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Resumo. Neste trabalho, a teoria de Reynolds, bastante difundida no estudo de mancais
hidrodinâmicos, é aplicada a um problema real, no qual suspeita-se da perda de circularidade dos
anéis de desgaste estacionários inferiores da turbina de um hidrogerador, resultando em campos
de pressões dinâmicos capazes de causar danos à fixação desses anéis e vibrações nas máquinas.

Para tal estudo, considera-se apenas o movimento do fluido induzido pela rotação do eixo, não
sendo considerado, a princípio, o fluxo na direção axial. Integrando a equação de Reynolds
formulada para fluxo laminar, dentre outras hipóteses, calcula-se o campo de pressão gerado pelo
movimento relativo entre o rotor e a parte fixa. Para contabilizar a não circularidade do anel, seu
raio interno é considerado função da coordenada circunferencial. Por fim, é obtida uma expressão
que determina o campo de pressão, incluindo ainda o movimento de precessão do rotor.

A partir de simulações computacionais, analisa-se o campo de pressão ao longo do anel,
relacionando-o à sua geometria. Posteriormente, é possível avaliar a contribuição do fluxo axial,
bem como fazer considerações a respeito de possíveis diferenças para casos de fluxo turbulento.

Palavras-chave: Campo de pressão, Teoria Hidrodinâmica, Máquinas Rotativas.

1. INTRODUÇÃO

O fluxo de fluidos ao redor de corpos ou tangentes a superfícies causam vibrações que podem
ter sérias conseqüências. Fluxos de líquidos em tubulações, tanto internos como externos, induzem
vibrações que podem reduzir a vida útil das redes ou danificá-las. Da mesma maneira, as máquinas
de fluxo, motrizes e geratrizes, também estão sujeitas a esses fenômenos. Essas vibrações surgem
dos mais diferentes mecanismos de dinâmica dos fluídos e podem ser classificados de acordo com a
natureza do fluxo e da estrutura. No trabalho aqui apresentado será aplicada a teoria de mancais
hidrodinâmicos a um problema ocorrido em turbinas de uma unidade geradora, onde se suspeita que
a perda de circularidade dos anéis de desgaste estacionários dessas turbinas gera campos dinâmicos
de pressões, capazes de causar danos à fixação dos anéis e vibrações às máquinas.



Como mostra esquematicamente a Fig. (1), esse estudo se concentra na região dos anéis de
desgaste inferiores. Inicialmente é considerado apenas o efeito de bombeamento de água, causado
pela rotação do rotor. Caso esteja ocorrendo a perda de circularidade do anel estacionário,
aparecerão regiões de elevações e baixas de pressão. Além disso, deve ser observado que, nessa
primeira fase, é desconsiderado o fluxo axial nesta região, que causaria um campo de velocidades
Va, admitindo-se que este não cause perturbações de pressão. Desta forma, será considerado apenas
o campo de velocidade circunferencial, Vt, Posteriormente, será avaliada a influência que o fluxo
axial pode ter sobre o campo de pressão ao longo do anel.
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Figura 1. Detalhe da região estudada (anéis de desgaste estacionário/rotativo)

2. MODELO MATEMÁTICO DO CAMPO DE PRESSÃO

Na lubrificação hidrodinâmica as superfícies do eixo rotativo e do mancal são separadas por um
filme de lubrificante. Para que tal filme seja capaz de separar as superfícies, é necessário que o
fluido seja arrastado para uma região convergente de forma a produzir um campo de pressão. A
formação de convergência pode ser resultado de um deslocamento lateral (excentricidade) entre os
centros do rotor e do mancal, ou pode ser atribuída a características geométricas, como
irregularidades da superfície do mancal. O fluido é conduzido para essa região devido à
viscosidade, que o faz aderir nas superfícies, aliada ao movimento relativo entre as mesmas.

