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Resumo. Análises feitas em máquinas rotativas, sempre tomam por base os mesmos métodos de
análise e técnicas experimentais designados coletivamente como análise modal. A abordagem
analítica e também a numérica, baseiam-se na teoria de vibração clássica, largamente explorada e
desenvolvida para sistemas não rotativos. Por outro lado, experimentalmente, a identificação
modal em um sistema rotativo encontra um de seus maiores desafios na excitação do rotor ao
longo de toda a sua trajetória orbital. Visando uma abordagem específica para sistemas rotativos,
este trabalho apresenta a análise modal complexa, a qual busca solucionar os problemas
encontrados ao se utilizar a análise modal clássica em máquinas rotativas. Neste caso, as variáveis
de entrada e saída são descritas como variáveis complexas, permitindo assim  estabelecer uma
relação entre o sentido do movimento de rotação e sua representação matemática, possibilitando a
obtenção de funções de resposta em freqüência direcionais (dFRF). O sistema é excitado por uma
força girante e assíncrona, sem contato. Um estudo sobre a não-linearidade existente na força de
excitação eletromagnética é também mostrado, bem como a sua influência no comportamento do
sistema, fruto do uso de um modelo em malha aberta.

Palavras Chave: Sistemas Rotativos, Excitação Eletromagnética, Análise Modal Complexa, Não
Linearidade

1. INTRODUÇÃO

A análise modal tem sido largamente utilizada na identificação de parâmetros em sistemas
elásticos não rotativos. Sua fundamentação matemática baseia-se na invariância e simetria das
matrizes dinâmicas do sistema, bem como na obediência ao princípio da reciprocidade de Maxwell,
podendo-se representar graficamente as propriedades dinâmicas do sistema através da Função de
Resposta em Freqüência (FRF). Embora sistemas rotativos possam ser analisados como sistemas
vibratórios no sentido clássico, máquinas rotativas, geralmente, não obedecem às considerações
acima. Dispositivos como mancais e selos podem apresentar rigidez e amortecimento anisotrópicos
e acoplar os movimentos do rotor nas direções perpendiculares ao seu eixo de rotação. A existência
do efeito giroscópico também acopla os movimentos de rotação nestas direções, surgindo como a
principal fonte de quebra da simetria do modelo matemático matricial. Neste caso, a matriz de FRF
gerada não é simétrica, fazendo-se necessário determinar pelo menos uma linha e uma coluna desta
matriz para que os parâmetros modais sejam identificados.

Um outro aspecto interessante, relacionado ao comportamento dinâmico de sistemas rotativos,
diz respeito à existência dos chamados “modos de precessão”, que podem ser diretos ou

mailto:bess@uninet.com.br
mailto:moyses@ufrj.br


retrógrados. Apesar de os modos de precessão direta e retrógrada terem sido amplamente
explorados na literatura, nas formulações matemáticas tradicionais o sentido do movimento do
modo é, geralmente, negligenciado.

Experimentalmente, surge uma outra questão que é a necessidade de se excitar o rotor e medir a
resposta durante a rotação. O ideal, neste tipo de sistema, seria produzir um tipo de excitação
igualmente rotativa, assíncrona e que girasse também em sentido contrário ao da rotação. Este tem
sido um dos grandes desafios da Análise Modal experimental em sistemas rotativos.

O presente trabalho analisa o comportamento de um sistema rotativo submetido a uma força de
excitação eletromagnética, girante e assíncrona. Ao contrário das abordagens existentes, a adoção
de um sistema em malha aberta evidencia a questão da não linearidade da força de excitação, em
função da variação do entreferro. É realizado um estudo desta não-linearidade, sendo investigado o
comportamento do sistema em função da variação de parâmetros característicos do mesmo.

Este trabalho também desenvolve a teoria de análise modal complexa, apresentada por Lee
(1991), a qual busca solucionar os problemas encontrados ao se utilizar a análise modal clássica em
sistemas rotativos. Neste caso, as variáveis de entrada e saída são descritas como variáveis
complexas, permitindo assim estabelecer uma relação entre o sentido do movimento de rotação e
sua representação matemática, possibilitando a separação de modos diretos e retrógrados em
diferentes funções de resposta em freqüência, ditas função de resposta em freqüência direcionais
(dFRF). No entanto, apesar das vantagens significativas deste tipo de abordagem no estudo de
sistemas rotativos, esta teoria, em si, possui grande complexidade, além de ser apresentada de forma
pouco clara na literatura. Assim, a apresentação contida neste trabalho busca detalhar e esclarecer
esta teoria, tornando mais acessível e simplificado o entendimento desta nova abordagem.

