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Resumo 
 
Na manutenção, preditiva a determinação das  falhas em seu estágio inicial é um pré-requisito  
indispensável para as técnicas utilizadas. Nos rolamentos, a presença de  falhas podem ser 
indicadas em sua fase inicial através de técnicas de análise vibratória no domínio do tempo e da 
freqüência. No domínio da freqüência, existem diversas técnicas que podem, não só indicar a 
presença de falhas em um  rolamento como possibilitam identificar qual o tipo da falha. Porém, em 
sua maioria, estas técnicas exigem   conhecimento técnico para o correto diagnóstico da falha. Por 
outro lado, as técnicas no domínio do tempo, que utilizam parâmetros estatísticos, podem em 
alguns casos indicar a presença de falhas, porém não conseguem determinar qual o tipo da falha. 
A partir de rolamentos com falhas induzidas na pista externa,  pista interna e esfera, serão 
aplicadas diversas técnicas no domínio do tempo.  Os parâmetros serão usados como entrada de 
uma Rede Neural,  com o objetivo de estabelecer um critério rápido e confiável  para o diagnóstico 
de falhas em rolamentos. 
 
Palavras-chave: Diagnóstico de falhas, Redes Neurais, Falhas em Rolamentos, Manutenção 

Preditiva. 
                             
 
 
1. INTRODUÇÃO 
       
          Pela redução de custo e diminuição no tempo de reparo, a  manutenção preditiva tem se 
tornado uma eficiente estratégia para industria moderna (Tse, et. al., 2001). A identificação de 
falhas em seu estágio inicial  possibilita a intervenção na máquina antes que haja uma propagação, 
que resulte em comprometimento de outros componentes do sistema, o que justifica a busca de 
técnicas que possibilitem o diagnóstico de forma rápida e confiável. A manutenção preditiva utiliza 
um conjunto de técnicas que podem ser classificados como: medidas de Vibração e Acústica, 

mailto:roberto@fem.unicamp.br
mailto:bezerra_roberto@yahoo.com.br
mailto:darley@fem.unicamp.br
mailto:robson@fem.unicamp.br


medidas de Temperatura, e Análise de Desgaste (N. Tandon & A. Choudhury,1999). Em geral, as 
técnicas podem ser utilizadas em conjunto possibilitando um diagnóstico mais confiável.  
          As técnicas que utilizam medidas de vibração são largamente utilizadas e podem ser 
classificadas em três grupos de acordo com o domínio  em que o sinal é tratado. Têm-se os métodos 
no domínio do tempo, métodos no domínio da freqüência e os métodos no domínio tempo-
freqüência que são os mais recentes.  
          Os métodos no domínio do tempo são os mais simples. Destes métodos os mais difundidos 
são Nível Global RMS e Fator de Crista. Além destes, são usados os momentos de primeira, 
segunda, terceira e quarta ordem, que são conhecidos como Média, Variância, Assimetria e Curtose, 
sendo os dois últimos normalizados em relação ao desvio padrão. Estes métodos são, em geral, 
qualitativos, ou seja, podem, em alguns casos, indicar a presença de falha, porém não permitem a 
identificação do tipo da falha.  
           Neste trabalho, será desenvolvida uma rede neural que possibilita a identificação de falhas 
em rolamento de forma rápida e precisa. Os parâmetros de entrada foram escolhidos entre os 
diversos parâmetros estatísticos  utilizados no domínio do tempo. Para realização deste trabalho, 
foram utilizados 12 rolamentos de esferas dos quais, 9 com falhas  induzidas. Os ensaios para 
aquisição de dados foram realizados em uma bancada de ensaios.  
 
