
OVERHUNG ROTOR PASSING TROUGH ITS CRITICAL SPEED 
 

Fredy Coral Alamo 
Pontifícia Universidade Católica do Rio de Janeiro – Departamento de Engenharia Mecânica 
Rua Marquês de São Vicente, 225 – Gávea, Rio de Janeiro – RJ – Brasil, 22453-900 
 
Hans Ingo Weber 
Pontifícia Universidade Católica do Rio de Janeiro – Departamento de Engenharia Mecânica 
Rua Marquês de São Vicente, 225 – Gávea, Rio de Janeiro – RJ – Brasil, 22453-900 
 
Abstract. The purpose of this work is to analyze the overhung rotor dynamics considering the 
contact phenomenon between the disk and an annular ring. The analysis of contact is particularly 
complex, due to the high nonlinearity of the motion equations. The impact is accounted by a 
consistent contact model, the viscoelastic model. Motion equation for the rotor is encountered 
employing the Lagrangean method. These equations are capable of capturing phenomena due to 
lateral vibration, like: forward whirl, backward whirl, rolling or sliding along the annular ring. 
Due to the combined parameters and the effect of nonlinearity in the motion equations, the 
dynamical response is not simple or easily predictable. Numerical simulation is the preferred 
method of analysis, here it is used the Runge-Kutta Fehlberg method. Simulation results show that 
under certain conditions, the rotor changes its orbit due to the impacts with the annular ring and 
after that, it executes backward whirl motion. It is a kind of phenomenon that is considered as the 
most violent and dangerous in rotating machines. The passing through its critical speed is analyzed 
when driven by an electric motor (also when the system operates under a constant rotational 
velocity). 
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1. INTRODUCTION 
 

The study of rotating machines has special importance for industries, due to the huge amount of 
applications. One of these applications is in oil well drilling, where, the overhung rotor model may 
represent, satisfactorily, the lateral dynamics of a drill-string section when it is impacting with the 
wall. 

The impact is a complex phenomenon that is still under investigation; a recent work by 
Schiehlen (2003) shows that the method of multibody systems is most efficient for the dynamical 
analysis of machines and structures. During impact, kinetic energy is lost by plastic deformations, 
viscoelastic effects and wave propagation. For rigid body models, like Brach’s model (1998), the 
energy loss is measured macromechanically by the coefficient of restitution. In this work it is used a 
vibroimpact model, Rajalingham & Rakheja (2000), which represents satisfactorily the impact 
phenomenon, where the impact force behavior is parabolic. 

In order to investigate the dynamics of the system, the equation of motion for the rotor is 
obtained by the Lagrange approach, and it is solved numerically using the 5th order Runge-Kutta 
Fehlberg method. Finally, numerical results are compared with those obtained from the related 
literature. 
 



2. MOTION EQUATIONS 
 

When the rotating disk, Fig. (1A), impacts against the ring, there arise impact forces that act on 
the disk. In order to calculate these forces, it is used here the vibroimpact model for the normal 
force and Coulomb’s law for the tangential force. 

In the mechanical model we have 4DOF: a rigid body rotation of the motor shaft ( )θ , a 
torsional deformation ( )φ  of the rotor shaft and two orthogonal lateral deflections of the disk center 
( , )x y . The Lagrange equation for a non-conservative system is: 
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Where T  and U  are the Kinetic and Potential Energy; ℜ  is the Rayleigh’s energy dissipation 

function; iQ  are the generalized forces associated with the generalized coordinates 

[ ]iq x y θ φ= . 
 

 
Figure 1. Deformed state of the system (A) and impacting forces on the disk (B) 

 
The expression for the Kinetic Energy is: 
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Here, the first term is the translational energy of the disk, the second is the rotational energy of 

the rotor, the third is the rotational energy of the electric motor shaft, and, the last one is the 
imbalance energy. 

The location of mε  in the inertial system ( , )x y  is given by: 0 ( )ε θ φ+= +R R A ε
 

where: 
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coordinates ( )( , ) ( , )d dx y x yθ φ+→ . Finally the derivative of εR  is define by: 
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Now, writing the Kinetic Energy in the inertial system, results: 
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The expression for the Potential Energy is: 
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Here, the first and second terms are the energy due to shaft flexion and the last one is due to 

shaft torsion. 
 
The expressions for the Rayleigh’s Energy Dissipation Function, considering viscous 

damping, proportional and non coupled, are: 
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Where, xx yy bc c c= =  and tc cφφ =  are the flexural and torsional damping coefficients, 

respectively. 
 
Considering that the vector of generalized forces, for 4DOF, is given by: 

 Tx yQ Q Q Qθ φ =  Q , and, using the Lagrange equation, Eq. (1), results four equations for 

the variables ( , , , )x y θ φ . 

