizados para o treinamento das redes tenham sido obtidos a partir de variações aleatórias de
valores típicos para os diversos defeitos estudados, esta metodologia não está em desacordo com o
aspecto demonstrativo do presente trabalho.
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Abstract - The condition monitoring of machinery generally considers the vibration signature as the
main parameter to be measured and is one of the bases of predictive maintenance . The mechanical
condition or machinery integrity evaluation can be performed by comparing the measured spectrum
to a reference spectrum and is based on the premise that usually exist spectral characteristics that
identifies the fault. Nine typical faults are considered and the automation of the capability to
interpret the vibration data is a field for the application of artificial neural networks. This article
presents a comparative study for three types of neural networks: MLP, fuzzy-MLP and SOM for
turbomachinery mechanical faults classification. The mean standards for the faults were obtained
from available literature and random changes were introduced in order to establish the training
data for the neural networks. The results showed that the fuzzy-MLP neural network is the best
solution.
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