MODELAGEM DO COMPORTAMENTO DINAMICO DE MECANISMOS
FLEXIVEIS PLANOS CONTENDO AMORTECIMENTO VISCOELASTICO

Cleves Mesquita Vaz

Domingos Alves Rade

Antdnio Marcos Gongalves de Lima

Universidade Federal de Uberlandia - UFU

Faculdade de Engenharia Mecanica - FEMEC

Programa de Pds-Graduagdo em Engenharia Mecanica

C. P. 593 - CEP 38400-902 — Uberlandia, MG, Brasil
mesquitav@mecanica.ufu.br ; domingos@ufu.br ; amglima@mecanica.ufu.br

Resumo: Este trabalho tem por objetivo apresentar o desenvolvimento de uma formulag¢do
Lagrangeana para a modelagem matematica, bem como procedimentos numéricos para simula¢do do
comportamento dinamico de mecanismos flexiveis planos, levando-se em consideracdo a presenca de
materiais viscoeldsticos, introduzidos com o objetivo de atenuar as vibragoes elasticas. Para a
caracteriza¢do das deformagoes elasticas ¢ utilizado o Método de Elementos Finitos com base na
teoria de vigas de Euler-Bernoulli. O foco principal do trabalho consiste na inclusdo de
comportamento viscoelastico no sistema, de acordo com o modelo de Golla-Hughes-McTavish (GHM),
que se baseia na introducdo de variaveis dissipativas internas. O procedimento de modelagem é
implementado computacionalmente e a integra¢do das equag¢oes ndo-lineares do movimento é
realizada através do Método de Runge-Kutta de quarta ordem. A titulo de exemplificagdo, resultados
numericos sdo apresentados para mecanismos do tipo biela-cursor-manivela, evidenciando-se a
atenuagdo das amplitudes de vibragdo proporcionada pela inclusdo do efeito viscoeldstico.
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1. INTRODUCAO

As pesquisas na area de dindmica de sistemas de multicorpos tém sido motivadas pelo crescente
interesse na caracterizagdo do comportamento e no projeto 6timo de estruturas industriais, tais como
mecanismos geradores/transformadores de movimento, veiculos aeroespaciais e robds (Shigley and
Uicker Jr., 1980). Tais sistemas sdo constituidos por conjuntos de componentes rigidos e/ou flexiveis
interconectados, e na maioria das vezes, 0s movimentos destes componentes sdo cinematicamente
restringidos devido a existéncia de diferentes tipos de juntas, sendo ainda caracterizados por grandes
deslocamentos lineares e altas rotac6es. Devido a necessidade de se conceber sistemas cada vez mais
leves e precisos, operando a altas velocidades, uma atencdo especial tém sido dada a caracterizacdo dos
efeitos da flexibilidade sobre o comportamento dindmico de tais sistemas. Por outro lado, faz-se
necessaria, em diversas situacoes, limitar os niveis das vibragdes elasticas, com o objetivo de diminuir
o0 ruido transmitido e as solicitaces por fadiga. Com este objetivo, técnicas de controle passivo e ativo
tém sido empregadas (Chen and Levy, 1999.). No contexto das técnicas de controle passivo, baseadas
no emprego de materiais dissipadores de energia, o presente trabalho trata do desenvolvimento de uma
formulacdo Lagrangeana para a modelagem do comportamento dindmico de mecanismos planos de
cadeia fechada, restringidos cinematicamente. As deformac6es dos corpos elasticos sdo caracterizadas
pelo MEF, com base na teoria de vigas de Euler-Bernoulli (Shabana, 1998). E feita a inclusdo do
comportamento viscoelastico na modelagem do sistema, empregando-se 0 modelo de Golla-Hughes-
McTavish (GHM) (Golla and Hughes, 1985) e (McTavish and Hughes, 1993).
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2. CINEMATICA DO CORPO FLEXIVEL
2.1 Sistemas Referenciais

Em uma discretizacdo por Elementos Finitos, para a representacdo dos deslocamentos dos pontos
de um elemento ;j do corpo flexivel i, s&o utilizados 0 Sistema de Coordenadas Global (SCG), que é
fixo e os sistemas ditos flutuantes: Sistema de Coordenadas do Corpo (SCC), que ndo necessariamente
estard fixado em um ponto do corpo; Sistema de Coordenadas do Elemento (SCE), que translada e
rotaciona junto com o elemento j; além de um Sistema Intermediario de Coordenadas do Elemento
(SICE), que € paralelo ao SCE, e que sera colocado na origem do SCC.
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Figura 1: Posicdo de um ponto arbitrario do elemento 7, no corpo i e diferentes sistemas de
coordenadas.

