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Resumo. Analises feitas em maquinas rotativas, sempre tomam por base 0s mesmos métodos de
andlise e técnicas experimentais designados coletivamente como anélise modal. A abordagem
analitica e também a numérica, baseiam-se na teoria de vibragao cléssica, largamente explorada e
desenvolvida para sistemas ndo rotativos. Por outro lado, experimentalmente, a identificacao
modal em um sistema rotativo encontra um de seus maiores desafios na excitagdo do rotor ao
longo de toda a sua trajetoria orbital. Visando uma abordagem especifica para sistemas rotativos,
este trabalho apresenta a analise modal complexa, a qual busca solucionar os problemas
encontrados ao se utilizar a analise modal classica em maquinas rotativas. Neste caso, as variaveis
de entrada e saida sdo descritas como variaveis complexas, permitindo assim estabelecer uma
relacdo entre o sentido do movimento de rotacdo e sua representacdo matematica, possibilitando a
obtencdo de fungdes de resposta em frequéncia direcionais (dFRF). O sistema é excitado por uma
forca girante e assincrona, sem contato. Um estudo sobre a ndo-linearidade existente na forca de
excitacdo eletromagnética é também mostrado, bem como a sua influéncia no comportamento do
sistema, fruto do uso de um modelo em malha aberta.
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1. INTRODUCAO

A anélise modal tem sido largamente utilizada na identificacdo de pardmetros em sistemas
elasticos ndo rotativos. Sua fundamentacdo matematica baseia-se na invariancia e simetria das
matrizes dindmicas do sistema, bem como na obediéncia ao principio da reciprocidade de Maxwell,
podendo-se representar graficamente as propriedades dinamicas do sistema atraves da Funcgédo de
Resposta em Frequéncia (FRF). Embora sistemas rotativos possam ser analisados como sistemas
vibratdrios no sentido classico, maquinas rotativas, geralmente, ndo obedecem as consideracdes
acima. Dispositivos como mancais e selos podem apresentar rigidez e amortecimento anisotrépicos
e acoplar os movimentos do rotor nas direcdes perpendiculares ao seu eixo de rotacdo. A existéncia
do efeito giroscopico também acopla os movimentos de rotacdo nestas dire¢des, surgindo como a
principal fonte de quebra da simetria do modelo matematico matricial. Neste caso, a matriz de FRF
gerada ndo é simétrica, fazendo-se necessario determinar pelo menos uma linha e uma coluna desta
matriz para que o0s parametros modais sejam identificados.

Um outro aspecto interessante, relacionado ao comportamento dinamico de sistemas rotativos,
diz respeito a existéncia dos chamados “modos de precessdo”, que podem ser diretos ou
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retrogrados. Apesar de os modos de precessdo direta e retrograda terem sido amplamente
explorados na literatura, nas formulagdes matematicas tradicionais o sentido do movimento do
modo &, geralmente, negligenciado.

Experimentalmente, surge uma outra questdo que € a necessidade de se excitar o rotor e medir a
resposta durante a rotagdo. O ideal, neste tipo de sistema, seria produzir um tipo de excitacdo
igualmente rotativa, assincrona e que girasse também em sentido contrario ao da rotacdo. Este tem
sido um dos grandes desafios da Anélise Modal experimental em sistemas rotativos.

O presente trabalho analisa 0 comportamento de um sistema rotativo submetido a uma forca de
excitacdo eletromagnética, girante e assincrona. Ao contrario das abordagens existentes, a adogdo
de um sistema em malha aberta evidencia a questdo da néo linearidade da forca de excitacdo, em
funcdo da variacio do entreferro. E realizado um estudo desta néo-linearidade, sendo investigado o
comportamento do sistema em funcédo da variacdo de parametros caracteristicos do mesmo.

Este trabalho também desenvolve a teoria de analise modal complexa, apresentada por Lee
(1991), a qual busca solucionar os problemas encontrados ao se utilizar a analise modal classica em
sistemas rotativos. Neste caso, as variaveis de entrada e saida sdo descritas como variaveis
complexas, permitindo assim estabelecer uma relacdo entre o sentido do movimento de rotagédo e
sua representacdo matematica, possibilitando a separagdo de modos diretos e retrogrados em
diferentes funcbes de resposta em frequéncia, ditas funcdo de resposta em freqiiéncia direcionais
(dFRF). No entanto, apesar das vantagens significativas deste tipo de abordagem no estudo de
sistemas rotativos, esta teoria, em si, possui grande complexidade, além de ser apresentada de forma
pouco clara na literatura. Assim, a apresentacdo contida neste trabalho busca detalhar e esclarecer
esta teoria, tornando mais acessivel e simplificado o entendimento desta nova abordagem.