The motion equation, in matrix form MZ + CZ + KZ + P = Q�� � , results: 
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The mass matrix elements are: 
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The non-linear forces, which represent the centrifugal forces, are: 

 



( ) ( ) ( )

( ) ( ) ( )

2

2

cos sen

sen cos

x x y

y x y

P m

P m

ε

ε

θ φ ε θ φ ε θ φ

θ φ ε θ φ ε θ φ

 = − + + − + 

 = − + + + + 

� �

� �
 

 

In Eq. (2), the determinant of the mass matrix 2( )( )m d d dJ m m m J m m m Jε ε εε= + + +M  is a 

number, then, we will not have any singularity problems when the motion equation is solved 
numerically.  
 

The impacting forces, Fig. (1B), in the inertial system ( , )x y  can be calculated as: 
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Where cK  is the contact stiffness; cC  is the contact damping coefficient; δ  is the radial gap 

and ( )RH δ−  is the Heavyside function. The impact force components and torque in the coordinate 

system ( , )x y  result: 
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Finally, the generalized forces Q  corresponding to the external forces, acting on the disk, are 
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Where mT  is the torque acting on the rotor: it was found from experiments that is a polynomial 

function ( 150
66

C =  is a constant and Ω  rad/s is the rotor’s rotational speed) 
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3. NUMERICAL EXAMPLE 
 

For the numerical simulations the initial disk center position coincides with the shaft motor 
center, and, the disk velocity is zero (zero initial condition). Table (1) show us numerical values, 
some of them were obtained from an experimental test rig, and, other from the literature review. 

 
For this simulation, the disk behavior is analyzed in two cases: without and with the annular ring 

of the rotor system. The results without the ring are showed in Fig. (2): it is a typical dynamical 
system behavior passing through its critical speed ( 2.29cω = Hz.). Firstly the disk orbit starts at the 
point (0,0) and due to the motor torque; the disk orbit grows, after reaching the maximum orbit 
amplitude 7≈ mm. (near its critical speed), the disk orbit decreases until it reaches the steady-state 
motion. Fig. (2) shows clearly that the frequency where there occurs the maximum orbit amplitude 
is moving to the right side of the critical speed, when the torque is increasing. The new frequencies 
for the maximum orbit are 1.16( cω ), 1.53( cω ) and 3.10( cω ) Hz for the 1%, 10% and 100% mT , 
respectively. Childs (1993) and Markert & Seidler (2001) also name this behavior. 



Table 1. Geometrical and physical parameters for the rotor dynamic system 
 

 Disk   

 Mass (kg), radius (mm) dm , dR   2.5, 50 
 Annular Ring   

 Inner radius (mm) eR   50.9 
 Shaft   

 Flexural stiffness (N/m) bK   506.1 

 Torsional stiffness (N-m/rad) tK   51.8 

 Torsional and Flexural damping factor  tζ ,  bζ   0.01 
 Contact parameters   

 Contact stiffness (N/m) cK  61.0x10  

 Viscous coefficient of proportionality (s) β  71.0x10−  

 Contact damping coefficient (N-s/m) c cC Kβ=  0.1  
 Eccentricity   

 Mass (kg) mε   0.03 
 Coordinates ( xε , yε ) (mm) xε , yε   28.2, 28.2 

 
Here it is necessary to point out that when there is low damping in the system, Eq. (1), the 

transient don’t dies away in the resonance curve and the solution of the system looks like the Fig. 
(2). Now, let us consider the annular ring in the rotor system and apply a 100% mT . In this case, the 
radial gap between the annular ring and the disk is considered 0.9 mm; therefore, it is expected that 
the disk impact the ring, since it will restrict its free motion. Fig. (3) shows us the disk orbit and 
resonance curve for two different values of the friction coefficient µ  (0.01 and 0.2). There, we can 
see that for a low friction coefficient ( 0.01µ = ), the disk, after some impacts, is moving in a 
forward whirl form Fig. (3A), on the other hand, when the friction coefficient is high ( 0.2µ = ) the 
backward whirl motion is occurring Fig. (3C). Bartha (2001), who observed a strong dependence of 
the friction coefficient to induce the whirl phenomena in the disk, also pointed out this same 
behavior. 
 
 
4. CONCLUSIONS 
 

The study of the rotating system includes the free passing through its critical speed and the 
motion when an annular ring limits the disk. When it is passing its critical speed, we found out that 
the frequency where the maximum orbit amplitude occurs is varying with the torque on the rotor. 
For higher torques the new frequencies moves to the right side of the critical speed. Also, it is 
necessary to point out that when there is low damping in the system, as used for the numerical 
simulation, the transient don’t dies away in the resonance curves and the solution of the system 
looks like the obtained curve. 

This work shows that there is a strong dependence of the friction coefficient to induce the whirl 
movement. For low friction coefficient, the disk develops forward whirl, and, backward whirl when 
the friction coefficient is high. In the process of validation of the developed model, one interesting 
conclusion is that the backward whirl can be avoided decreasing the amount of friction present at 
the surfaces that get in contact. 
 

 



 
Figure 2. Resonance curve for various motor torques without annular ring 

 
 

 
Figure 3. Disk’s orbit and resonance curve (A, B for 0.01µ =  and C, D for 0.2µ = ) 
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