Sendo assim, como um estudo preliminar, essa teoria é utilizada para tentar estimar o campo de
pressão gerado pelo fluido que se encontra entre o aro rotativo e o anel de desgaste estacionário,
cuja superfície interna não seja perfeitamente circular.

2.1 – Modelo para Mancais Hidrodinâmicos: Equação de Reynolds

A análise da pressão desenvolvida em mancais hidrodinâmicos inicia-se na formulação da
Equação de Reynolds, a partir das considerações sobre um elemento infinitesimal de fluido, como o
mostrado na Fig. (2). A partir dessa equação obtém-se o campo de pressões gerado no mancal.

Para tal formulação as seguintes hipóteses devem ser aplicadas.

1. O lubrificante é considerado um fluido Newtoniano, incompressível e de viscosidade (µ)
constante em todo o filme e sua inércia é desprezível.

2. As curvaturas das superfícies podem ser desprezadas se comparadas à espessura (H) do
filme.

3. O filme é fino, de modo que sua dimensão seja desprezível em relação ao comprimento do
fluxo e a pressão é uniforme na direção de sua espessura.

4. O fluido adere nas paredes (condição de não deslizamento) e estas são rígidas e
impermeáveis.

5. O fluxo é laminar.
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Figura 2. Geometria e coordenadas de um mancal plano

A Eq. (1) mostra então a equação de Reynolds na sua forma mais usual para aplicação no estudo
de mancais hidrodinâmicos, onde p é a pressão, ω é a velocidade de rotação do eixo, r é o raio do
eixo, t é o tempo e θ  é a coordenada circunferencial relativa ao referencial fixo XY.
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2.2. Cálculo do Campo de Pressão Gerado

A solução da Eq. (1), na forma em que está apresentada, só pode ser obtida numericamente.
Soluções analíticas podem ser obtidas por integração direta apenas se um dos termos do lado
esquerdo for descartado. A decisão sobre qual dos termos é dominante é tomada de acordo com a
relação entre o diâmetro do eixo ( d ) e o comprimento ( L ) do mancal ou anel externo. Para
evidenciar como essa razão influencia tais aproximações, reescreve-se a equação de Reynolds em
função das seguintes variáveis adimensionais:
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Substituindo-se as expressões de Eq. (� ���  em Eq.(1), chega-se à Eq. (3), onde a razão dL
aparece em evidência no primeiro termo.
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Dessa forma, quando o comprimento for muito maior que o diâmetro, o termo de variação de
pressão na coordenada circunferencial passa a ser dominante. Analogamente, para comprimentos
curtos comparados ao diâmetro, o termo com derivadas na direção axial é o único a ser mantido
para a integração da equação. Portanto, são possíveis dois tipos de solução analítica para a equação
de Reynolds, conhecidas como solução para mancais curtos, ou solução de Ocvirk, e solução para
mancais longos, ou solução de Sommerfeld.

Para o estudo em questão, a solução mais adequada é a de Ocvirk para mancais curtos. Bons
resultados são obtidos com essa aproximação, contanto que a razão dL  seja menor que 0,5. Além



disso, a excentricidade não deve ultrapassar 70% do valor da folga radial. O campo de pressão é
então calculado através da integração da Eq. (4).
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Em mancais, é comum admitir que nas extremidades a pressão é nula, sendo máxima em seu
ponto médio. Utilizando essas características como condições de fronteira para a integração, chega-
se à seguinte expressão para o campo de pressão.
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O campo de pressão dado pela Eq. (5), está em função da espessura da camada de fluido ( H ) e
de suas derivadas. Para tornar esta equação aplicável, deve-se obter uma expressão para H . A partir
deste ponto, as considerações a respeito da geometria do anel externo conduzem a uma análise
ligeiramente diferente da utilizada em mancais planos.

