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O propósito do presente trabalho é mostrar novas e antigas formulações para onda refletida e 
campo próximo em vigas de Euler-Bernoulli semi-infinitas, e também formulações gerais para o 
fluxo de potência nestas vigas.  Diversas condições de contorno são propostas; e, para uma dada 
onda incidente, são calculados uma onda refletida, um campo próximo, e os parâmetros do fluxo de 
potência.  Uma caracterização mais precisa das condições de contorno; e, consequentemente, das 
ondas, fornece melhores resultados em cálculos de intensidade, principalmente em métodos 
baseados em propagação de ondas. 
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1. INTRODUÇÃO 
 

Estruturas mecânicas são geralmente excitadas por sistemas dinâmicos (máquinas e 
equipamentos) presos a elas.  Estes sistemas dinâmicos produzem ruído aéreo no meio acústico 
onde a estrutura está.  Além disso, uma fração dessa energia acústica flui através da estrutura para 
outros locais, eventualmente sendo radiada como som em outros meios acústicos, longe do local 
onde foi gerada.  Exemplo disto são os quartos de hotéis, nos quais os hóspedes não conseguem 
dormir por causa do ruído das bombas de água no subsolo ou na cobertura.  Plataformas “off-
shore”, navios e outros veículos são outros exemplos de sistemas mecânicos onde essa propagação é 
fonte importante de perda de qualidade acústica. 

O som estrutural (“structure-borne sound”) foi definido por Cremer e Heckl (1988) como um 
campo da física que lida com a geração e propagação de movimentos variantes no tempo e forças 
em corpos sólidos, bem como a radiação sonora associada.  Contudo, Dias (2002) redefiniu o som 
estrutural como a parcela do campo sonoro, em um sistema acústico, que flui em meio sólido 
(estrutural). 

O som estrutural tem sido estudado em termos de intensidade.  Intensidade mecânica, ou 
intensidade estrutural, é um campo vetorial dependente do tempo que descreve a média temporal do 
fluxo de potência por área transversal perpendicular ao fluxo, no interior da estrutura considerada.  
Noiseux (1970) obteve resultados importantes em medições práticas e cálculos de intensidade, 
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assim como Pavic (1976), Verheij (1980) e Halkyard e Mace (1995).  No Método de Decomposição 
em Ondas, desenvolvido por Halkyard e Mace (1995), fica clara a influência dos campos próximos 
em cálculos de intensidade.  Em alguns casos, a contribuição dos campos próximos para o fluxo de 
potência se torna até maior que a contribuição das ondas propagantes. 

O presente trabalho apresenta formulações antigas (Cremer e Heckl, 1988) para onda refletida e 
campo próximo em vigas de Euler-Bernoulli semi- infinitas com várias condições de contorno; e, 
como contribuição, novas formulações para condições de contorno mais complicadas, e parâmetros 
para o cálculo do fluxo de potência para todos os casos mostrados. 
 
2. INTENSIDADE EM VIGAS DE EULER-BERNOULLI 
 

A equação da média temporal do fluxo de potência para vigas de Euler-Bernoulli, é (Dias, 
2002): 
 
 
 (1) 
 
 
onde E é o módulo de elasticidade do material da viga, I é o momento de inércia da área da seção 
reta em relação ao eixo que passa pelo seu centro, T é o tamanho do intervalo de tempo 
considerado, u é o deslocamento transversal da seção reta da viga, e t e x são, respectivamente, as 
variáveis independentes tempo e espaço.  A barra horizontal acima de w denota média. 

A primeira parcela dentro dos colchetes representa a contribuição das forças de cisalhamento 
para a intensidade, a outra representa a contribuição dos momentos fletores.  Também pode ser 
visto da Eq. (1) que intensidade é uma quantidade tomada em média temporal. 
 
3. MÉTODO DE DECOMPOSIÇÃO EM ONDAS PARA INTENSIDADE 
 

Como resultado do trabalho de Halkyard e Mace (1995), o fluxo de potência apresentado na Eq. 
(1) pode também ser escrito, no domínio da freqüência, como (Dias, 2002): 
 
 (2) 
 
onde ω é a freqüência angular, k é o número de onda, A e B são amplitudes complexas das ondas 
propagantes, C e D são amplitudes complexas dos campos próximos, e φ é o ângulo de fase entre as 
amplitudes complexas dos campos próximos C e D. O til denota quantidade complexa.  As 
amplitudes dos campos próximos e o ângulo de fase φ entre elas são determinados pelas condições 
de contorno, ou, em outras palavras, pelo que a viga tem nas suas extremidades. 
 