2. MODELO

O modelo consiste num sistema rotativo, composto de eixo, disco e mancais, descrito a partir de
elementos finitos de 4 graus de liberdade (gdl) por n6, amortecido (amortecimento viscoso), com
excitacdo externa sem contato (Bessa et al, 2002). A excitacdo do sistema é feita por meio de forga
eletromagnética que, num primeiro instante, serd considerada na sua forma basica, particularizada
para 0 caso em questdo, dada por:
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onde U, € a permeabilidade magnética do ar (4 .10 H/m), S a area eficaz atravessada pelo fluxo

magnético, N o numero de espiras de cada bobina, i a corrente e x é a distancia entre o rotor e 0
estator, ou seja, o entreferro (“gap”). O sistema de equagdes de movimento é escrito como:

M){ace} +[c +claw} +[K]{ac} X f B )

onde {q(t} € o vetor de coordenadas generalizadas do sistema e os demais termos so as matrizes
de inércia [M], de amortecimento [C], giroscépica [G] e de rigidez [K], além do vetor de
carregamentos externos { f (t} .

A excitacdo do sistema é feita por meio de forcas eletromagnéticas harménicas e assincronas,
caracterizando um caso de excitagdo sem contato. Quatro bobinas diametralmente opostas,
possuindo quatro fases distintas e ortogonais, montadas ao redor do rotor, produzem as forcas
eletromagnéticas de atracdo, as quais, agindo simultaneamente, ddo origem a uma forca resultante
girante, que age ao longo de toda trajetoria circular, com uma freqiiéncia independente da
frequéncia de rotacédo. O sentido de “giro” pode ser 0 mesmo ou contrario ao da rotacdo, permitindo
assim, a excitacdo controlada de modos diretos ou retrogrados (Bessa et al, 2002).



Admitindo uma corrente do tipo i =i, sen(w t+8), as forcas para cada diregdo sdo dadas por
(Bessa et al, 2002):
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, onde [= —%HONZS, (3)

sendo a freqliéncia da corrente de excitacdo (w,) igual a metade da frequiéncia da forga (w, =w/2).
Para efeito de simplificacdo, chamou-se i, =i, .

Em um sistema eletromagnético que possua um sistema de controle, os valores de corrente (i)
sdo determinados em funcdo da variacdo do entreferro (x e z), de forma a obter a condigdo de
equilibrio requerida. Ou seja, pode-se dizer que o sistema de controle compensa a alteracdes na
rigidez e no amortecimento do sistema, provocados pela acdo da forca eletromagnética. No caso em
analise, o sistema opera em malha aberta e o valor da amplitude maxima de corrente, embora nédo
fixo, é constante, o que significa que a ndo linearidade existente na forca de excitagdo se da apenas
em funcéo da variacédo do gap.

2.1. Modelo N&ao Linear

Embora a utilizacdo da forca eletromagnética seja uma boa solugdo para os problemas
encontrados na excitacdo de maquinas rotativas, para um sistema em malha aberta, 0 modelo linear
é valido apenas na hipdtese de pequenos deslocamentos. Considerando-se a forca eletromagnética
na sua forma completa (Eq. (1)), ou admitindo-se a hip6tese de um deslocamento um pouco maior,
mas suficiente para alterar a amplitude da forca de forma a fazer agir a sua néo linearidade, leva a
um campo onde uma andlise ndo linear faz-se necessario.

Como visto na Eq. (1), a amplitude da forca de excitacdo vai depender também da posi¢do do
sistema e sendo o sistema em malha aberta, esta forca eletromagnética altera as caracteristicas do
mesmo. Busca-se aqui uma analise que permita compreender o comportamento do sistema
submetido a este tipo de excitacdo ndo linear.

