OVERHUNG ROTOR PASSING TROUGH ITSCRITICAL SPEED
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Abstract. The purpose of this work is to analyze the overhung rotor dynamics considering the
contact phenomenon between the disk and an annular ring. The analysis of contact is particularly
complex, due to the high nonlinearity of the motion equations. The impact is accounted by a
consistent contact model, the viscoelastic model. Motion equation for the rotor is encountered
employing the Lagrangean method. These equations are capable of capturing phenomena due to
lateral vibration, like: forward whirl, backward whirl, rolling or diding along the annular ring.
Due to the combined parameters and the effect of nonlinearity in the motion equations, the
dynamical response is not simple or easily predictable. Numerical simulation is the preferred
method of analysis, here it is used the Runge-Kutta Fehlberg method. Smulation results show that
under certain conditions, the rotor changes its orbit due to the impacts with the annular ring and
after that, it executes backward whirl motion. It is a kind of phenomenon that is considered as the
most violent and dangerous in rotating machines. The passing through its critical speed is analyzed
when driven by an electric motor (also when the system operates under a constant rotational
vel ocity).
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1. INTRODUCTION

The study of rotating machines has special importance for industries, due to the huge amount of
applications. One of these applicationsisin oil well drilling, where, the overhung rotor model may
represent, satisfactorily, the lateral dynamics of a drill-string section when it is impacting with the
wall.

The impact is a complex phenomenon that is still under investigation; a recent work by
Schiehlen (2003) shows that the method of multibody systems is most efficient for the dynamical
analysis of machines and structures. During impact, kinetic energy is lost by plastic deformations,
viscoel astic effects and wave propagation. For rigid body models, like Brach’s model (1998), the
energy loss is measured macromechanically by the coefficient of restitution. In thiswork it isused a
vibroimpact model, Rajalingham & Rakheja (2000), which represents satisfactorily the impact
phenomenon, where the impact force behavior is parabolic.

In order to investigate the dynamics of the system, the equation of motion for the rotor is
obtained by the Lagrange approach, and it is solved numerically using the 5™ order Runge-Kutta
Fehlberg method. Finally, numerical results are compared with those obtained from the related
literature.



2.MOTION EQUATIONS

When the rotating disk, Fig. (1A), impacts against the ring, there arise impact forces that act on
the disk. In order to calculate these forces, it is used here the vibroimpact model for the normal
force and Coulomb’ s law for the tangential force.

In the mechanical model we have 4DOF: a rigid body rotation of the motor shaft (6), a
torsional deformation (¢) of the rotor shaft and two orthogonal lateral deflections of the disk center

(%, y). The Lagrange equation for a non-conservative systemis.
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Where T and U are the Kinetic and Potential Energy; [ isthe Rayleigh’s energy dissipation
function; Q are the generalized forces associated with the generalized coordinates
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Figure 1. Deformed state of the system (A) and impacting forces on the disk (B)

The expression for the Kinetic Energy is.
T :%md (xz +y2) +%J (6 +¢)2 +%Jm( 9)2 +%m£(R€TR€)

Here, the first term is the trandational energy of the disk, the second is the rotational energy of
the rotor, the third is the rotational energy of the electric motor shaft, and, the last one is the
imbalance energy.

The location of m, in the inertial system (x,y) is given by: R, =Ry+Ag,4»e Where:
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} is responsible for the transformation of

coordinates (X, y) 9 (X4, Yq) - Finally the derivative of R, isdefine by:
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Now, writing the Kinetic Energy in the inertial system, results:
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The expression for the Potential Energy is:
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Here, the first and second terms are the energy due to shaft flexion and the last one is due to
shaft torsion.

The expressions for the Rayleigh’s Energy Dissipation Function, considering viscous
damping, proportional and non coupled, are:
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Where, c,, =Cy, =G, and
respectively.

Cpp=C are the flexural and torsional damping coefficients,

Considering that the vector of generalized forces, for 4DOF, is given by:
Q =[Q x Q Q¢] T and, using the Lagrange equation, Eq. (1), results four equations for
the variables (x,Y,6,¢).

The motion equation, in matrix form MZ +CZ +KZ +P = Q, results:
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The mass matrix elements are:
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The non-linear forces, which represent the centrifugal forces, are:
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In Eq. (2), the determinant of the mass matrix [M| = J;,(my +m.)(myd +mym.e” +m.J) is a

number, then, we will not have any singularity problems when the motion eguation is solved
numericaly.