4. EQUAÇÃO GERAL DO FLUXO DE POTÊNCIA 
 

A idéia do presente trabalho é que, promovendo a incidência de uma onda conhecida na 
extremidade finita de uma viga de Euler-Bernoulli semi- infinita, se encont rem as expressões da 
onda refletida e do campo próximo em função da onda incidente, e a expressão do fluxo de potência 
em função destas três grandezas.  Se a onda incidente tem a forma: 
 
 (3)  
 
onde ℜ{.} designa a parte real.  A onda refletida e o campo próximo, em função desta onda 
incidente, serão, respectivamente: 
 
 (4) 
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 (5) 
 
onde cr e ccp são, respectivamente, os coeficientes complexos correspondentes à onda refletida e ao 
campo próximo.  O deslocamento vertical total da viga é dado pela seguinte superposição: 
 
 (6) 
 

Substituindo a Eq. (6) na Eq. (1), obtém-se uma equação geral para o fluxo de potência em vigas 
de Euler-Bernoulli nas condições dadas: 
 
 (7) 
 
ou: 
 
 (8) 
 
onde: 
 
 (9) 
 
onde ℑ{.} designa a parte imaginária. 
 
5. FORMULAÇÕES 
 

Esta seção apresenta, para uma onda incidente conhecida na extremidade finita de uma viga de 
Euler-Bernoulli semi- infinita, as formulações para a onda propagante refletida e o campo próximo 
(caso exista).  Algumas condições de contorno são caracterizadas em termos de combinação ou 
ausência de massa, rigidez e amortecimento; as mais simples destas condições são conhecidas já do 
trabalho de Cremer e Heckl (1988). 
 
5.1. Extremidade Simplesmente Suportada 
 
 
 

 
Figura 1.  Viga semi- infinita extremidade simplesmente suportada. 

 
Tabela 1.  Condições de contorno, sistema de equações e resultados. 

 
Condições de contorno Sistema de equações Resultados 

   

 
onde Mz é o momento fletor.  Observa-se uma mudança de fase de π  rad para o deslocamento 
vertical devido à onda refletida. 
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5.2. Extremidade Guiada 
 
 
 
 
 
 
 

Figura 2.  Viga semi- infinita com extremidade guiada. 
 

Tabela 2.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde θz é o ângulo de rotação da extremidade da viga em relação a um eixo z perpendicular ao 
plano da figura, e Qy é o esforço cortante.  Observa-se, desta vez, que não há mudança de fase no 
deslocamento vertical devido à onda refletida. 
 
5.3. Extremidade Livre  
 
 

 
Figura 3.  Viga semi- infinita com extremidade livre. 

 
Tabela 3.  Condições de contorno, sistema de equações e resultados. 

 
Condições de contorno Sistema de equações Resultados 

   

 
Observa-se uma mudança de fase de -π/2 rad para o deslocamento vertical devido à onda refletida.  
Nota-se, ainda, que: 
 
 (10) 
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5.4. Extremidade Engastada 
 
 
 
 

 
Figura 4.  Viga semi- infinita com extremidade engastada. 

 
Tabela 4.  Condições de contorno, sistema de equações e resultados. 

 
Condições de contorno Sistema de equações Resultados 

   

 
Observa-se uma mudança de fase de -π/2 rad para o deslocamento vertical devido à onda refletida.  
Nota-se, ainda, que: 
 
 (11) 
 
5.5. Extremidade com Mola 
 
 
 

 
 
 

Figura 5.  Viga semi- infinita com mola na extremidade. 
 

Tabela 5.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde km é o coeficiente de rigidez da mola, e: 
 
 (12) 
 
Nota-se também que, se km → 0 , ucp → (1-i)ui e ur → -iui , significando extremidade livre. 
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5.6. Extremidade com Massa Concentrada 
 
 
 
 
 
 

Figura 6.  Viga semi- infinita com massa concentrada na extremidade. 
 