2. MODELO

O modelo consiste num sistema rotativo, composto de eixo, disco e mancais, descrito a partir de
elementos finitos de 4 graus de liberdade (gdl) por nó, amortecido (amortecimento viscoso), com
excitação externa sem contato (Bessa et al, 2002). A excitação do sistema é feita por meio de força
eletromagnética que, num primeiro instante, será considerada na sua forma básica, particularizada
para o caso em questão, dada por:
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onde 0µ  é a permeabilidade magnética do ar (4 .10-07 H/m), S a área eficaz atravessada pelo fluxo

magnético, N o número de espiras de cada bobina, i a corrente e x é a distância entre o rotor e o
estator, ou seja, o entreferro (“gap”). O sistema de equações de movimento é escrito como:

[ ]{ } [ ]{ } [ ]{ } { })()()()( tftqKtqGCtqM =+++ !!! (2)

onde { })(tq  é o vetor de coordenadas generalizadas do sistema e os demais termos são as matrizes

de inércia [ ]M , de amortecimento [ ]C , giroscópica [ ]G  e de rigidez [ ]K , além do vetor de

carregamentos externos { })(tf .
A excitação do sistema é feita por meio de forças eletromagnéticas harmônicas e assíncronas,

caracterizando um caso de excitação sem contato. Quatro bobinas diametralmente opostas,
possuindo quatro fases distintas e ortogonais, montadas ao redor do rotor, produzem as forças
eletromagnéticas de atração, as quais, agindo simultaneamente, dão origem a uma força resultante
girante, que age ao longo de toda trajetória circular, com uma freqüência independente da
freqüência de rotação. O sentido de “giro” pode ser o mesmo ou contrário ao da rotação, permitindo
assim, a excitação controlada de modos diretos ou retrógrados (Bessa et al, 2002).



Admitindo uma corrente do tipo ( )θω += tii imáx sen , as forças para cada direção são dadas por
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sendo a freqüência da corrente de excitação ( iω ) igual a metade da freqüência da força ( 2ωω =i ).

Para efeito de simplificação, chamou-se 0iimáx = .

Em um sistema eletromagnético que possua um sistema de controle, os valores de corrente ( i )
são determinados em função da variação do entreferro (x e z), de forma a obter a condição de
equilíbrio requerida. Ou seja, pode-se dizer que o sistema de controle compensa a alterações na
rigidez e no amortecimento do sistema, provocados pela ação da força eletromagnética. No caso em
análise, o sistema opera em malha aberta e o valor da amplitude máxima de corrente, embora não
fixo, é constante, o que significa que a não linearidade existente na força de excitação se dá apenas
em função da variação do gap.

2.1. Modelo Não Linear

Embora a utilização da força eletromagnética seja uma boa solução para os problemas
encontrados na excitação de máquinas rotativas, para um sistema em malha aberta, o modelo linear
é válido apenas na hipótese de pequenos deslocamentos. Considerando-se a força eletromagnética
na sua forma completa (Eq. (1)), ou admitindo-se a hipótese de um deslocamento um pouco maior,
mas suficiente para alterar a amplitude da força de forma a fazer agir a sua não linearidade, leva a
um campo onde uma análise não linear faz-se necessário.

Como visto na Eq. (1), a amplitude da força de excitação vai depender também da posição do
sistema e sendo o sistema em malha aberta, esta força eletromagnética altera as características do
mesmo. Busca-se aqui uma análise que permita compreender o comportamento do sistema
submetido à este tipo de excitação não linear.

