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O proposito do presente trabalho é mostrar novas e antigas formulactes para onda refletida e
campo proximo em vigas de Euler-Bernoulli semi-infinitas, e também formulagtes gerais para o
fluxo de poténcia nestas vigas. Diversas condi¢des de contorno sao propostas; e, para uma dada
onda incidente, sdo cal culados uma onda refletida, um campo préximo, e os parametros do fluxo de
poténcia. Uma caracterizacdo mais precisa das condi¢des de contorno; e, consequentemente, das
ondas, fornece melhores resultados em cal cul os de intensidade, principal mente em métodos
baseados em propagacao de ondas.

Viga, Onda, Intensidade, Energia, Poténcia.
1. INTRODUCAO

Estruturas mecénicas sdo geralmente excitadas por sistemas dindmicos (méguinas e
equipamentos) presos a elas. Estes sistemas dinamicos produzem ruido aéreo no meio acustico
onde a estrutura esta.  Além disso, uma frac8o dessa energia acUstica flui através da estrutura para
outros locais, eventuamente sendo radiada como som em outros meios acusticos, longe do local
onde foi gerada. Exemplo disto sGo os quartos de hotéis, nos quais os hospedes ndo conseguem
dormir por causa do ruido das bombas de agua no subsolo ou na cobertura. Plataformas “off-
shore”, navios e outros veicul 0s sdo outros exemplos de sistemas mecanicos onde essa propagacao é
fonte importante de perda de qualidade acUstica.

O som estrutura (“structure-borne sound”) foi definido por Cremer e Heckl (1988) como um
campo da fisica que lida com a geracéo e propagacdo de movimentos variantes no tempo e forcas
em corpos solidos, bem como a radiagdo sonora associada. Contudo, Dias (2002) redefiniu o som
estrutural como a parcela do @ampo sonoro, em um sistema acustico, que flui em meio sdlido
(estrutural).

O som estrutural tem sido estudado em termos de intensidade. Intensidade mecénica, ou
intensidade estrutural, € um campo vetorial dependente do tempo gque descreve a média temporal do
fluxo de poténcia por area transversal perpendicular ao fluxo, no interior da estrutura considerada.
Noiseux (1970) obteve resultados importantes em medi¢des praticas e clculos de intensidade,



assim como Pavic (1976), Verheij (1980) e Halkyard e Mace (1995). No Método de Decomposi¢éo
em Ondas, desenvolvido por Halkyard e Mace (1995), fica clara a influéncia dos campos préximos
em calculos de intensidade. Em alguns casos, a contribuicdo dos campos proximos para o fluxo de
poténcia se torna até maior que a contribui¢do das ondas propagantes.

O presente trabalho apresenta formulagdes antigas (Cremer e Heckl, 1988) para onda refletida e
campo proximo em vigas de Euler-Bernoulli semi-infinitas com vérias condi¢bes de contorno; e,
como contribuic¢do, novas formulagdes para condic¢bes de contorno mais complicadas, e parametros
para o cdculo do fluxo de poténcia para todos os casos mostrados.

2. INTENSIDADE EM VIGAS DE EULER-BERNOULLI

A equacdo da media temporal do fluxo de poténcia para vigas de Euler-Bernoulli, € (Dias,
2002):
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onde E € o modulo de elasticidade do material da viga, | € o momento de inércia da &rea da secéo
reta em relacdo a0 eixo que passa pelo seu centro, T é o tamanho do intervalo de tempo
considerado, u é o deslocamento transversal da secdo reta da viga, e t e x sdo, respectivamente, as
variaveis independentes tempo e espaco. A barra horizontal acima de w denota média.

A primeira parcela dentro dos colchetes representa a contribuicdo das forgas de cisalhamento
para a intensidade, a outra representa a contribuicdo dos momentos fletores. Também pode ser
visto da Eqg. (1) que intensidade € uma quantidade tomada em média temporal.

3. METODO DE DECOMPOSICAO EM ONDAS PARA INTENSIDADE

Como resultado do trabalho de Halkyard e Mace (1995), o fluxo de poténcia apresentado na Eq.
(1) pode também ser escrito, no dominio da frequéncia, como (Dias, 2002):
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onde w € a frequéncia angular, k € o nimero de onda, A e B sdo amplitudes complexas das ondas
propagantes, C e D sdo amplitudes complexas dos campos proximos, ef € o angulo de fase entre as
amplitudes complexas dos campos proximos C e D. O til denota quantidade complexa. As
amplitudes dos campos préximos e o angulo de fase f entre elas sdo determinados pelas condicbes
de contorno, ou, em outras palavras, pelo que a viga tem nas suas extremidades.