Considere-se agora apenas variacdo do gap e insira-se o termo relativo & corrente (ig) em [.
Expandindo esta nova forma das Eqs. (3) em Série de Taylor, ao redor dos pontos de equilibrio xo e
Zo, € considerando apenas até o segundo termo da série (linear), a relacdo da forca passa a ser dada
por:

F, =0, cos wt—[J, x cos wt (4.a)
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onde Dlzﬂi e DZ:DE— 2 E Analogamente a outra Eq. (3), fica:

F, =0, sen wt -0, z sen wt (4.b)

Cabe lembrar que os valores de x, e z, sdo constantes e que, para 0 modelo analisado neste
trabalho, sdo iguais a 2mm. Assim, a Eq. (2) passa a ser escrita como:

[M]{aice} +[DHact} + (K] +[ £,@] Jae} { £.@ (5)

sendo:
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onde [D] :[C +G]. Na equacdo acima, pode-se perceber que as caracteristicas dindmicas do

sistema serdo funcdo, também, do seu movimento. Ou seja, como mencionado anteriormente,
observa-se que a parcela linearizada da forca eletromagnética altera a rigidez do sistema.

(6)
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2.1.1. Equacéo de Mathieu

Os modelos lineares de sistemas mecanicos sdo descritos por equacées diferenciais lineares com
coeficientes constantes. Fisicamente isso significa que todas as massas sdo constantes, as forcas
elasticas sdo proporcionais as suas respectivas deflexfes e todos os amortecimentos s&o
proporcionais a velocidade. No entanto, existe uma categoria de sistemas auto-excitados, onde uma
instabilidade é introduzida devido a uma variacdo periddica de alguns destes parametros. Séo
chamadas excitacGes paramétricas (Stoker, 1950). A Eqg. (5) descreve um caso deste tipo, onde a
rigidez é variavel com o tempo.

Para efeito de simplificacdo, desconsiderando o amortecimento e admitindo apenas um gdl, uma
equacéo bastante similar a esta pode ser escrita como:

mx+(k +Ak. f(t))x=0 7

onde f(t) é uma funcdo temporal periodica, normalmente da forma f(t) =senw,t, sendo w,

chamada frequéncia elastica. A Eqg. (7) € a chamada equacdo de Mathieu e sua solugdo geral,
contendo duas constantes de integracdo arbitrarias, ainda ndo foi encontrada. No entanto, neste
caso, ndo se esta interessado na solugdo em si, ou seja, na forma do movimento, mas sim se a
mesma é estavel ou instavel.

Se 0 “pulso” f(t) na constante elastica tiver uma frequéncia w,, 0 movimento, mesmo n&o
sendo periddico, apresentard certas regularidades depois de cada intervalo T =2m/w, . Assim,
suponha-se que num instante t =0, tenha-se uma amplitude X =x, € uma velocidade X =v,.
Admita-se uma solugdo desconhecida da forma x = F (t) e que ao fim de cada periodo T =211/, a

amplitude e a velocidade do sistema possuam os mesmos valores iniciais, multiplicados por um
fator B (positivo ou negativo):

(h-2x = Bxg e (x)-2m = BY, ®)
Wy Wy

Assim, da mesma forma, no inicio do segundo ciclo a amplitude e velocidade do sistema, serdo
B vezes maior do que no inicio do primeiro ciclo. Entdo pode-se afirmar que o movimento através
de todo segundo ciclo € 8 vezes maior do que 0 movimento durante os instantes correspondentes do
primeiro ciclo e, conclui-se que, o terceiro comegara com uma amplitude 3°x,. Consequentemente,

se a suposicao exposta na Eq. (8) é correta, obtem-se solucdes que se repetem a cada cw, -ciclos,

multiplicadas por um fator constante. Para 0 caso em questdo, se 3 € menor que a unidade, o
movimento é amortecido ou estavel. Caso contrrio, 0 movimento € instavel.

Fazendo k/m=w’ e f(t) =1, aEq. (7) pode ser escrita como:

5<'+Ew§+A—ka:0 para 0<w,t <7 9)
0 m [

X’+wa—A—ka:0 para mM<w t<2m ou —mM<wt<0 (10)
O m [J



E a solucdo para cada um desses semi-ciclos é dada por:

x, =C, sen p,t +C, cos p;t Epl = ! +%kE (11)
e para a outra metade do ciclo:
X, =C,sen p,t +C, cos p,t Epz = |? —%k % (12)

Estas duas solugdes podem ser relacionadas para w,t =0 com a mesma amplitude e velocidade.