2. TÉCNICAS DE IDENTIFICAÇÃO DE FALHAS EM ROLAMENTOS POR 
     MONITORAMENTO DE VIBRAÇÃO NO DOMÍNIO DO TEMPO. 
 
       Os métodos no domínio do tempo Nível Global RMS e  Fator de Crista  são os mais simples, 
sendo este último a razão do valor de pico pelo valor do RMS. O fator de crista para rolamentos 
sem defeito tem valores entre 2 e 6. Com o surgimento de uma pequena falha no rolamento, o valor 
de pico sofre uma elevação maior que o RMS, logo o fator de crista atingirá  valores maiores que 6. 
Além disso, este fator só é valido quando a única fonte de vibração é o rolamento (Silva, 1999). São 
obtidos pelas Equações (01) e (02). 
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           A Variância, Assimetria ou “Skewness” e  Curtose são parâmetros estatísticos que podem ser 
usados com o objetivo de auxiliar a detecção de falhas em rolamentos. Nos rolamentos sem falha, a 
densidade de probabilidade do sinal de aceleração de um rolamento tem uma distribuição 
Gaussiana, logo o valor de assimetria tende a 0 e o valor de curtose tende a 3 (Martin, H. R., 
Honarvar, F., 1995). Com o surgimento de uma falha, no rolamento, o valor de curtose aumenta. 
Mas, à medida que a falha se espalha pela superfície da pista ou esfera o valor de curtose diminui 
podendo atingir valores menores que três mascarando uma possível falha no rolamento. A 
Variância, Assimetria e  Curtose são obtidas pelas Equações (03), (04) e (05). 
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            Um fato bastante interessante relativo, aos parâmetros estatísticos, é que os momentos 
estatísticos ímpares dão informações sobre a posição do pico da densidade de probabilidade em 
relação ao valor médio, enquanto os parâmetros relacionados a valores pares indicam a expansão ou 
achatamento da distribuição, além disso, estes valores independem da velocidade e carga impostas 
ao rolamento. Para uma perfeita distribuição normal, os momentos ímpares tendem a zero e os 
momentos pares têm valores finitos (Martin, H. R., Honarvar, F., 1995). Um outro parâmetro 
estatístico que pode ser usado com o objetivo de fornecer informações sobre o estado do rolamento 
é o momento central de sexta ordem, Equação (06), (Samanta, B. and Al-Blalushi K. R., 2001). 
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            Além dos fatores acima foi usado o fator K (Silva, 1999), equação (07).  
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         Em função das características dos diversos parâmetros estatísticos, os mesmos foram usados 
neste trabalho como parâmetros de entradas de uma rede neural, a fim de identificar a presença e 
tipo de falha em um rolamento. 
 
2. TESTES  EXPERIMENTAIS  
 

         Os ensaios para aquisição de dados foram realizados em uma bancada de ensaios, Figura 
(01). Na obtenção dos dados, durante a fase de ensaios, um  acelerômetro foi colocado na direção 
radial de maior carga.  

 

 
 

Figura 1. Esquema da bancada usada 



 
Os rolamentos foram montados na bancada com suas falhas na direção do acelerômetro. Desta 

forma, os defeitos eram detectados pelo acelerômetro e enviados para o analisador de sinais do 
Pulse da Bruel&Kjaer. Para cada ensaio, foram obtidos 16484 pontos com um tempo total de 1s. 
Durante os ensaios dos rolamentos, a pista interna foi mantida parada enquanto a pista externa 
girava a 4800rpm  (80Hz). Durante a fase de tratamento dos dados, foi usado um filtro passa alta 
com freqüência de corte de 2 kHz. 

Foram usados 12 rolamentos, sendo, 3 sem defeitos,  3 com falha na pista interna, 3 com falha na 
pista externa e 3 com falha na esfera. As falhas presentes nos rolamentos foram induzidas, Figura 
(2). Todos os rolamentos tinham as mesmas dimensões: ângulo de pressão β=0o, diâmetro da esfera 
d=7.144mm, diâmetro principal D=42,47mm e número de esfera n= 10.  

 

   
a) Defeito na pista interna b) Defeito na pista externa c) Defeito na esfera 

 
Figura 2. Falhas  induzidos nas pistas e esfera do rolamento 

 
Para cada tipo de rolamento foram obtidos 20 ensaios, ou seja, 20 aquisições do tipo sem defeito, 

20 para defeitos na pista interna, 20 para defeitos na pista externa e 20 para defeitos na esfera. Com 
o banco de dados em mãos, foram  calculados os diversos parâmetros estatísticos: RMS, variância, 
assimetria (Skewness), curtose, momentos de sexta ordem e o fator K. Em seguida, os dados dos 
rolamentos com defeito foram normalizados. No processo de normalização de cada tipo de 
parâmetro, foi escolhido o maior valor, e os demais valores deste parâmetro foram divididos pelo 
valor escolhido, obtendo-se valores que variar entre 0 e 1. Somente para o parâmetro de assimetria, 
foram considerados os valores negativos e positivos obtendo-se valores que variavam entre -1 e 1. 
Em seguida, os dados foram dispostos em gráficos como mostrados nas Figuras (3) e (4). 

 
Figura 3. RMS, Variância e Assimetria , sd = sem defeito, 

PI= defeito na pista Interna, PE= defeito. na pista Externa e ES= defeito. na Esfera 



 
 

Figura 4. Curtose, Momento sexta ordem e Variância, sd = sem defeito, 
PI= defeito na pista Interna, PE= defeito. na pista Externa e ES= defeito. na Esfera  

 
            A partir dos dados obtidos, foram geradas quarto matrizes (20x6)  (Matriz .01),  a primeira 
continha os dados dos rolamentos sem defeito, a segunda os dados dos rolamentos com defeito na 
pista interna, a terceira dos dados dos rolamentos com defeito na pista externa e a quarta os de 
defeito na esfera.    
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             Foram retiradas, de forma aleatória, 10 linhas de cada matriz. Sendo obtidas 40 linhas que 
foram misturadas, obtendo-se uma matriz 40x6, (Matriz .02). 
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             A Matriz (02) foi usada para fase de treinamento da rede. Como de cada matriz com 