O conjunto de coordenadas generalizadas do elemento j no corpo i pode ser descrito da seguinte
forma (Shabana, 1998):

e’ =eg +e% (1)

onde e? representa as coordenadas eldsticas do elemento j e €j as coordenadas nodais em seu estado
indeformado. Portanto, 0 campo de deslocamento do elemento considerado, no SICE, é definido por
w? | onde:

w] =S}, @

sendo S” é a matriz de fungées de forma para 0 elemento j. Para um elemento de viga de Euler-
Bernoulli, a matriz de forma pode ser expressa sob a forma:

Sy{l—g 0 0 £ 0 0 }
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onde &£ ¢é arazdo adimensional entre a coordenada axial do ponto, na configuracdo ndo-deformada do
elemento e 7, que é o comprimento do elemento ;.

A orientacdo do SCE com relacdo ao SCC ¢é definido pela matriz de transformacéo cY, que é
representada por:

i — {cos,b”'f —sen ﬂ”}

senp?  cosp? )

onde 37 é o angulo de orientacio do elemento, entre os sistemas SICE e SCC.

A matriz de rotacio C" ¢é empregada para definir o campo de deslocamentos em relagdo ao
sistema de coordenadas do corpo, isto é:

¥ = Ciw? (5)

As condicdes de compatibilidade entre os elementos do corpo sdo simplificadas, se as coordenadas
nodais forem expressas com relagdo ao SCC, ou seja:

e/ =CVe", (6)
na qual:

& o cosp’  senp’ 0
c’ ={ Lo } ; C/ =|-senp’ cosp’ 0 )
0 0 1

Com isso, pode-se escrever:
u’ =N%q/ (8)

n

onde NY =CYSYC? e g representa o vetor de coordenadas nodais generalizadas do elemento j, no
corpo i.

2.2 Condicdes de Conectividade e Referéncia

O vetor de coordenadas generalizadas g7, do elemento j, situado no corpo i, pode ser escrito da
seguinte forma no SCC.:

7 =B{q,, 9)



onde BYé uma matriz de transformagdo Booleana constante, cuja utilidade é a de estabelecer a
conectividade entre os elementos do modelo. Logo, o campo de deslocamentos, em rela¢do ao SCC,
ficara:

O/ — N/ q!

u’ =N’q , (10)
sendo N7 =CYSYCYBY .

CondicOes de referéncias sdo impostas para o corpo considerado, segundo suas propriedades

elasticas; na Teoria de Viga de Euler-Bernoulli, condi¢cbes de extremidades livres, apoiadas, e/ou
engastadas sdo normalmente consideradas (Ferreira, 1997). Na formulagdo apresentada esta

caracteristica é fornecida pela matriz B, e incluida no equacionamento da seguinte maneira:
d, =0o +0qy =0y +B3d’, (11)
Com isso, 0 campo de deslocamentos assume a seguinte forma:
u’ =N (qp +B5q') (12)

A posicdo absoluta de um ponto genérico P, situado no elemento j, do corpo i é representada pelo
vetor r’ na Fig. (1), onde sdo destacados os varios sistemas de coordenadas do sistema:

T
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Introduzindo as coordenadas de referéncia g :[R‘ 0 } , que descrevem a localizacdo da

origem, bem como a orientacdo do corpo de referéncia, pode-se definir a posicdo de um ponto
arbitrario situado no elemento j, do corpo i, por:

r’ =R'+A'T", (13)

onde A’ é a matriz de rotacdo de transformacdo de coordenadas do corpo para o referencial global.
Sendo assim, a Eq. (13) pode ser reescrita sob a forma:

r’=R"+A'N"(q, +B%0’) (14)
3. MATRIZES DE INERCIA E RIGIDEZ ELEMENTARES

A velocidade para um ponto arbitrario P é obtida pela diferenciacdo da Eq. (14) em relacdo ao
tempo:

i =R"+A'N’(qp +B5q’ ) + A'NYBYG), (15)

Usando o fato de que A’ = 8'Al, pode-se reescrever a Eq. (15) como segue:
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3.1 Matrizes de Inércia e de Rigidez Elementares

A energia cinética para o elemento j, é dada por:

TV :% ij'rU'Tride” (17)
Vl

Com isso, a Eq. (17) podera ser expressa da seguinte maneira:

S 19

onde M7 é a matriz de inércia elementar, dada por:
i i i
Mzr  Mze Mk,
i _ i i
MY = Mgy My (19)
; i
sim. m’,
O trabalho virtual realizado pelas forcas elasticas para o elemento ;j é dado por:

W =~ j a"f'T5g"de"f, (20)

v

onde o’e & sho, respectivamente, os vetores de tensdo e deformagio do elemento ;. Utilizando a
equacdo constitutiva e escrevendo a deformagdo em fungdo do campo de deslocamentos, teremos as

seguintes relagdes: o’ =E"s" e &7 =D’CYS"CYB{B5q’,, onde E”é a matriz de coeficientes

elasticos e DY é um operador diferencial. Portanto:
Wi =—q', ki &'
s =—dy Ky, (21)
Assim, a matriz de rigidez elementar seréd dada por:

00 O
K/=[0 0 0 (22)
00 k%p



3.4 Vetores de Forgas Externas Generalizadas
Os vetores de forgas externas e de velocidades quadraticas também podem obtidos pela aplicagdo
da definicéo do trabalho virtual e decompostos em fungéo das coordenadas generalizadas de translacéo,

rotacdo e elasticas, conforme pode-se ver a seguir (detalhamento sobre a obtencdo destes vetores pode
ser encontrado em (Shabana, 1998)):

Qe' =[Qes Qe) Qei] e Qvizfovi Qvi Qv @3)
No que se segue, serd omitido o indice j para as matrizes de massa, rigidez, bem como para 0s
vetores de forgcas externas, uma vez que a formulacdo para o corpo i é consistente com as equagdes
elementares apresentadas até este ponto (Ferreira, 1997).
3.5 Restric¢des Cinematicas
As restricdes cinematicas sdo expressas por equacdes algébricas ndo lineares, que dependem

das coordenadas generalizadas do corpo e, eventualmente, do tempo, e sdo escritas sob a seguinte
forma vetorial:

®(q,7) =0 (24)

A derivada do vetor @, em relacdo as coordenadas generalizadas é representada pela matriz ®, e é

conhecida como matriz jacobiana de restri¢do e sera introduzida no equacionamento da dindmica dos
sistemas de multicorpos.

4. EQUACOES DO MOVIMENTO

O trabalho virtual das forcas que atuam no corpo i € dado por: W' =W¢ + oW, , onde oWy é

devido as forgas elasticas e oW, € resultante das forcas externas que estdo sendo aplicadas em i. Estas
expressdes podem ser dadas por:

. T . . T . . . T .
5Wl :Ql &l, S{ :_ql Kl&ll; 5Wel :Qel &l, (25)
onde Q' é o vetor de forcas generalizadas associadas as coordenadas do corpo i. Assim:

Q' =—K'g' +Qe’ (26)

As Equacgoes de Lagrange, para 0 corpo i, no sistema de multicorpos séo dadas por:
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em que A e o vetor dos Multiplicadores de Lagrange. L.0go, teremos:

Mg +K'g' + DA =Qe’ +QV’ (28)
que sdo as equagdes do movimento para o sistema amortecido (Shabana, 1998).
5. INCLUSAO DO EFEITO VISCOELASTICO NA FORMULACAO

A matriz de rigidez pode ser fatorada da seguinte forma: K’ = E'(s)K’, onde E'(s) é a fungio
modulo do material viscoelastico, aqui indicado como dependente do pardmetro de Laplace s. Para o

modelo de Golla-Hughes-McTavish (GHM), a fungdo modulo é representada por (McTavish and
Hughes, 1993):

s% +2¢,m,5

Ng
E'(s)=EL| 1+ Zai (29)
i=1

5% +2¢,0,5 + }

onde: E'; € modulo estatico do material; «;, ¢; € w,;sd0 parametros caracteristicos do material
viscoelastico e N € o numero de coordenadas dissipativas do sistema (Lima, 2003).

Seguindo detalhamento apresentado por (Golla and Hughes, 1985) e (McTavish and Hughes,
1993), chega-se ao seguinte sistema de equagfes do movimento apds inclusdo do efeito viscoelastico
de acordo com o0 modelo GHM

MG+ Clg’ + K7 -, KqS (s) + ©F A= Qe + Qv

a (30)

i 100Gl QG 1,0l Gl ol Gl of i

1 l

onde:
a;, ¢, € m, S0 parametros reais e positivos, que caracterizam as variaveis dissipativas () do

sistema.
O sistema acima pode ser escrito na seguinte forma matricial:

Mgl +Cslg +Kgdg =Fg, (31)

onde:
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A Eq. (31) representa o sistema equacGes do movimento para um modelo de multicorpos, com
componentes flexiveis, considerando-se o amortecimento viscoelastico.