2.3. Modelagem do Anel Não Circular

Considerando-se então um anel com superfície irregular, pode-se propor um modelo em que seu
raio interno seja variável com a coordenada circunferencial. Sendo assim, a expressão para o raio
interno R do anel estacionário pode ser escrita em função de um raio nominal 0R  e de uma função
arbitrária ( )θf , que represente a irregularidade da superfície, como sugere a Eq. (6).

( ) ( )θθ fRR += 0 ( 6 )
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Figura 3. Geometria de um anel deformado

A determinação da espessura do filme de óleo em mancais é feita utilizando o triângulo
hachurado da Fig (3), definido pela excentricidade ( e ), e pelos lados )( Hr +  e R . A aplicação da
lei dos cossenos neste triângulo resulta em:

( )222 cos2 HreRRe +=++ φ ( 7 )

Onde φ  é a coordenada circunferencial relativa ao ponto de  maior espessura do filme.
Substituindo a Eq. (7) na Eq.(6), e rearranjando-a, vem que:

22
0

2
0

2
0

2 2cos2cos22 HrHrefeRffRRe ++=+++++ φφ ( 8 )



Por conveniência, define-se o raio nominal do anel (raio interno do anel estacionário não
deformado) como a soma do raio do eixo a uma folga radial nominal ( rc ), como mostrado na Eq.
(9).

rcrR +=0 ( 9 )

A razão entre a folga radial e o raio do eixo costuma ser muito pequena ( rcr  da ordem de
310−
). Sendo assim, após substituir a Eq. (9) na Eq. (8), os termos de segunda ordem, envolvendo

rc  e as outras variáveis da mesma ordem de grandeza (e, H, f) podem ser desprezados, o que leva a:

φcosefcH r ++= ( 10 )

Da Eq. (10), nota-se que a espessura da camada de fluido é determinada pela diferença entre os
raios do anel e do eixo, expressa pelos dois primeiros termos, combinada com a posição do centro
do eixo, que pode ser variável no tempo. Nota-se também, nessa mesma expressão, que a espessura
do filme é função do ângulo φ  referente a um referencial que pode ser móvel. Uma mudança para o
referencial estacionário, fixo no centro do anel, é conveniente. Da Fig. (2), é possível extrair a
seguinte relação entre as coordenadas angulares, onde β representa o ângulo de atitude com respeito
ao eixo X:

θβπφ +−= ( 11 )

Substituindo (11) em (10), e aplicando-se a identidade trigonométrica do co-seno da diferença,
chega-se em:

( )βθβθ sensencoscos +−+= efcH r ( 12 )

As projeções da excentricidade nas direções X e Y ficam dadas por:

βcoseeX = ( 13 )

βseneeY = ( 14 )

Para fins de simulação numérica, pode-se considerar que o centro do eixo realiza um movimento
de precessão síncrono com a velocidade de rotação do eixo. Dessa maneira o ângulo β , que define
a inclinação da linha que passa pelos centros do anel e do eixo, é substituído por tω , nas expressões
(13) e (14). Entretanto, não há impedimento para que sejam simuladas situações em que o
movimento de precessão seja assíncrono ou em que a amplitude desse movimento seja função da
velocidade de rotação e do tempo.

Por fim, substituindo-se a Eq. (13) e a Eq. (14) na Eq. (12), chega-se à expressão que determina
a espessura da camada de fluido em relação às coordenadas fixas, ou seja:

( ) ( ) ( ) ( ) θθθθ sencos, tetefctH YXr −−+= ( 15 )

Antes de retornar ao campo de pressão, são necessárias as expressões das derivadas da Eq. (15),
em relação a t e a θ , assim:
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Substituindo-se Eq. (15), Eq. (16) e Eq. (17) na Eq. (5) chega-se à expressão que determina o
campo de pressão gerado no fluido:
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Analisando a Eq. (18) percebe-se que a pressão é diretamente proporcional à viscosidade e à
velocidade de rotação. Se qualquer desses dois fatores for nulo, não haverá campo de pressão
(considerando que a variação da excentricidade só ocorre devido à rotação do eixo). Se o anel for
perfeitamente circular, é necessária uma excentricidade para gerar um campo de pressão. Se o eixo
e o anel permanecem concêntricos, a pressão gerada é apenas devido às irregularidades da
superfície.