No entanto, elas descrevem um movimento que, ao final de um ciclo completo, € 3 vezes maior do
gue no inicio. Assim tem-se:

(Xl)wkt:O = (XZ)wkt:O € (Xl)wkt:O = (XZ)wkt:O

. . (13)
(XZ)wkt:n = B (Xl)wkt:—n € (XZ)wkt:n = B (Xl)wkt:—n

a partir das quais pode-se determinar as quatro constantes arbitrarias de (11) e (12). Determinando
as constantes e rearrumando a resposta em termos de (3, tem-se:

0 2 2 0
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Simplificando, chamando a expressdo entre chaves de A, a solugdo da Eq. (14) é:

B=AtVA-1 (15)

onde as raizes serdo reais ou complexas, dependendo do valor de A. Analisando cada caso possivel,
pode-se dizer que o sistema sera instavel se |A| >1 (Cunningham, 1958; DenHartog, 1956). Sendo
p1 e p2 dados nas Egs. (11) e (12) e simplificando p,/w, e p,/w, como w,/w, , conhecida como

relagdo entre a freqiiéncia natural e a freqiiéncia “elastica”, e Ak/k, chamado percentual de
variacdo elastica, tem-se que o sistema sera instavel se:.

il -l ol
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A Fig. (1) a seguir, mostra graficamente o resultado da Eq. (16) para as regides de estabilidade,
em funcéo da relagdo entre as freqliéncias natural e elastica e do percentual de variagdo elastica do
sistema, este admitido como 10%. Cabe observar que a aqui chamada frequéncia “elastica” €, na
realidade, a freqiiéncia de excitacdo do sistema. Sendo o sistema em malha aberta, esta relagdo é de
fundamental importancia, no sentido de se evitar trabalhar numa regido de instabilidade.

>1 (16)
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Figura 1. Regides de estabilidade do sistema — em vermelho
Considerando-se novamente a Eq. (7) e incluindo-se, agora, o termo relativo ao amortecimento:
mX+cx+(k+Ak.f(t))x=0 a7

Repetindo 0 mesmo processo realizado para o caso ndo amortecido, chega-se a:

20 B 2 4 2 0 -2¢%
B’e —ZBEpos plwlcos pzl—%sen plwlsen pzwlme “ =0 (18)
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Simplificando, chamando a expressao entre chaves de A, a solugédo da Eq. (18) é:

Boe (Ai M) (19)

Neste caso, valem as mesmas analises, em relacdo aos valores de A, feitas para a Eq. (15).
Assim, o sistema sera instavel para |A| >1, ou se:

cos% 1/A—k+(1 &? Ecos%w \/—A—k+(1—EZ)E4
—\/( = gsen%wk‘/ 1 &? Ese% \/—ATK+(1—52)E>1 20

Para um pequeno amortecimento, 0 comportamento do sistema ndo é muito diferente daquele
observado para o sistema ndo amortecido. A Fig. (2.a) mostra graficamente o resultado da Eq. (20)
para as regides de estabilidade, para um pequeno valor do fator de amortecimento (&). Para um
sistema mais fortemente amortecido, embora o resultado grafico da Eq. (20) seja similar aos casos
anteriores, 0 mesmo apresenta um pequeno aumento das regides de instabilidade, como mostrado na
Fig. (2.b). Importante observar que, para quaisquer dos casos apresentados (com ou sem
amortecimento), existe uma regido de instabilidade para a relacdo entre as frequiéncias natural e
elastica (freq. de excitacdo) proxima a 1. Uma regido de instabilidade ao redor deste valor, mostra-
se relevante no que diz respeito a analises experimentais, onde é costume excitar-se 0 sistema
proximo a sua frequéncia natural. Ainda, para quaisquer dos casos, deve-se também considerar a
influéncia do percentual de variagdo elastica do sistema (Ak/k).Vale lembrar que todo o estudo

mostrado para o grau de liberdade x, vale, por analogia, para o grau de liberdade z.
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Figuras 2. Regibes de estabilidade do sistema em vermelho (a) £ =0,15 (b) £ =0,50

3. ANALISE MODAL COMPLEXA

A teoria de vibracao classica é largamente utilizada no estudo de sistemas com e sem rotacéo. No
entanto, a grande diferenca entre sistemas rotativos e estacionarios esta na rotacao, a qual d& origem
a caracteristicas particulares aos primeiros, que, em geral, ndo sdo levadas em consideracdo quando
se aplicam métodos cléssicos de teoria da vibragao.