Considere-se agora apenas variação do gap e insira-se o termo relativo à corrente (i0) em ∈ .
Expandindo esta nova forma das  Eqs. (3) em Série de Taylor, ao redor dos pontos de equilíbrio x0 e
z0, e considerando apenas até o segundo termo da série (linear), a relação da força passa a ser dada
por:

txtFx ωω coscos 21 ∈−∈= (4.a)

onde 
2

0

1

3

x
∈=∈  e 





−∈=∈

3
0

2

2

x
. Analogamente a outra Eq. (3), fica:
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Cabe lembrar que os valores de 0x  e 0z  são constantes e que, para o modelo analisado neste

trabalho, são iguais a 2mm. Assim, a Eq. (2) passa a ser escrita como:
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onde [ ] [ ]GCD += . Na equação acima, pode-se perceber que as características dinâmicas do
sistema serão função, também, do seu movimento. Ou seja, como mencionado anteriormente,
observa-se que a parcela linearizada da força eletromagnética altera a rigidez do sistema.

2.1.1. Equação de Mathieu

Os modelos lineares de sistemas mecânicos são descritos por equações diferenciais lineares com
coeficientes constantes. Fisicamente isso significa que todas as massas são constantes, as forças
elásticas são proporcionais às suas respectivas deflexões e todos os amortecimentos são
proporcionais à velocidade. No entanto, existe uma categoria de sistemas auto-excitados, onde uma
instabilidade é introduzida devido a uma variação periódica de alguns destes parâmetros. São
chamadas excitações paramétricas (Stoker, 1950). A Eq. (5) descreve um caso deste tipo, onde a
rigidez é variável com o tempo.

Para efeito de simplificação, desconsiderando o amortecimento e admitindo apenas um gdl, uma
equação bastante similar a esta pode ser escrita como:

 0))(.( =∆++ xtfkkxm !! (7)    

onde )(tf  é uma função temporal periódica, normalmente da forma ttf kωsen)( = , sendo kω
chamada freqüência elástica. A Eq. (7) é a chamada equação de Mathieu e sua solução geral,
contendo duas constantes de integração arbitrárias, ainda não foi encontrada. No entanto, neste
caso, não se está interessado na solução em si, ou seja, na forma do movimento, mas sim se a
mesma é estável ou instável.

Se o “pulso” )(tf  na constante elástica tiver uma freqüência kω , o movimento, mesmo não

sendo periódico, apresentará certas regularidades depois de cada intervalo kT ωπ2= . Assim,

suponha-se que num instante 0=t , tenha-se uma amplitude 0xx =  e uma velocidade 0vx =! .

Admita-se uma solução desconhecida da forma x = F (t) e que ao fim de cada período kT ωπ2=  a

amplitude e a velocidade do sistema possuam os mesmos valores iniciais, multiplicados por um
fator β (positivo ou negativo):
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Assim, da mesma forma, no início do segundo ciclo a amplitude e velocidade do sistema, serão
β vezes maior do que no início do primeiro ciclo. Então pode-se afirmar que o movimento através
de todo segundo ciclo é β vezes maior do que o movimento durante os instantes correspondentes do
primeiro ciclo e, conclui-se que, o terceiro começará com uma amplitude 0

2 xβ . Consequentemente,

se a suposição exposta na Eq. (8) é correta, obtém-se soluções que se repetem a cada kω -ciclos,

multiplicadas por um fator constante. Para o caso em questão, se β é menor que a unidade, o
movimento é amortecido ou estável. Caso contrário, o movimento é instável.

Fazendo 2
nmk ω=  e 1)( ±=tf , a Eq. (7) pode ser escrita como:
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E a solução para cada um desses semi-ciclos é dada por:
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e para a outra metade do ciclo:
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Estas duas soluções podem ser relacionadas para 0=tkω  com a mesma amplitude e velocidade.

No entanto, elas descrevem um movimento que, ao final de um ciclo completo, é β vezes maior do
que no início. Assim tem-se:
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a partir das quais pode-se determinar as quatro constantes arbitrárias de (11) e (12). Determinando
as constantes e rearrumando a resposta em termos de β, tem-se:
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Simplificando, chamando a expressão entre chaves de A, a solução da Eq. (14) é:

12 −±= AAβ (15)

onde as raízes serão reais ou complexas, dependendo do valor de A. Analisando cada caso possível,
pode-se dizer que o sistema será instável se 1>A  (Cunningham, 1958; DenHartog, 1956). Sendo

p1 e p2 dados nas Eqs. (11) e (12) e simplificando kp ω1  e kp ω2  como kn ωω , conhecida como

relação entre a freqüência natural e a freqüência “elástica”, e kk∆ , chamado percentual de
variação elástica, tem-se que o sistema será instável se:.
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A Fig. (1) a seguir, mostra graficamente o resultado da Eq. (16) para as regiões de estabilidade,
em função da relação entre as freqüências natural e elástica e do percentual de variação elástica do
sistema, este admitido como 10%. Cabe observar que a aqui chamada freqüência “elástica” é, na
realidade, a freqüência de excitação do sistema. Sendo o sistema em malha aberta, esta relação é de
fundamental importância, no sentido de se evitar trabalhar numa região de instabilidade.