3. SIMULAÇÃO COMPUTACIONAL

A seguir são apresentados os resultados de algumas simulações numéricas realizadas. Quando
for considerado o movimento de precessão do rotor, este será síncrono, como acontece quando há
um desbalanceamento na máquina. Em todas as simulações subseqüentes, o plano do anel analisado
corresponde ao seu ponto médio ( 0=z ), e com isso calcula-se a variação de pressão apenas ao
longo da circunferência. Os valores utilizados nos cálculos são equivalentes aos dados da turbina
real. e são apresentados na Tab. (1).

Tabela 1. Parâmetros da máquina real

Velocidade de Rotação do Eixo (rpm) 120
Folga Radial Nominal (mm) 3
Comprimento do anel (mm) 170
Viscosidade da água (Ns/m2) 0,001

Na primeira simulação apresentada é utilizada uma função de irregularidade de modo que sejam
criadas apenas algumas deformações localizadas, de acordo com a Eq. (19). As constantes A e k1

são definidas para ajustar a forma das irregularidades definidas pela função. Nesse caso foram
utilizados rcA 1,0=  e 41 =k .

( ) ( )
( )





<<−

<<<<
=

º225º180       ,sen

 º315º270ou  º135º90  ,sen

1
2

1
2

θθ

θθθ
θ

kA

kA
f (19)



A Figura (4a) ilustra a geometria do anel externo (curva azul) sobreposta pelo campo de pressão
gerado (curva vermelha) enquanto não há movimento de precessão do rotor, ou seja, o anel e o rotor
estão concêntricos. Verifica-se que só há variação de pressão nos trechos correspondentes às
deformações do anel, como já era previsto. Além disso é possível associar regiões de convergência
a pressões positivas e de divergência a pressões negativas.
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Figura 4. Distribuição de pressão ao longo da circunferência do anel

Incluindo a precessão do rotor na simulação pode-se acompanhar a evolução do campo de
pressão ao longo do tempo. Neste cálculo a amplitude do movimento utilizada foi rce 3,0= . O que
se observa na Fig (4b) é a combinação do campo pressão da Fig (4a) com o resultado que é
normalmente obtido para mancais planos.

Na próxima simulação a função empregada para descrever as irregularidades é ligeiramente
mais complicada do que a do exemplo anterior. A idéia é representar uma distribuição mais
aleatória das irregularidades com a Eq. (20). O ajuste das irregularidades dessa função é feito com
seis constantes, e os valores utilizados foram os seguintes: rcA 1,0= � 5,0=a � 2,0=b � 11 =k � 92 =k �

53 =k 	

( ) ( ) ( ) ( )( )θθθθ 321 cossencos kbkkaAf += (20)

Os resultados obtidos são similares aos do caso anterior, como observado na Fig. (5). Porém,
como a variação do raio interno do anel provoca o aparecimento de mais regiões de convergência e
divergência, o campo de pressão também apresenta mais variações ao longo da circunferência.
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Figura 5. Distribuição de pressão ao longo da circunferência do anel
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A Figura (6) traz a variação de pressão no tempo em três pontos distintos do anel, representando
uma possível medição com sensores posicionados em sua circunferência. A aquisição desses sinais
é importante para detectar o tipo de excitação que o anel está sofrendo devido às forças dinâmicas
causadas pelo campo de pressão. Uma análise no domínio da freqüência, como mostrado na Fig.
(7), permite verificar que excitação provocada pelo campo de pressão não é composta apenas pela
freqüência de rotação da máquina, mas também por alguns harmônicos.
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Figura 6. Variação de pressão com o tempo em três posições no anel
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Figura 7. FFT de um dos sinais de pressão