6. SIMULACAO COMPUTACIONAL

Nesta secdo apresenta-se, como exemplo, 0 mecanismo biela-cursor-manivela mostrado na Fig.
(2). Trata-se de um tipo de mecanismo encontrado em numerosos sistemas mecanicos, tais como
motores de combustdo interna e maquinas ferramentas (Shigley & Uicker Jr., 1980).

Figura 2: Mecanismo biela-cursor-manivela.

No mecanismo acima, negligencia-se a massa do cursor, considera-se a manivela rigida e biela
flexivel, discretizada em dois elementos finitos. Admite-se ainda que a biela seja acionada por um
torque constante, proporcional & sua massa. As condi¢Ges de referéncia adotadas sdo de viga
simplesmente apoiada e inicialmente o mecanismo estd alinhado na horizontal, com a junta
biela/manivela entre o cursor e a junta da manivela com a base, sem deformacao.

As propriedades geométricas e de material sdo as seguintes:

e Comprimento da manivela, ¢, =01524m;

e Comprimento da biela, ¢, =0,3492m;
e Massa da biela, m, =0,0758 Kg ;



e Massa especifica, p =1600Kg/m?;

e Modulo de Elasticidade Longitudinal, £ = 2,1x10" N/m?;
e Areada Secdo Transversal, 4=1,6129x10" m?;

e Momento de Inércia, / =8,6576x10° m*

Sdo escolhidas as seguintes coordenadas generalizadas:

fa
q:[R12 Rz2 6’ Arv 42 dp3 974 Gys Qfe] (32)

A biela é modelada como uma viga puramente viscoelastica. As equa¢bes do movimento foram
resolvidas empregando o método de Runge-Kutta de 4° ordem, no intervalo [0 — 0,01 s], com

At =4,0x10"°s. A Figura (3) mostra a comparacio entre 0 sistema com junta viscoelastica (em
vermelho) e o sistema ndo-amortecido (em azul), evidenciando a atenuagé@o das amplitudes de vibragéo,
respectivamente de velocidade e aceleragdo, para uma dada coordenada elastica (g, ).
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Fig. (4): Comparagdo entre sistemas com biela elastica e viscoelastica

7. CONCLUSOES

Foi desenvolvida a formulacdo lagrangeana para a modelagem de sistemas de multicorpos hibridos
(rigidos/flexiveis), bidimensionais, de acordo com a Teoria de Viga de Euler-Bernoulli, sujeitos a
restricdes cinematicas, sendo obtidas as equacdes algébrico-diferenciais do movimento nao lineares. Na
formulacdo, buscou-se evidenciar a natureza dos sistemas de referéncia e das coordenadas
generalizadas empregadas para a representacdo da posicdo instantdnea dos corpos do sistema. A
discretizagdo dos corpos é feita com o Método de Elementos Finitos, explicitando a influéncia das
coordenadas generalizadas elasticas na dindmica de multicorpos.




Foi introduzido na formulacdo o efeito viscoelastico de amortecimento, segundo o modelo de
Golla-Hughes-McTavish, evidenciando-se que tal modelo permite obter as equa¢des do movimento na
forma usual de equacdes de segunda ordem, sendo caracterizado pelo aumento da dimensao do sistema
de equacdes do movimento, como resultado da inclusdo de vaiaveis internas dissipativas. Para a
integracdo das equacdes do movimento é sugerido o método de Runge-Kutta. As simulacfes
computacionais, usando um mecanismo biela-cursor-manivela, mostram que a inclusdo do material
viscoelastico nas juntas e/ou nas vigas permite atenuar os efeitos vibracionais do sistema de
multicorpos.
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Abstract: In this paper it is presented the development of a Lagrangean formulation for the modeling
of the dynamic behavior of two-dimensional flexible mechanisms featuring viscoelastic damping, taking
into account the kinematical constraints by using Lagrange multipliers. To characterize the elastic
deformations of the compliant bodies, the Finite Element Method is employed. The frequency
dependent behavior of the viscoelastic material is characterizes through the Golla-Hughes-McTavish
(GHM) model, which is based on the introduction of internal dissipative variables. Numerical
validation is present, using a slider-crank mechanism, demonstrating the possibility of achieving
vibration attenuation upon the inclusion of the viscoelastic effect.

Keywords: Flexible Mechanisms, Finite Elements, Damping, Viscoelasticity.