Figura 1. Regiões de estabilidade do sistema – em vermelho

Considerando-se novamente a Eq. (7) e incluindo-se, agora, o termo relativo ao amortecimento:
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Repetindo o mesmo processo realizado para o caso não amortecido, chega-se a:
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Simplificando, chamando a expressão entre chaves de A, a solução da Eq. (18) é:
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Neste caso, valem as mesmas análises, em relação aos valores de A, feitas para a Eq. (15).
Assim, o sistema será instável para 1>A , ou se:
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Para um pequeno amortecimento, o comportamento do sistema não é muito diferente daquele
observado para o sistema não amortecido. A Fig. (2.a) mostra graficamente o resultado da Eq. (20)
para as regiões de estabilidade, para um pequeno valor do fator de amortecimento (ξ). Para um
sistema mais fortemente amortecido, embora o resultado gráfico da Eq. (20) seja similar aos casos
anteriores, o mesmo apresenta um pequeno aumento das regiões de instabilidade, como mostrado na
Fig. (2.b). Importante observar que, para quaisquer dos casos apresentados (com ou sem
amortecimento), existe uma região de instabilidade para a relação entre as freqüências natural e
elástica (freq. de excitação) próxima a 1. Uma região de instabilidade ao redor deste valor, mostra-
se relevante no que diz respeito à análises experimentais, onde é costume excitar-se o sistema
próximo à sua freqüência natural. Ainda, para quaisquer dos casos, deve-se também considerar a
influência do percentual de variação elástica do sistema ( kk∆ ).Vale lembrar que todo o estudo
mostrado para o grau de liberdade x, vale, por analogia, para o grau de liberdade z.



          
                                      (a)                                                                 (b)

Figuras 2. Regiões de estabilidade do sistema em vermelho (a) 15,0=ξ  (b) 50,0=ξ

3. ANÁLISE MODAL COMPLEXA

A teoria de vibração clássica é largamente utilizada no estudo de sistemas com e sem rotação. No
entanto, a grande diferença entre sistemas rotativos e estacionários está na rotação, a qual dá origem
a características particulares aos primeiros, que, em geral, não são levadas em consideração quando
se aplicam métodos clássicos de teoria da vibração.

A presença da rotação torna a formulação e solução do sistema de equações mais trabalhosa,
bem como mais difícil a interpretação dos seus resultados. Pode-se dizer que esta dificuldade reside
na associação existente entre a rotação e o movimento harmônico. Na análise de vibração, a
resposta do sistema é descrita com base na identidade de Euler, ou seja, ao se considerar uma
solução do tipo:

{ } { } tseQtq =)( (21)

se está interessado nas partes real e imaginária da variável complexa “s”, enquanto que em sistemas
rotativos, duas outras variáveis devem ser consideradas e analisadas: a rotação própria da máquina
(spin) e o movimento de precessão do rotor. Este tipo de resposta torna aproximada a descrição,
análise e interpretação do sistema, visto que variáveis que fisicamente se encontram em rotação, são
representadas por expressões que descrevem um movimento harmônico através de exponenciais
complexas, que não trazem em si um sentimento físico claro do movimento de rotação, bem como
de seu sentido.

Inicialmente, objetivando apenas introduzir a notação complexa em análise modal, considerar-
se-á o modelo de Jeffcott. Neste caso, o disco será tratado como uma partícula, ou seja, o seu
momento de inércia não será considerado, podendo-se, assim, desprezar o efeito giroscópico, da
mesma forma que foi feito por Jeffcott. Desta forma este sistema será considerado com apenas 2
gdls de translação no plano do disco. Embora esta consideração não seja dinamicamente correta, já
que o modelo não possui gdls de rotação, essa condição permite desenvolver o problema de forma
simples. Para a velocidade de rotação do sistema (Ω) constante, as equações de movimento do rotor
são escritas como:

tmtxktxctxm ΩΩ=++ cos)()()( 2ε!!!