A presenca da rotacdo torna a formulacdo e solucdo do sistema de equagdes mais trabalhosa,
bem como mais dificil a interpretacdo dos seus resultados. Pode-se dizer que esta dificuldade reside
na associacao existente entre a rotacdo e o movimento harmonico. Na andlise de vibracdo, a
resposta do sistema é descrita com base na identidade de Euler, ou seja, ao se considerar uma
solucéo do tipo:

facp g e (21)

se esta interessado nas partes real e imaginaria da varidvel complexa “s”, enquanto que em sistemas
rotativos, duas outras variaveis devem ser consideradas e analisadas: a rotacdo prépria da maquina
(spin) e o movimento de precessdo do rotor. Este tipo de resposta torna aproximada a descricao,
analise e interpretacdo do sistema, visto que variaveis que fisicamente se encontram em rotacgéo, séo
representadas por expressdes que descrevem um movimento harmoénico através de exponenciais
complexas, que ndo trazem em si um sentimento fisico claro do movimento de rotacéo, bem como
de seu sentido.

Inicialmente, objetivando apenas introduzir a notacdo complexa em analise modal, considerar-
se-4 0 modelo de Jeffcott. Neste caso, o disco serd tratado como uma particula, ou seja, 0 seu
momento de inércia ndo sera considerado, podendo-se, assim, desprezar o efeito giroscopico, da
mesma forma que foi feito por Jeffcott. Desta forma este sistema serd considerado com apenas 2
gdls de translacdo no plano do disco. Embora esta consideracdo ndo seja dinamicamente correta, ja
que o modelo ndo possui gdls de rotagdo, essa condi¢do permite desenvolver o problema de forma
simples. Para a velocidade de rotagéo do sistema (Q) constante, as equacgdes de movimento do rotor
sd0 escritas como:

mK(t) +cX(t) + k x(t) = me Q% cos Qt
(22)
mz(t) +cz(t)+kz(t) =meQ?senQt

sendo m a massa do disco, k o coeficiente de rigidez do eixo, ¢ o coeficiente de amortecimento
viscoso relativo a resisténcia do ar e € a excentricidade do centro de massa em relacdo ao centro



geométrico do disco. Para vibragdo livre e supondo-se uma solucdo harmodnica baseada na
identidade de Euler, tem-se, para cada direcéo:

x(t) =X, e e 2(t)=2,e™ (23)

onde A é o expoente de oscilacdo amortecida do movimento em cada dire¢do. Considerando apenas
a parte imaginaria de A, ou seja, para 0 caso sem amortecimento, pode-se escrever as Egs. (23)
como:

x(t) =X el +Xe 9 e z(t)=Zel' +Z e (24)

onde a barra ( — ) faz referéncia ao complexo conjugado. As Egs. (24) mostram que 0 sistema se
movimenta segundo uma combinacdo de movimentos harménicos de mesma frequiéncia ocorrendo
nas direcOes x e z. Neste caso, um aspecto importante deve ser ressaltado e diz respeito ao fato de
que w € apenas a freqléncia natural de dois osciladores harménicos vibrando em dois planos
perpendiculares, e o seu sinal ndo tem qualquer significado fisico. Em se tratando de sistemas
estacionarios (sem rotacao), este detalhne em nada influencia a analise e compreensdo dos mesmaos.
No entanto, para sistemas rotativos, suas caracteristicas particulares fazem com que este venha a ser
um dado relevante, por permitir a determinacéo do sentido do modo de precessao, ou seja, se direto
ou retrogrado.