4. EFEITOS DO FLUXO AXIAL E DA TURBULÊNCIA

Como citado no início da seção 2, uma das hipóteses utilizadas para a formulação da equação de
Reynolds salientava a natureza laminar do fluxo. Como o fluido em questão é a água, que possui
baixa viscosidade, a turbulência acaba exercendo uma influência significativa para este estudo.
Como mostrado por Childs (1993), e Allaire et al (1984), é possível modelar aproximadamente os
efeitos da turbulência com uma pequena modificação da equação de Reynolds, como mostrada na
Eq (21). Essa modificação considera os efeitos da viscosidade turbulenta, que não é uma
propriedade do material, sendo definida através de características do fluxo e pode variar
espacialmente.
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onde

( ) 190,00136,012
−

+= eRGθ  , ( ) 196,00043,012
−

+= ez RG , HrRe µ
ρω=

Observando a Eq (21), nota-se que para números de Reynolds (Re) pequenos, a equação volta a
assumir a forma da Eq (1).



A influência do fluxo axial é geralmente estudada na análise de selos mecânicos, que, apesar da
similaridade com mancais, exigem uma abordagem diferente da de Reynolds, que considere, além
da turbulência, os efeitos de inércia do fluido, como salientado por Vance (1988). Para o presente
trabalho considera-se que o fluxo axial modifica apenas a distribuição de pressão em z.

Se o fluido entra na região entre os anéis com uma pressão pi, essa pressão cai bruscamente na
entrada e depois se reduz linearmente através do anel até a pressão de saída, po, conforme mostrado
na Fig. (8).
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Figura 8. Queda de pressão ao longo do comprimento do anel

Aplicando então a solução de Ocvirk na Eq (21) e utilizando pi e po como condições de fronteira
para a integração, chega-se à seguinte expressão para o campo de pressão:
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A Eq. (22) não difere muito da obtida com a formulação anterior. De fato, a aparência do campo
de pressão calculado não será diferente da que foi vista nas simulações apresentadas. As mudanças
são percebidas apenas na amplitude do campo de pressão e na distribuição de pressão ao longo do
comprimento�

5. CONCLUSÕES

Partindo da necessidade imposta por um problema real, foi proposto um modelo para tentar
descrever o campo de pressão gerado pelo fluido entre os anéis rotativo e estacionário de um
hidrogerador. Inicialmente foi proposto um modelo  derivado da teoria de Reynolds para mancais
hidrodinâmicos. Com esse modelo foram realizadas algumas simulações que permitiram visualizar
como a deformação do anel estacionário influencia no campo de pressão. Os resultados obtidos são
coerentes com a teoria apresentada, mas para validar o modelo seriam necessários alguns dados
experimentais ou da própria máquina.

As características do fluxo em questão requerem uma análise um pouco mais elaborada,
incluindo efeitos de turbulência e do fluxo axial. Pequenas alterações no modelo visam incluir estes
efeitos.
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Abstract. In the present work, the Reynolds’ theory, quite spread in the study of hydrodynamic
bearings, is applied to a real life problem, in which there is a suspected of circularity loss of the
inferior stationary wear rings of a power generator turbine, resulting in dynamic pressure fields
capable of  damaging the attachments of those rings and of exciting machine vibrations.

For this study, only the fluid flow induced by the rotation of the shaft is taken into account,
being discarded, at an initial stage, the flow in the axial direction. Integrating the Reynolds
equation stated for laminar flow, and other hypotheses, the pressure field between the rotor and the
stationary ring is calculated. To model the non circularity of the ring, its bore is written as a
function of the circunferencial coordinate. Finally, an expression that describes the pressure field is
obtained, including also the effect of rotor precession.

Some computational simulations allow the pressure field along the ring to be analyzed and
related to its geometry. At the end, the axial flow contribution is evaluated, as well as some
considerations regarding possible differences for turbulent flow cases.
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