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Resumo: Este trabalho tem por objetivo apresentar o desenvolvimento de uma formulação 
Lagrangeana para a modelagem matemática, bem como procedimentos numéricos para simulação do 
comportamento dinâmico de mecanismos flexíveis planos, levando-se em consideração a presença de 
materiais viscoelásticos, introduzidos com o objetivo de atenuar as vibrações elásticas. Para a 
caracterização das deformações elásticas é utilizado o Método de Elementos Finitos com base na 
teoria de vigas de Euler-Bernoulli. O foco principal do trabalho consiste na inclusão de 
comportamento viscoelástico no sistema, de acordo com o modelo de Golla-Hughes-McTavish (GHM), 
que se baseia na introdução de variáveis dissipativas internas. O procedimento de modelagem é 
implementado computacionalmente e a integração das equações não-lineares do movimento é 
realizada através do Método de Runge-Kutta de quarta ordem. A título de exemplificação, resultados 
numéricos são apresentados para mecanismos do tipo biela-cursor-manivela, evidenciando-se a 
atenuação das amplitudes de vibração proporcionada pela inclusão do efeito viscoelástico. 
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1. INTRODUÇÃO 
 

As pesquisas na área de dinâmica de sistemas de multicorpos têm sido motivadas pelo crescente 
interesse na caracterização do comportamento e no projeto ótimo de estruturas industriais, tais como 
mecanismos geradores/transformadores de movimento, veículos aeroespaciais e robôs (Shigley and 
Uicker Jr., 1980). Tais sistemas são constituídos por conjuntos de componentes rígidos e/ou flexíveis 
interconectados, e na maioria das vezes, os movimentos destes componentes são cinematicamente 
restringidos devido à existência de diferentes tipos de juntas, sendo ainda caracterizados por grandes 
deslocamentos lineares e altas rotações. Devido à necessidade de se conceber sistemas cada vez mais 
leves e precisos, operando a altas velocidades, uma atenção especial têm sido dada à caracterização dos 
efeitos da flexibilidade sobre o comportamento dinâmico de tais sistemas. Por outro lado, faz-se 
necessária, em diversas situações, limitar os níveis das vibrações elásticas, com o objetivo de diminuir 
o ruído transmitido e as solicitações por fadiga. Com este objetivo, técnicas de controle passivo e ativo 
têm sido empregadas (Chen and Levy, 1999.). No contexto das técnicas de controle passivo, baseadas 
no emprego de materiais dissipadores de energia, o presente trabalho trata do desenvolvimento de uma 
formulação Lagrangeana para a modelagem do comportamento dinâmico de mecanismos planos de 
cadeia fechada, restringidos cinematicamente. As deformações dos corpos elásticos são caracterizadas 
pelo MEF, com base na teoria de vigas de Euler-Bernoulli (Shabana, 1998). É feita a inclusão do 
comportamento viscoelástico na modelagem do sistema, empregando-se o modelo de Golla-Hughes-
McTavish (GHM) (Golla and Hughes, 1985) e (McTavish and Hughes, 1993). 
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2. CINEMÁTICA DO CORPO FLEXÍVEL 
 
2.1 Sistemas Referenciais 
 

Em uma discretização por Elementos Finitos, para a representação dos deslocamentos dos pontos 
de um elemento j do corpo flexível i, são utilizados o Sistema de Coordenadas Global (SCG), que é 
fixo e os sistemas ditos flutuantes: Sistema de Coordenadas do Corpo (SCC), que não necessariamente 
estará fixado em um ponto do corpo; Sistema de Coordenadas do Elemento (SCE), que translada e 
rotaciona junto com o elemento j; além de um Sistema Intermediário de Coordenadas do Elemento 
(SICE), que é paralelo ao SCE, e que será colocado na origem do SCC. 

 

 
 

Figura 1: Posição de um ponto arbitrário do elemento j, no corpo i e diferentes sistemas de 
coordenadas. 

  
O conjunto de coordenadas generalizadas do elemento j no corpo i pode ser descrito da seguinte 

forma (Shabana, 1998): 
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ijij eee += 0  , (1) 
 

onde  representa as coordenadas elásticas do elemento j e  as coordenadas nodais em seu estado 
indeformado. Portanto, o campo de deslocamento do elemento considerado, no SICE, é definido por 

, onde: 
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sendo é a matriz de funções de forma para o elemento j. Para um elemento de viga de Euler-
Bernoulli, a matriz de forma pode ser expressa sob a forma: 
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onde ξ  é a razão adimensional entre a coordenada axial do ponto, na configuração não-deformada do 
elemento e l , que é o comprimento do elemento j. 
      A orientação do SCE com relação ao SCC é definido pela matriz de transformação , que é 
representada por: 
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onde é o ângulo de orientação do elemento, entre os sistemas SICE e SCC. ijβ

       A matriz de rotação  é empregada para definir o campo de deslocamentos em relação ao 
sistema de coordenadas do corpo, isto é: 
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As condições de compatibilidade entre os elementos do corpo são simplificadas, se as coordenadas 
nodais forem expressas com relação ao SCC, ou seja: 
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      Com isso, pode-se escrever: 
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onde ijijijij CSCN =  e  representa o vetor de coordenadas nodais generalizadas do elemento j, no 
corpo i. 
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2.2 Condições de Conectividade e Referência 