Com base nessa idéia, propde-se que sistemas deste tipo sejam descritos com a utilizacdo de
coordenadas complexas. Assim, voltando ao sistema em questdo, admitindo que o eixo x seja 0 eixo
de coordenadas reais e 0 eixo z 0 de coordenadas imaginarias, introduz-se uma notacdo complexa,
tal que:

p(t) = x(t) + j z(t) (25)

Assim, as Egs. (22) podem ser escritas como uma Unica equacao da forma:

m p(t) +c p(t) +k pt) =meQ?e ! (26)
cuja resposta para parcela homogénea é:

pt) =Pye™ (27)

onde A, = (—5 + jyJ1-&7 )wn . Assim, a solucéo geral sera:
p(t) =Pe™ +Pe™ (28)

Fazendo ¢ =0, o vetor p(t) gira, no plano xz, com velocidade angular w,, descrevendo a
posicdo do sistema em cada instante de tempo. Ao contrério do que acontece nas formulacGes
tradicionais, como as solugdes mostradas pelas Egs. (24), w, agora, ndo é apenas a frequéncia
natural relativa aos movimentos harmoénicos descritos pelo sistema, mas sim representa a
velocidade angular com que o eixo descreve seu movimento de precessdo em torno da linha que une
0s mancais, sendo que o sinal de «, indica o sentido que esse movimento ocorre. Assim, pode-se
dizer que o primeiro termo do lado direito da Eq. (28) esta associado ao movimento de precessdo
direta (mesmo sentido de giro da rotacdo propria do eixo) e 0 segundo ao de precessdo retrograda.

Substituindo as Egs. (24) na Eq. (25), tem-se:



p(t) = x(t) + j z(t) =(X ej“’t+>7e‘j‘*")+j(2ej““+Ze‘iwt)
=(X+jz)e’ +(X+jZ)e7 (29)

—_ jowt -jowt
=P, e’ +he

onde os indices “f ” e “b” fazem referéncia, respectivamente, aos sentidos direto (forward) e
retrogrado (backward).

3.1. Modelo Modal Complexo

Considere-se agora, um sistema rotativo, com 2n gdl, similar ao descrito pela Eq. (2), onde os
vetores de coordenadas generalizadas e de carregamentos externos séo, agora, dados por:

w gl ol

sendo {x(t} e {f,(t}, respectivamente, vetores nx1 relativos aos deslocamentos (translacionais e

rotacionais) e carregamentos externos na direcdo “x”, e {z(t)} {f (t)} seus analogos na direcao

“z”. Adotando-se a notagdo complexa anteriormente deflnlda na Eqg. (25), as Egs. (30) podem ser
reescrltas na forma matricial como:

xpO_ et} HOTSEY: CITe
gl(t)}m I ]gp(t)}m ° gf g i ]é{g(t)}m (31)

onde {p(t} e {g(t} sdo vetores que giram no plano xz e que descrevem, respectivamente, a
posicao do eixo e a atuacdo da forca de excitacdo a cada instante de tempo, e 0s vetores {E(t)} e
{g (t)} sdo, respectivamente, seus complexos conjugados. A matriz de transformacdo de
coordenadas [T] e a sua inversa, séo definidas como:

2nx2n 1

3 L
=70 e [T] 1—E‘r‘“:‘_‘“D (32)
O I =jg

Substituindo as Egs. (31) e (32) na equacdo de movimento (2), e pré-multiplicando ambos os lados

do resultado por [T]‘l, chega-se ao sistema de equacdes de movimento em coordenadas complexas
dado por:

M, ]%p}m+[DC(Q)]§ g+ [k, ]gpm g}D (33)

sendo
1E(M zz)—J( M) (M M)+ (M + M )0 1M M,

M= o v S RN I T T T S A I

_1E(CXX+CH) i€, -Cy+2G) | (C,-C,)+ J(C +C,) 0_10 D,
P2 e, 2 ie vy e, se v i, -¢, +20)T 25, |D,5 4P

|
— — | K

[k]= 10K, K )R =Ky ) | (lf____K__)__!(}g__t_K__).D_1D<_f_¢__b_g (34.0)

2 HKy ~ K )= 1Ko + K ) | (Ko + K )+ 5K, — K )H 2% ' Kig



onde os indices “f ” e “b” fazem referéncia, respectivamente, aos sentidos direto (forward) e
retrogrado (backward), e o indice “c” enfatiza que a formulacdo é agora baseada em variaveis
complexas.