4. EQUACAO GERAL DO FLUXO DE POTENCIA
A idéia do presente trabalho é que, promovendo a incidéncia de uma onda conhecida na
extremidade finita de uma viga de Euler-Bernoulli semi-infinita, se encontrem as expressoes da

onda refletida e do campo préximo em fungdo da onda incidente, e a expressao do fluxo de poténcia
em funcdo destas trés grandezas. Se a onda incidente tem a forma:

u; (x,t) = A{ G e} 3

onde A{.} designa a parte real. A onda refletida e 0 campo proximo, em fungio desta onda
incidente, serdo, respectivamente:

u, (x,t) =A{E Ge' v} 4
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onde ¢ e C¢p S80, respectivamente, os coeficientes complexos correspondentes a onda refletida e ao
campo proximo. O deslocamento vertical total daviga € dado pela seguinte superposi ¢cao:

utt) =A{g e }+A{gae ) +A{E, ae ) ©)

Substituindo a Eg. (6) na Eg. (1), obtémse uma equacdo geral para o fluxo de poténcia em vigas
de Euler-Bernoulli nas condi¢des dadas:
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ou:
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onde:

c, =A{T} , d =A{T} ., ¢, =Ald,} . d,=AlT,} 9)

onde A{.} designaa parte imaginaria
5. FORMULACOES

Esta se¢do apresenta, para uma onda incidente conhecida na extremidade finita de uma viga de
Euler-Bernoulli semi-infinita, as formulagdes para a onda propagante refletida e o campo proximo
(caso exista). Algumas condicBes de contorno sdo caracterizadas em termos de combinacdo ou
auséncia de massa, rigidez e amortecimento; as mais simples destas condi¢fes séo conhecidas ja do
trabalho de Cremer e Heckl (1988).

5.1. Extremidade Simplesmente Suportada
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Figural. Vigasemi-infinita extremidade simplesmente suportada.

Tabelal. Condic¢Oes de contorno, sistema de equagdes e resultados.

Condic¢des de contorno Sistema de equacdes Resultados
u =0 ] u, +ul’+ucp:O ucp:O
M,=0P %:0 -u-u +u, =0 u =-u

X

onde M; é o momento fletor. Observa-se uma mudanca de fase de p rad para o deslocamento
vertical devido aondarefletida.



5.2. Extremidade Guiada
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Figura2. Vigasemi-infinita com extremidade guiada.

Tabela2. Condic¢des de contorno, sistema de equagoes e resultados.

Condicdes de contorno Sistema de equagoes Resultados
19, _qp Tu _
F_Op ﬂXﬂt_O U FU - iU =0 Ugp =0
3 -iu +iu -u, =0 u =u
Qy :Op ﬂ_l;:() : ' @® ' I
x

onde g, é o angulo de rotacdo da extremidade da viga em relagdo a um eixo z perpendicular ao
plano da figura, e Q, € o esforco cortante. Observa-se, desta vez, que ndo ha mudanca de fase no
deslocamento vertical devido a onda refletida.

5.3. ExtremidadeLivre
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Figura3. Vigasemi-infinitacom extremidade livre.

Tabela3. Condicdes de contorno, sistema de equacdes e resultados.

Condigdes de contorno Sistema de equacdes Resultados
_ Tu _
MZ—OD W_O -u -u, +ucp:0 ucp:(l'i)ui
3 -iu; +iu -u,, =0 =-iju.
Qy =0b ﬂ—l;:O i r cp u, U,
X

Observa-se uma mudanca de fase de -p/2 rad para o deslocamento vertical devido a onda refletida.
Nota-se, ainda, que:

U
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5.4. Extremidade Engastada

Figura4. Vigasemi-infinita com extremidade engastada.

Tabela4. Condicdes de contorno, sistema de equacdes e resultados.