dimensões iguais  as da Matriz (01) restaram 10 linhas das, sendo 5 linhas escolhidas de forma 
aleatória, obtendo-se um total de 20 linhas que foram  usadas em substituição de 20 linhas da 
Matriz (02). Obtendo-se outra matriz de 40x6, que foi usada na fase de treinamento da rede neural. 
Com as 5 linhas que ainda não haviam sido utilizadas, foi feito um procedimento similar ao 
anterior e a matriz obtida foi usada para fase de validação.  
             Diversas arquiteturas de redes foram testadas. As arquiteturas com duas camadas 
resultaram em índice de acerto muito baixo. Por outro lado, em algumas arquiteturas com  mais de 
3 camadas os resultados foram similares aos obtidos pela arquitetura de 3 camadas, porém com um 
tempo de treinamento superior. Optou-se, portanto, pelo uso de 3 camadas, sendo utilizados 10 
neurônios na camada de entrada, 5 neurônios na camada oculta e 4 neurônios na camada de saída.. 
Para a rede neural  escolhida foram definidos os seguintes parâmetros de treinamento: 

• Camada de Entrada e Camada Oculta:  Função de Ativação Tangente Hiperbólica; 
• Camada de Saída:  Função de Ativação Linear; 
• Método de Otimização: Levemberg-Marguard; 
• Número de Épocas: 500 Épocas; 
• Erro Total Admissível: 1e-5. 

       A rede neural foi implementada no MATLAB 6.5, e a mesma foi processada em um 
computador Pentiun IV com processadao 2,4 GHz e  com uma  memória RAM de 512 MB. 
       Os resultados  mostrados na Tabela (01) foram obtidos ao final do processo. Pode-se observar 
que a rede teve um nível de acerto de 100% na indicação de falhas, e em alguns casos conseguiu 
identificar o tipo de falha, o que mostra que esta técnica é uma boa estratégia de identificação de 
falhas em rolamentos.  
          

 
  Tipo de Falha Detecção de Falha   

Parâmetros Rede Teste Valida. Teste Valida. Épocas Tempo 

R V S 10 x 5 x 4 75% 55% 100% 100% *1500 30,75s 

V S C 10 x 5 x 4 80% 75% 100% 100% 101 2,92s 

R V S C 10 x 5 x 4 80% 75% 100% 100% 28 1,42s 

R V S C M 10 x 5 x 4 80% 70% 100% 100% 35 1,70s 

V S C M F 10 x 5 x 4 85% 80% 100% 100% 37 2,17s 

 
Legenda: R= RMS, V= Variância, S = Assimetria,C = Curtose, M = Momento(6)  e  F = Fator K 

 
            
         Mesmo em alguns casos, onde a rede não foi capaz de identificar de forma correta o tipo de 
defeito, o nível de acerto foi considerável. A  Figura (6.a) mostra uma situação onde a rede indicou 
a presença  de falha porém, era defeito na pista externa e o resultado obtido foi defeito na esfera. Na 
Figura (6.b), o resultado esperado era defeito na pista interna e a saída da rede foi de defeito na 
esfera. Na Figura (6.c),  o resultado correto era de defeito na pista interna, todavia, o resultado 
obtido foi de defeito na pista externa. Um dado bastante importante, a ser ressaltado, é o fato de 
toda vez que o rolamento estava sem defeito a rede sempre apresentava o resultado satisfatório, 
Figura (6.d). O que mostra que a rede teve um ótimo desempenho, pois é mais importante a indicar 
a presença de  falha do que a identificação do seu tipo. Pois, a parada da máquina para a 
manutenção independe do tipo de falha apresentada pelo rolamento.  
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Figura 6. Resultados obtidos na Rede.  

 
 
3. COMENTÁRIOS FINAIS  
      
            A partir dos resultados obtidos, pode-se concluir que: a utilização de poucos parâmetros 
estatísticos como dados de entrada da rede foi capaz de indicar a presença de falha no rolamento. 
Com o aumento do número de parâmetros estatísticos  a identificação do tipo tem uma melhora 
significativa.  
            Com o uso de uma rede neural estes dados podem ser analisados sem dificuldade e sem a 
necessidade de conhecimento técnico para a interpretação dos resultados obtidos. Outra grande 
vantagem do uso da rede neural é fato da mesma ser capaz de indicar as falhas no seu estágio 
inicial, o que é muito importante para a manutenção preditiva. 
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Abstract 
In the preditive maintenance the determination of fault in its initial stage is an indispensable 
prerequisite for the used techniques. The presence of faults in rolling bearing can be detected in its 
initial stage, through techniques of vibratory analysis in the time domain and frequency domain. In 
the frequency domain, there are several techniques that identify moreover the presence of the fault, 
they can identify what kind of fault the rolling bearing has. However, most of these techniques 
demand technical knowledge to the correct diagnosis. On the other hand, the techniques in the time 
domain, that use statistical parameters, in some cases, can indicate the presence of fault, however, 
they can not determine what kind of fault the rolling bearing has. Using rolling bearings with 
induced faults, in the inner race, outer race and ball, it will be applied several techniques in time 
domain. The statistical parameters will be used in the training process of a neural network, in order 
to automate and to establish a fast and reliable criterium of the fault identification. 
 
   
Word-key: Automatic diagnosis of fault, Neural Network, Rolling Bearing,   
                   Preditive Maintenance.   
  
 
 
 