 
O vetor de coordenadas generalizadas , do elemento j, situado no corpo i, pode ser escrito da 

seguinte forma no SCC:  
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onde é uma matriz de transformação Booleana constante, cuja utilidade é a de estabelecer a 
conectividade entre os elementos do modelo. Logo, o campo de deslocamentos, em relação ao SCC, 
ficará: 
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sendo ijijijijij

1BCSCN = . 
       Condições de referências são impostas para o corpo considerado, segundo suas propriedades 
elásticas; na Teoria de Viga de Euler-Bernoulli, condições de extremidades livres, apoiadas, e/ou 
engastadas são normalmente consideradas (Ferreira, 1997). Na formulação apresentada esta 
característica é fornecida pela matriz , e incluída no equacionamento da seguinte maneira: i
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      Com isso, o campo de deslocamentos assume a seguinte forma: 
 

)( 20
i
f

iiijij qBqNu +=  (12) 
 
      A posição absoluta de um ponto genérico P, situado no elemento j, do corpo i é representada pelo 
vetor  na Fig. (1), onde são destacados os vários sistemas de coordenadas do sistema: ijr

      Introduzindo as coordenadas de referência , que descrevem a localização da 

origem, bem como a orientação do corpo de referência, pode-se definir a posição de um ponto 
arbitrário situado no elemento j, do corpo i,  por: 
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onde  é a matriz de rotação de transformação de coordenadas do corpo para o referencial global. 
Sendo assim, a Eq. (13) pode ser reescrita sob a forma: 
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3. MATRIZES DE INÉRCIA E RIGIDEZ ELEMENTARES 

  
A velocidade para um ponto arbitrário P é obtida pela diferenciação da Eq. (14) em relação ao 

tempo: 
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Usando o fato de que , pode-se reescrever a Eq. (15) como segue: iii
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3.1 Matrizes de Inércia e de Rigidez Elementares 
 

A energia cinética para o elemento j, é dada por: 
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Com isso, a Eq. (17) poderá ser expressa da seguinte maneira: 
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onde  é a matriz de inércia elementar, dada por: ijM
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      O trabalho virtual realizado pelas forças elásticas para o elemento j é dado por: 
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onde e  são, respectivamente, os vetores de tensão e deformação do elemento j. Utilizando a 
equação constitutiva e escrevendo a deformação em função do campo de deslocamentos, teremos as 
seguintes relações:  e 
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elásticos e é um operador diferencial. Portanto: 
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        Assim, a matriz de rigidez elementar será dada por: 
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3.4 Vetores de Forças Externas Generalizadas 
 
      Os vetores de forças externas e de velocidades quadráticas também podem obtidos pela aplicação 
da definição do trabalho virtual e decompostos em função das coordenadas generalizadas de translação, 
rotação e elásticas, conforme pode-se ver a seguir (detalhamento sobre a obtenção destes vetores pode 
ser encontrado em (Shabana, 1998)): 
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      No que se segue, será omitido o índice j para as matrizes de massa, rigidez, bem como para os 
vetores de forças externas, uma vez que a formulação para o corpo i é consistente com as equações 
elementares apresentadas até este ponto (Ferreira, 1997). 
 
3.5 Restrições Cinemáticas 
 

      As restrições cinemáticas são expressas por equações algébricas não lineares, que dependem 
das coordenadas generalizadas do corpo e, eventualmente, do tempo, e são escritas sob a seguinte 
forma vetorial: 
 

0q =Φ ),( t  (24) 
 
      A derivada do vetor , em relação às coordenadas generalizadas é representada pela matriz Φ qΦ  e é 
conhecida como matriz jacobiana de restrição e será introduzida no equacionamento da dinâmica dos 
sistemas de multicorpos. 
 
4. EQUAÇÕES DO MOVIMENTO 
  
      O trabalho virtual das forças que atuam no corpo i é dado por:  , onde  é 

devido às forças elásticas e  é resultante das forças externas que estão sendo aplicadas em i. Estas 
expressões podem ser dadas por: 
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 onde  é o vetor de forças generalizadas associadas às coordenadas do corpo i. Assim: iQ
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      As Equações de Lagrange, para o corpo i, no sistema de multicorpos são dadas por: 
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em que λ é o vetor dos Multiplicadores de Lagrange. Logo, teremos: 
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que são as equações do movimento para o sistema amortecido (Shabana, 1998). 
 