Condic¢oes de contorno Sistema de equagdes Resultados
u =0 U, +u +u, =0 Uy = (-1+i)y,
2 . _ —
1-[qZ:OD 1Tu:o -ui-+-l'jr_“'lcp_O u. =-1y
1t ixTt

Observa-se uma mudanca de fase de -p/2 rad para o deslocamento vertical devido a onda refletida.
Nota-se, ainda, que:

U

>|uy| (11)

5.5. Extremidade com Mola
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Figura5. Vigasemi-infinita com mola na extremidade.

Tabela5. Condic¢des de contorno, sistema de equagdes e resultados.

Condic¢oes de contorno Sistema de equagtes Resultados
_ap Tu_ _a'-a
MZ—OD ﬂ7—0 U - u +ucp =0 Ucp—mui
u au +a'u +bu_ =0 +
Q, =kub ElLl=k et Ol o, =- %0y
x a +b

onde ki, € o coeficiente de rigidez da mola, €:
a=(-k,-iElk® , a’ =(-k,+iEIK®) , b=(-k, - EIK®) (12)

Nota-se também que, seknm® O, U ® (1-)u; eu; ® -iu;, significando extremidade livre.




5.6. Extremidade com Massa Concentrada
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Figura6. Vigasemi-infinita com massa concentrada na extremidade.

Tabela6. Condigbes de contorno, sistema de equaces e resultados.

Condic¢des de contorno Sistema de equacdes Resultados
2 *
M, =0p ﬂ_l::O _ u =2 "2,
qIx - U - U +ucp =0 P a +b "’
@:_yp @:Eﬂ_su an+a*Ur+bUCp=O u =- a+b
2 m 2 mx r a +b

ondem é amassa, €

3 3 3 13
o= gwﬂElkz’a_éeW_lElk:’b:a-E-W2+EIk2 (13)
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Nota-se também que, sem® 0, Up ® (1-i)ui eur ® -iu; , significando extremidade livre.

5.7. Extremidade com Amortecedor
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Figura7. Vigasemi-infinita com amortecedor na extremidade.

Tabela7. Condic¢des de contorno, sistema de equagoes e resultados.

Condicdes de contorno Sistema de equagtes Resultados
2 -
M, =0pP ﬂ——O - Uc:b an
ﬂX - U - U +ucp =0 P b+c
fu _Q, fu_El g au; +bu, +cug, =0 § =.3%C,
ft ¢ Tt c % r b+c

onde c é o coeficiente de amortecimento, €

a_aeW+EIk3QI - Elk3 o EEIC L0 (14)
g C g gvv ’ g ¢ 5

Nota-se também que, sec® 0, usp ® (1-)ui eus ® -iu;, significando extremidade livre.




5.8. Extremidade com Sistema M assa-M ola
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Figura 8. Vigasemi-infinita com sistema massa- mola na extremidade.

Tabela8. Condic¢des de contorno, sistema de equagoes e resultados.

Condicdes de contorno Sistema de equagbes Resultados
_ap Tu_ (@ -a)u +D
MZ_ODW_O U -u U, =0 @ a +b
3 2 +a’u +bu._=D - .
Qy = E|ﬂ_l;: mﬂ uzm +km(u_ um) au; +a u, ucp o= D (*a+b)u|
ix it a +b
onde up, € 0 deslocamento vertical da massa, €
2
a=(-k,-iEIk®) , a"=(-k, +iEk®) , b=(-k, - EIK® , D :mﬂﬂtuzm -k.u. (15
5.9. Extremidade com Sistema M ola-Amortecedor
]
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Figura9. Vigasemi-infinita com sistema mola-amortecedor na extremidade.
Tabela9. Condicdes de contorno, sistema de equacdes e resultados.
Condigoes de contorno Sistema de equacdes Resultados
_op Tu_ @ -a)u+p
MZ_ODW_O -u- U +ucp =0 UCp_ a +b
3 * — _ A
Q, :Elﬂ—g:cﬂu°+km(u-uc) au, +a’u, +bu,, =D | _D (?+b)u,
X it a’ +b
onde u. € o deslocamento vertical da extremidade do amortecedor que estd unidaamola, e
fu,
- k,,u, (16)

a=(-k, -iEk®) , a' =(-k,+iEIk®) , b=(-k - EIk®) , D=c @



5.10. Extremidade com Sistema M assa-Amortecedor
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Figura10. Vigasemi-infinita com sistema massa-amortecedor na extremidade.