(22)
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sendo m a massa do disco, k o coeficiente de rigidez do eixo, c o coeficiente de amortecimento
viscoso relativo à resistência do ar e ε a excentricidade do centro de massa em relação ao centro



geométrico do disco. Para vibração livre e supondo-se uma solução harmônica baseada na
identidade de Euler, tem-se, para cada direção:

teXtx λ
0)( =                         e                       teZtz λ

0)( = (23)

onde λ  é o expoente de oscilação amortecida do movimento em cada direção. Considerando apenas
a parte imaginária de λ , ou seja, para o caso sem amortecimento, pode-se escrever as Eqs. (23)
como:

tjtj eXeXtx ωω −+=)(        e                       tjtj eZeZtz ωω −+=)( (24)

onde a barra ( – ) faz referência ao complexo conjugado. As Eqs. (24) mostram que o sistema se
movimenta segundo uma combinação de movimentos harmônicos de mesma freqüência ocorrendo
nas direções x e z. Neste caso, um aspecto importante deve ser ressaltado e diz respeito ao fato de
que ω  é apenas a freqüência natural de dois osciladores harmônicos vibrando em dois planos
perpendiculares, e o seu sinal não tem qualquer significado físico. Em se tratando de sistemas
estacionários (sem rotação), este detalhe em nada influencia a análise e compreensão dos mesmos.
No entanto, para sistemas rotativos, suas características particulares fazem com que este venha a ser
um dado relevante, por permitir a determinação do sentido do modo de precessão, ou seja, se direto
ou retrógrado.

Com base nessa idéia, propõe-se que sistemas deste tipo sejam descritos com a utilização de
coordenadas complexas. Assim, voltando ao sistema em questão, admitindo que o eixo x seja o eixo
de coordenadas reais e o eixo z o de coordenadas imaginárias, introduz-se uma notação complexa,
tal que:

)()()( tzjtxtp += (25)

Assim, as Eqs. (22) podem ser escritas como uma única equação da forma:

tjemtpktpctpm ΩΩ=++ 2)()()( ε!!! (26)

cuja resposta para parcela homogênea é:

tePtp λ
0)( = (27)

onde ( ) nj ωξξλ 2
2,1 1−±−= . Assim, a solução geral será:

tt ePePtp 21
21)( λλ += (28)

Fazendo 0=ξ , o vetor )(tp  gira, no plano xz, com velocidade angular nω , descrevendo a

posição do sistema em cada instante de tempo. Ao contrário do que acontece nas formulações
tradicionais, como as soluções mostradas pelas Eqs. (24), nω  agora, não é apenas a freqüência

natural relativa aos movimentos harmônicos descritos pelo sistema, mas sim representa a
velocidade angular com que o eixo descreve seu movimento de precessão em torno da linha que une
os mancais, sendo que o sinal de nω  indica o sentido que esse movimento ocorre. Assim, pode-se

dizer que o primeiro termo do lado direito da Eq. (28) está associado ao movimento de precessão
direta (mesmo sentido de giro da rotação própria do eixo) e o segundo ao de precessão retrógrada.

Substituindo as Eqs. (24) na Eq. (25), tem-se:
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onde os índices “f ” e “b” fazem referência, respectivamente, aos sentidos direto (forward) e
retrógrado (backward).

3.1. Modelo Modal Complexo

Considere-se agora, um sistema rotativo, com 2n gdl, similar ao descrito pela Eq. (2), onde os
vetores de coordenadas generalizadas e de carregamentos externos são, agora, dados por:
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sendo { })(tx  e { })(tf x , respectivamente, vetores nx1 relativos aos deslocamentos (translacionais e

rotacionais) e carregamentos externos na direção “x”, e { })(tz  e { })(tf z , seus análogos na direção
“z”. Adotando-se a notação complexa anteriormente definida na Eq. (25), as Eqs. (30) podem ser
reescritas na forma matricial como:
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onde { })(tp  e { })(tg  são vetores que giram no plano xz e que descrevem, respectivamente, a

posição do eixo e a atuação da força de excitação a cada instante de tempo, e os vetores { })(tp  e

{ })(tg  são, respectivamente, seus complexos conjugados. A matriz de transformação de

coordenadas [ ] nnxT 22 , e a sua inversa, são definidas como:
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Substituindo as Eqs. (31) e (32) na equação de movimento (2), e pré-multiplicando ambos os lados

do resultado por [ ] 1−T , chega-se ao sistema de equações de movimento em coordenadas complexas
dado por:
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sendo
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onde os índices “f ” e “b” fazem referência, respectivamente, aos sentidos direto (forward) e
retrógrado (backward), e o índice “c” enfatiza que a formulação é agora baseada em variáveis
complexas.