Tabela 6.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde m é a massa, e: 
 
 (13) 
 
 
Nota-se também que, se m → 0 , ucp → (1-i)ui e ur → -iui , significando extremidade livre. 
 
5.7. Extremidade com Amortecedor 
 

 
 
 
 
 

Figura 7.  Viga semi- infinita com amortecedor na extremidade. 
 

Tabela 7.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde c é o coeficiente de amortecimento, e: 
 
 (14) 
 
 
Nota-se também que, se c → 0 , ucp → (1-i)ui e ur → -iui , significando extremidade livre. 
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5.8. Extremidade com Sistema Massa-Mola 
 
 
 
 
 
 
 

Figura 8.  Viga semi- infinita com sistema massa-mola na extremidade. 
 

Tabela 8.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde um é o deslocamento vertical da massa, e: 
 
 (15) 
 
5.9. Extremidade com Sistema Mola-Amortecedor 
 
 
 
 
 
 
 

Figura 9.  Viga semi- infinita com sistema mola-amortecedor na extremidade. 
 

Tabela 9.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde uc é o deslocamento vertical da extremidade do amortecedor que está unida à mola, e: 
 
 (16) 
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5.10. Extremidade com Sistema Massa-Amortecedor 
 
 
 
 
 
 
 
 

Figura 10.  Viga semi- infinita com sistema massa-amortecedor na extremidade. 
 

Tabela 10.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde: 
 
 (17) 
 
5.11. Extremidade com Sistema Massa-Mola-Amortecedor 
 
 
 
 
 
 
 
 

Figura 11.  Viga semi- infinita com sistema massa-mola-amortecedor na extremidade. 
 

Tabela 11.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde: 
 
  
 (18) 
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5.12. Extremidade com Mola de Torção 
 
 
 
 
 
 

Figura 12.  Viga semi- infinita com mola de torção na extremidade. 
 

Tabela 12.  Condições de contorno, sistema de equações e resultados. 
 

Condições de contorno Sistema de equações Resultados 
   

 
onde G é o módulo de cisalhamento, J é o momento polar de inércia, e: 
 
 (19) 
 
6. CONCLUSÕES 
 

Para uma viga de Euler-Bernoulli semi- infinita, com uma onda incidente conhecida na 
extremidade finita, é possível calcular as amplitudes da onda refletida e do campo próximo em 
função da onda incidente dada. 

A caracterização dos contornos de uma viga é importante para se calcular o fluxo de potência 
pelo Método de Decomposição em Ondas, o qual é função, dentre outros, do ângulo relativo entre 
as amplitudes dos campos próximos.  Em alguns dos casos apresentados, a amplitude do campo 
próximo chega a ser mesmo maior que a amplitude da onda incidente.  Isto indica que os campos 
próximos podem ter grande contribuição ao fluxo de potência em vigas de Euler-Bernoulli. 

A contribuição dos campos próximos para o fluxo de potência, portanto, é função do que a viga 
tem em suas extremidades; isto é, do tipo de contorno que apresenta.  Uma forma de caracterizar os 
contornos é, precisamente, por meio do cálculo de onda refletida e campo próximo que os contornos 
promovem, em função de uma onda incidente conhecida. 

Bem caracterizados os contornos de uma viga de Euler-Bernoulli, o Método de Decomposição 
em Ondas pode ser codificado em linguagem de programação com certa facilidade.  A monitoração 
das ondas propagantes e dos campos próximos existentes na viga, juntamente com a programação 
do Método, podem conduzir a um sistema de controle de vibrações baseado em propagação de 
ondas. 

Outros tipos de exemplos, obtidos pela combinação dos casos aqui apresentados, podem ser 
concebidos e explorados do mesmo modo. 
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The purpose of the present work is to show new and old formulations for reflected wave and near-
field in semi-infinite Euler-Bernoulli beams and, also, general formulations for the power flow in 
these beams.  Various boundary conditions are proposed; and, for a given incident wave, one 
reflected wave, one near-field, and the parameters for power flow are calculated.  A more accurate 
characterization of the boundary conditions; and, consequently, of the waves, can yield better 
results for intensity calculations, mainly in methods based upon wave propagation. 
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