3.2. Determinacdo da Matriz de Receptancia

Transformando a Eq. (33) com a utilizacdo de variaveis de estado, chega-se as relacbes de
normalizagdo para o problema na forma complexa, sendo os autovalores {U} e {v},

respectivamente, autovetores a direita e a esquerda, tais que:

D P, [ 4 d.,
A i
{ul}. gas-b-- e VARE DL---*’-- (35)
D ¢ O f

Represente-se 0 vetor de excitacbes externas em termos de suas componentes diretas e
retrogradas, da mesma forma que foi feito para o vetor de deslocamentos (Eq. (29):

{o} ={c }e“ +{G} e (36)

No caso da analise modal feita no plano complexo, a matriz de resposta em frequéncia relaciona
as excitacdes diretas e retrogradas com as respostas diretas e retrogradas, dando origem as
chamadas Funcdes de Resposta em Freqléncia direcionais (dFRFs). Assim, para a andlise da
resposta forcada do sistema na forma de estado, admitindo-se uma resposta harménica a uma
excitacdo harmonica, chega-se a matriz de receptancia complexa dada por (Kessler e Kim, 2001):

% Z MD % @)

jw}\

sendo:

D{Pf} _ D{Gf} [He 6, (@) | Hep o (w)O 0
47} E‘ [H(“’)]D{gb}é Y H @ [ Hy, @ O Z AUV T (38)

O] prf(w)! pg( )E = [] J(A) A |:|

As Egs. (37) e (38) mostram que a matriz de FRFs é obtida a partir da relagdo entre resposta e
excitacdo complexas. Desta forma, podem-se separar as respostas e excitagcOes diretas de suas
analogas retrogradas. Como se esta trabalhando com coordenadas direcionais relacionadas ao
sentido de rotacdo do sistema, a matriz [H (a))] é agora chamada de Matriz de Resposta em
Frequéncia direcional (AMRF) e seus elementos de Fungfes de Resposta em Freqliéncia direcionais
(dFRFs). As dFRFs H, . (w) e Hﬁ,éb (w) sdo chamadas de dFRF normais, pois relacionam

excitacOes diretas e respostas diretas e excitacbes retrogradas e respostas retrogradas. As dFRFs
HPgb (w) e H,;be (), por sua vez, sdo ditas dFRF reversas, pois relacionam excitacfes

retrogradas e respostas diretas e excitagdes diretas e respostas retrogradas.

Neste sentido, percebe-se que este método difere do método de analise modal cléssico, dentre
outras coisas, no processo de excitacdo, sendo necessario um dispositivo que produza uma
excitacdo rotativa (Eq. (36)), onde o controle do sentido da mesma passa a ser fundamental.



4. CONCLUSOES

O presente trabalho buscou preencher lacunas encontradas quando da utilizacdo de técnicas de
identificacdo modal convencionais em maquinas rotativas, apresentando métodos e abordagens
especificas para analise destes sistemas,

Ao contrario das abordagens existentes, a ado¢do de um sistema em malha aberta evidencia a
questdo da ndo linearidade da forga de excitagdo em funcéo da variacdo do entreferro. A anélise dos
efeitos desta ndo linearidade mostrou-se relevante para realizagdo da analise modal experimental
num sistema em malha aberta, bem como para o estudo de efeitos de campos eletromagnéticos
agindo em sistemas rotativos.

No campo analitico, a apresentagdo detalhada da analise modal complexa, deixou claro suas
vantagens em relacdo a analise modal classica quando usada em sistemas rotativos, permitindo
estabelecer uma relacdo entre o sentido do movimento de rotacéo e sua representacdo matematica,
possibilitando a separacdo de modos diretos e retrogrados em fungdes de resposta em freqiiéncia
direcionais.
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Abstract. Rotating machines analysis always uses the same analitical methods and experimental
technics, designated as modal analysis. Analitical and numerical approaches are based in the
classical vibration theory, widely used in non-rotating systems. On the other hand, experimental
modal identification has model excitation through out its entire orbital path one of its greatest
challeges. Seeking a specific approach to rotating systems, this work presents the complex modal
analysis, aiming to solve problems found when using classical modal analysis in rotating machines.
In this approach, input and output variables are described as complex variables, allowing for a
relation between the rotating movement direction and its mathematical representation, so making it
possible to obtain directional frequency response functions (dFRF). System is excited through a non
contatct assynchronous rotating force. A study about excitation force non linearity is done.
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