Tabela10. Condicdes de contorno, sistema de equagoes e resultados.

Condigdes de contorno Sistema de equagdes Resultados
— Tu _ _ (b' a)ui +D
M =0P e =0 “u -y oty =0 Yo = pre
8 - 2 au, +bu, +cu, =D D- (a+c)u
Qy:Elﬂg:cﬂ(u Un) 4 T u2m p u = (a+c)y,
ix it 1t b+c
onde:

2
o I 1)

a=(-wc- EIk®i , b=(-wc+EIk®i , c=(-EIk®-iw) , D:m.”t2 i

5.11. Extremidade com Sistema M assa-M ola-Amor tecedor
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Figurall. Vigasemi-infinita com sistema massa- mola-amortecedor na extremidade.

Tabela1l. Condicdes de contorno, sistema de equagoes e resultados.

Condi¢des de contorno Sistema de equagdes Resultados
_ Tu _ _(b' a)ui+D
M:=0P e =0 “u-u gy =0 | e ST
3 _ 2 o+ + = - .
Q, = Elﬂ—l;:km(u- um)+c‘"(u Uy) +mﬂ u2m au; +bu, +cu, =D u, _D-la+rcju @+cu,
X it it b+c
onde:
a=-k, - (Wc+EIK})i , b=-k, - (wc- EIK®)i
2
c=-k,- Elk®-iwc D=m uz"‘- Il _ K.U. (18)
1t 1t



5.12. Extremidade com Mola de Torcéo
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Figura12. Vigasemi-infinita com mola de tor¢éo na extremidade.

Tabela 12. Condigdes de contorno, sistema de equactes e resultados.

Condic¢oes de contorno Sistema de equacdes Resultados

Tu Tu (a+a’iy

M,=GJ, P -El—=GJ— : , u. =- i
Tu au, +a’u, +bu, =0 _ (a-ib)y,

Q =0p ~Y=-9 u =&
y e ' (a +ibi

onde G é o médulo de cisalhamento, J € o momento polar de inércia, €

a=Elk2-iGXk , a =EIk*+iGk , b=-Elk?+GXk (19)

6. CONCLUSOES

Para uma viga de Euler-Bernoulli semi-infinita, com uma onda incidente conhecida na
extremidade finita, € possivel calcular as amplitudes da onda refletida e do campo proximo em
funcéo da onda incidente dada.

A caracterizagdo dos contornos de uma viga € importante para se calcular o fluxo de poténcia
pelo Método de Decomposicéo em Ondas, o qual é funcdo, dentre outros, do angulo relativo entre
as amplitudes dos campos proximos. Em alguns dos casos apresentados, a amplitude do campo
proximo chega a ser mesmo maior que a amplitude da onda incidente. Isto indica que os campos
préximos podem ter grande contribuicdo ao fluxo de poténcia em vigas de Euler-Bernoulli.

A contribuicdo dos campos proximos para o fluxo de poténcia, portanto, € funcéo do que a viga
tem em suas extremidades; isto €, do tipo de contorno que apresenta. Uma forma de caracterizar os
contornos &, precisamente, por meio do calculo de onda refletida e campo proximo que os contornos
promovem, em funcéo de uma onda incidente conhecida.

Bem caracterizados os contornos de uma viga de Euler-Bernoulli, o Méodo de Decomposi¢céo
em Ondas pode ser codificado em linguagem de programagdo com certa facilidade. A monitoracéo
das ondas propagantes e dos campos préximos existentes na viga, juntamente com a programagao
do Método, podem conduzir a um sistema de controle de vibragdes baseado em propagacdo de
ondas.

Outros tipos de exemplos, obtidos pela combinagdo dos casos aqui apresentados, podem ser
concebidos e explorados do mesmo modo.
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The purpose of the present work is to show new and old formulations for reflected wave and near-
field in semi-infinite Euler-Bernoulli beams and, also, general formulations for the power flow in
these beams. Various boundary conditions are proposed; and, for a given incident wave, one
reflected wave, one near-field, and the parameters for power flow are calculated. A more accurate
characterization of the boundary conditions; and, consequently, of the waves, can yield better
results for intensity calculations, mainly in methods based upon wave propagation.
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