5. INCLUSÃO DO EFEITO VISCOELÁSTICO NA FORMULAÇÃO 
 
      A matriz de rigidez  pode ser fatorada da seguinte forma: ( ) iii sE KK = , onde  é a função 
módulo do material viscoelástico, aqui indicado como dependente do parâmetro de Laplace s. Para o 
modelo de Golla-Hughes-McTavish (GHM), a função módulo é representada por (McTavish and 
Hughes, 1993): 
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onde:  é módulo estático do material; RE ' iα , iς  e iω são parâmetros característicos do material 

viscoelástico e  é o número de coordenadas dissipativas do sistema (Lima, 2003).  GN
 
Seguindo detalhamento apresentado por (Golla and Hughes, 1985) e (McTavish and Hughes, 

1993), chega-se ao seguinte sistema de equações do movimento após inclusão do efeito viscoelástico 
de acordo com o modelo GHM 
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onde:  
 
      ,iα  iς  e iω  são parâmetros reais e positivos, que caracterizam as variáveis dissipativas  do 
sistema. 
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      O sistema acima pode ser escrito na seguinte forma matricial: 
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onde: 
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        A Eq. (31) representa o sistema equações do movimento para um modelo de multicorpos, com 
componentes flexíveis, considerando-se o amortecimento viscoelástico.  
 
6. SIMULAÇÃO COMPUTACIONAL 
 
       Nesta seção apresenta-se, como exemplo, o mecanismo biela-cursor-manivela mostrado na Fig. 
(2). Trata-se de um tipo de mecanismo encontrado em numerosos sistemas mecânicos, tais como 
motores de combustão interna e máquinas ferramentas (Shigley & Uicker Jr., 1980). 
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Figura 2: Mecanismo biela-cursor-manivela. 
 

        No mecanismo acima, negligencia-se a massa do cursor, considera-se a manivela rígida e biela 
flexível, discretizada em dois elementos finitos. Admite-se ainda que a biela seja acionada por um 
torque constante, proporcional à sua massa. As condições de referência adotadas são de viga 
simplesmente apoiada e inicialmente o mecanismo está alinhado na horizontal, com a junta 
biela/manivela entre o cursor e a junta da manivela com a base, sem deformação. 
       As propriedades geométricas e de material são as seguintes: 

• Comprimento da manivela, m 1524,0=ml ;  
• Comprimento da biela, ; m 3492,0=bl

• Massa da biela, ; Kg 0758,0=bm



• Massa específica, ; 3Kg/m 1600=ρ
• Módulo de Elasticidade Longitudinal, ; 210 N/m 101,2 ×=E
• Área da Seção Transversal, ; 2 4 m011,6129 −×=A
• Momento de Inércia,  4-9 m 108,6576×=I
 

São escolhidas as seguintes coordenadas generalizadas: 
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A biela é modelada como uma viga puramente viscoelástica. As equações do movimento foram 

resolvidas empregando o método de Runge-Kutta de 4a ordem, no intervalo [0 – 0,01 s], com 
. A Figura (3) mostra a comparação entre o sistema com junta viscoelástica (em 

vermelho) e o sistema não-amortecido (em azul), evidenciando a atenuação das amplitudes de vibração, 
respectivamente de velocidade e aceleração, para uma dada coordenada elástica ( ). 
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Fig. (4): Comparação entre sistemas com biela elástica e viscoelástica 

 
 
7. CONCLUSÕES 
 

Foi desenvolvida a formulação lagrangeana para a modelagem de sistemas de multicorpos híbridos 
(rígidos/flexíveis), bidimensionais, de acordo com a Teoria de Viga de Euler-Bernoulli, sujeitos a 
restrições cinemáticas, sendo obtidas as equações algébrico-diferenciais do movimento não lineares. Na 
formulação, buscou-se evidenciar a natureza dos sistemas de referência e das coordenadas 
generalizadas empregadas para a representação da posição instantânea dos corpos do sistema. A 
discretização dos corpos é feita com o Método de Elementos Finitos, explicitando a influência das 
coordenadas generalizadas elásticas na dinâmica de multicorpos.  



Foi introduzido na formulação o efeito viscoelástico de amortecimento, segundo o modelo de 
Golla-Hughes-McTavish, evidenciando-se que tal modelo permite obter as equações do movimento na 
forma usual de equações de segunda ordem, sendo caracterizado pelo aumento da dimensão do sistema 
de equações do movimento, como resultado da inclusão de vaiáveis internas dissipativas. Para a 
integração das equações do movimento é sugerido o método de Runge-Kutta. As simulações 
computacionais, usando um mecanismo biela-cursor-manivela, mostram que a inclusão do material 
viscoelástico nas juntas e/ou nas vigas permite atenuar os efeitos vibracionais do sistema de 
multicorpos. 
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Abstract: In this paper it is presented the development of a Lagrangean formulation for the modeling 
of the dynamic behavior of two-dimensional flexible mechanisms featuring viscoelastic damping, taking 
into account the kinematical constraints by using Lagrange multipliers. To characterize the elastic 
deformations of the compliant bodies, the Finite Element Method is employed. The frequency 
dependent behavior of the viscoelastic material is characterizes through the Golla-Hughes-McTavish 
(GHM) model, which is based on the introduction of internal dissipative variables. Numerical 
validation is present, using a slider-crank mechanism, demonstrating the possibility of achieving 
vibration attenuation upon the inclusion of the viscoelastic effect.  
  
Keywords: Flexible Mechanisms, Finite Elements, Damping, Viscoelasticity.  
 
 