3.2. Determinação da Matriz de Receptância

Transformando a Eq. (33) com a utilização de variáveis de estado, chega-se às relações de
normalização para o problema na forma complexa, sendo os autovalores { }cU  e { }cV ,

respectivamente, autovetores à direita e à esquerda, tais que:
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Represente-se o vetor de excitações externas em termos de suas componentes diretas e
retrógradas, da mesma forma que foi feito para o vetor de deslocamentos (Eq. (29):

{ } { } { } tj
b
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f eGeGtg ωω −+=)( (36)

No caso da análise modal feita no plano complexo, a matriz de resposta em freqüência relaciona
as excitações diretas e retrógradas com as respostas diretas e retrógradas, dando origem às
chamadas Funções de Resposta em Freqüência direcionais (dFRFs). Assim, para a análise da
resposta forçada do sistema na forma de estado, admitindo-se uma resposta harmônica a uma
excitação harmônica, chega-se a matriz de receptância complexa dada por (Kessler e Kim, 2001):
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sendo:
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As Eqs. (37) e (38) mostram que a matriz de FRFs é obtida a partir da relação entre resposta e
excitação complexas. Desta forma, podem-se separar as respostas e excitações diretas de suas
análogas retrógradas. Como se está trabalhando com coordenadas direcionais relacionadas ao
sentido de rotação do sistema, a matriz [ ])(ωH  é agora chamada de Matriz de Resposta em
Freqüência direcional (dMRF) e seus elementos de Funções de Resposta em Freqüência direcionais
(dFRFs). As dFRFs )(ω

ff GPH  e )(ω
bb GP

H  são chamadas de dFRF normais, pois relacionam

excitações diretas e respostas diretas e excitações retrógradas e respostas retrógradas. As dFRFs
)(ω

bf GP
H  e )(ω

fb GP
H , por sua vez, são ditas dFRF reversas, pois relacionam excitações

retrógradas e respostas diretas e excitações diretas e respostas retrógradas.
Neste sentido, percebe-se que este método difere do método de análise modal clássico, dentre

outras coisas, no processo de excitação, sendo necessário um dispositivo que produza uma
excitação rotativa (Eq. (36)), onde o controle do sentido da mesma passa a ser fundamental.



4. CONCLUSÕES

O presente trabalho buscou preencher lacunas encontradas quando da utilização de técnicas de
identificação modal convencionais em máquinas rotativas, apresentando métodos e abordagens
específicas para análise destes sistemas,

Ao contrário das abordagens existentes, a adoção de um sistema em malha aberta evidencia a
questão da não linearidade da força de excitação em função da variação do entreferro. A análise dos
efeitos desta não linearidade mostrou-se relevante para realização da análise modal experimental
num sistema em malha aberta, bem como para o estudo de efeitos de campos eletromagnéticos
agindo em sistemas rotativos.

No campo analítico, a apresentação detalhada da análise modal complexa, deixou claro suas
vantagens em relação a análise modal clássica quando usada em sistemas rotativos, permitindo
estabelecer uma relação entre o sentido do movimento de rotação e sua representação matemática,
possibilitando a separação de modos diretos e retrógrados em funções de resposta em freqüência
direcionais.
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Abstract. Rotating machines analysis always uses the same analitical methods and experimental
technics, designated as modal analysis. Analitical and numerical approaches are based in the
classical vibration theory, widely used in non-rotating systems. On the other hand, experimental
modal identification has model excitation through out its entire orbital path one of its greatest
challeges. Seeking a specific approach to rotating systems, this work presents the complex modal
analysis, aiming to solve problems found when using classical modal analysis in rotating machines.
In this approach, input and output variables are described as complex variables, allowing for a
relation between the rotating movement direction and its mathematical representation, so making it
possible to obtain directional frequency response functions (dFRF). System is excited through a non
contatct assynchronous rotating force. A study about excitation force non linearity is done.
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