The impacting forces, Fig. (1B), intheinertial system (x,y) can be calculated as:
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Where K, isthe contact stiffness; C. is the contact damping coefficient; J is the radial gap
and Hg_s) is the Heavyside function. The impact force components and torque in the coordinate
system (X,y) result:
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Finally, the generalized forces Q corresponding to the external forces, acting on the disk, are
T T
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Where T,,, is the torque acting on the rotor: it was found from experiments that is a polynomial
function (C :% isaconstant and Q rad/sistherotor’s rotational speed)

T, = C[—O.002441(%)3 +0177(2)" -5.608(2) +290.65} N-mm

3. NUMERICAL EXAMPLE

For the numerical simulations the initial disk center position coincides with the shaft motor
center, and, the disk velocity is zero (zero initial condition). Table (1) show us numerical values,
some of them were obtained from an experimental test rig, and, other from the literature review.

For this simulation, the disk behavior is analyzed in two cases: without and with the annular ring
of the rotor system. The results without the ring are showed in Fig. (2): it is a typical dynamical
system behavior passing through its critical speed (w, =2.29Hz.). Firstly the disk orbit starts at the
point (0,0) and due to the motor torque; the disk orbit grows, after reaching the maximum orbit
amplitude = 7mm. (near its critical speed), the disk orbit decreases until it reaches the steady-state
motion. Fig. (2) shows clearly that the frequency where there occurs the maximum orbit amplitude
is moving to the right side of the critical speed, when the torque is increasing. The new frequencies
for the maximum orbit are 1.16(w, ), 1.53(«;) and 3.10(w.) Hz for the 1%, 10% and 100%T,,,

respectively. Childs (1993) and Markert & Seidler (2001) also name this behavior.



Table 1. Geometrical and physical parameters for the rotor dynamic system

Disk

Mass (kg), radius (mm) Imy,Ry |25 50
Annular Ring

Inner radius (mm) Re 50.9
Shaft

Flexural stiffness (N/m) Kp 506.1
Torsional stiffness (N-m/rad) Ky 51.8
Torsional and Flexural damping factor {t.¢p 0.01
Contact parameters

Contact stiffness (N/m) K¢ 1.0x10°
Viscous coefficient of proportionality (9) B 1.0x10°7
Contact damping coefficient (N-s/m) Cc=BK: |01
Eccentricity

Mass (kg) me 0.03
Coordinates (&, £, ) (mm) Ex &y 28.2, 28.2

Here it is necessary to point out that when there is low damping in the system, Eq. (1), the
transient don’'t dies away in the resonance curve and the solution of the system looks like the Fig.
(2). Now, let us consider the annular ring in the rotor system and apply a 100%T,,. In this case, the

radial gap between the annular ring and the disk is considered 0.9 mm; therefore, it is expected that
the disk impact the ring, since it will restrict its free motion. Fig. (3) shows us the disk orbit and
resonance curve for two different values of the friction coefficient ¢ (0.01 and 0.2). There, we can
see that for a low friction coefficient (¢ =0.01), the disk, after some impacts, is moving in a
forward whirl form Fig. (3A), on the other hand, when the friction coefficient is high (¢ =0.2) the
backward whirl motion is occurring Fig. (3C). Bartha (2001), who observed a strong dependence of
the friction coefficient to induce the whirl phenomena in the disk, also pointed out this same
behavior.

4. CONCLUSIONS

The study of the rotating system includes the free passing through its critical speed and the
motion when an annular ring limits the disk. When it is passing its critical speed, we found out that
the frequency where the maximum orbit amplitude occurs is varying with the torque on the rotor.
For higher torques the new frequencies moves to the right side of the critical speed. Also, it is
necessary to point out that when there is low damping in the system, as used for the numerical
simulation, the transient don’'t dies away in the resonance curves and the solution of the system
looks like the obtained curve.

This work shows that there is a strong dependence of the friction coefficient to induce the whirl
movement. For low friction coefficient, the disk develops forward whirl, and, backward whirl when
the friction coefficient is high. In the process of validation of the developed model, one interesting
conclusion is that the backward whirl can be avoided decreasing the amount of friction present at
the surfaces that get in contact.
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Figure 2. Resonance curve for various motor torques without annular ring
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Figure 3. Disk’ s orbit and resonance curve (A, B for £ =0.01 and C, D for ¢ =0.2)
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