
CARACTERIZAÇÃO DINÂMICA INTEGRADA DE ELASTÔMEROS POR 
DERIVADAS GENERALIZADAS 

 
Eduardo Márcio de Oliveira Lopes 
UFSC, Caixa Postal 476, Florianópolis, SC, Brasil, 88040-900, lopes@pisa.ufsc.br 
 
Carlos Alberto Bavastri 
CEFET/PR, Av. Sete de Setembro, 3165, Curitiba, PR, Brasil, 80230-901, bavastri@cefetpr.br 
 
João Morais da Silva Neto 
UFSC, Caixa Postal 476, Florianópolis, SC, Brasil, 88040-900, joaoneto@emc.ufsc.br 
 
José João de Espíndola 
UFSC, Caixa Postal 476, Florianópolis, SC, Brasil, 88040-900, espindol@mbox1.ufsc.br 

 
Resumo. Os materiais viscoelásticos, particularmente os elastômeros, são largamente utilizados no 
controle passivo de vibrações e ruídos acústicos. Projetos de controle eficazes demandam o 
conhecimento preciso do comportamento, ou caracterização, desses materiais, em especial, de suas 
propriedades dinâmicas, quais sejam, o módulo de elasticidade e o correspondente fator de perda. 
Essas propriedades são dependentes da frequência e da temperatura. A modelagem matemática de 
materiais viscoelásticos através do uso de derivadas generalizadas tem se revelado como sendo 
extremamente adequada. Recentemente, uma nova abordagem para a caracterização de materiais 
viscoelásticos, via derivadas generalizadas, foi introduzida. Nesse artigo, aquela abordagem é 
aprofundada de modo especial. Mostra-se que, com a modelagem proposta, as várias funções 
transmissibilidade, obtidas nas várias temperaturas de ensaio, podem ser utilizadas de forma 
simultânea para a caracterização integrada do material de interesse. Resultados com borracha 
butílica e silicone são apresentados e discutidos.  As características originais do procedimento em 
tela, bem como a qualidade de seus resultados, são destacadas. 
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1. INTRODUÇÃO 

 
Os materiais viscoelásticos, particularmente os elastômeros, são largamente utilizados no 

controle passivo de vibrações e ruídos acústicos, em aplicações que vão das mais singelas às mais 
sensíveis. Essas aplicações incluem, dentre outras, equipamentos de laboratório, eletrodomésticos, 
motores, máquinas em geral, tubulações e componentes aeroespaciais, automotivos e navais. 

Projetos de controle eficazes demandam o conhecimento preciso do comportamento, ou 
caracterização, desses materiais, em especial, de suas propriedades dinâmicas, a saber, o módulo de 
elasticidade e o correspondente fator de perda. Essas propriedades são dependentes da frequência e 
da temperatura, dependência essa que, em faixas de grande interesse, é bastante pronunciada. 

A modelagem matemática de materiais viscoelásticos através do uso de derivadas generalizadas 
tem se revelado, ao longo das últimas duas décadas, como extremamente adequada (Bagley e 
Torvik, 1986; Padovan e Guo, 1988; Pritz, 1998). Por essa modelagem, as relações entre tensão e 
deformação são expressas por intermédio de derivadas de ordem não inteira, denominadas 
derivadas fracionárias, ou generalizadas. Dessa forma, com apenas cinco parâmetros, ou mesmo 



quatro, é possível se representar um certo material, em oposição aos inúmeros parâmetros 
requeridos, quando derivadas de ordem inteira são utilizadas naquelas relações. 

Espíndola et al (2003) introduziram, recentemente, uma nova abordagem para a caracterização 
de materiais viscoelásticos, via derivadas generalizadas. Naquela abordagem, descrita adiante, um 
corpo de prova viscoelástico simples e sua função transmissibilidade são utilizados na identificação 
das propriedades dinâmicas, em amplas faixas de frequência e temperatura, através do uso de 
câmara de temperatura controlada. 

Nesse artigo, aquela abordagem é aprofundada de modo especial. Mostra-se que, com a 
modelagem proposta, as várias funções transmissibilidade, obtidas nas várias temperaturas de 
ensaio, podem ser utilizadas de forma simultânea para a caracterização integrada do material de 
interesse. Classicamente, todas as abordagens existentes processam as informações obtidas nas 
várias temperaturas isoladamente para, numa segunda etapa, reuní-las e gerar uma representação 
completa (Nashif et al, 1985; Oyadiji e Tomlinson, 1991). 
 
2. CARACTERIZAÇÃO DINÂMICA CLÁSSICA 
 

Uma forma estabelecida de se descrever o comportamento dinâmico de materiais viscoelásticos 
é a representação por módulos complexos. Cada módulo complexo desempenha um papel análogo 
ao seu correspondente da elasticidade clássica. Contudo, ele não só responde pelas características 
elásticas (parte real) como também pelas dissipativas (parte imaginária).  

Assim, o módulo complexo de cisalhamento G  de um certo material pode ser expresso por: 
 

R IG G iG= +               (1) 
 

onde RG  é o módulo real de cisalhamento e IG  o módulo imaginário de cisalhamento. 
Definindo-se o fator de perda ao cisalhamento Gη  como: 
 

G I RG Gη =              (2) 
 

pode-se reescrever a Eq. (1) da seguinte forma: 
 

( )1R GG G iη= +              (3) 
 
Como os materiais viscoelásticos apresentam dependência tanto da frequência quanto da 

temperatura, é apropriado indicar que: 
 
( ) ( ), ( , ) 1 ,R GG T G T i Tω ω η ω= +             (4) 

 
onde ω  representa frequência e T  temperatura. 

O módulo real de cisalhamento e o correspondente fator de perda são referenciados como 
propriedades dinâmicas do material em questão. 

Face ao exposto acima, decorre que o conhecimento cabal do comportamento dinâmico de um 
certo material viscoelástico só pode ser obtido após esse ser ensaiado ao longo de amplas faixas de 
frequência e temperatura. Via de regra, o que resulta dos diversos procedimentos experimentais 
existentes é um conjunto de curvas, em uma banda de frequência característica do procedimento 
empregado, estando cada curva associada a uma temperatura de ensaio, como ilustrado na Fig. (1). 

Para diversos materiais de interesse, a chave para se obter uma caracterização dinâmica ampla, a 
partir de dados experimentais limitados, é o assim chamado princípio de superposicão frequência-
temperatura (Ferry, 1980; Nashif et al, 1985). Partindo da observação de que os efeitos de 
frequência e temperatura em materiais viscoelásticos são qualitativa e reciprocamente equivalentes, 



esse princípio estabelece que as diversas curvas de propriedades dinâmicas podem ser superpostas, 
em uma temperatura de referência qualquer, por meio de deslocamentos em frequência apropriados, 
formando, assim, duas curvas mestre únicas, uma para cada propriedade. 
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Figura 1. Gráficos de propriedades dinâmicas medidas: (a) módulo real (b) fator de perda 

(fontes: Nashif et al, 1985; Espíndola, 1990) 
 
Matematicamente, tem-se que: 
 

( ) ( ) ( )0 0 0 ,rG T T G Tω ρ ρ ω=            (5) 
 
( ) ( ) ( )0

,G r G Tη ω η ω=             (6) 
 

onde rω  (= ( )T Tα ω ) é a frequência reduzida, Tα  é o fator de deslocamento (cujos valores são 

00T0   para  , 1  e  ,  para  , 1  ,  para  , 10 TTTTTT TT <>==><< ααα ), 0T  é a temperatura de 
referência (em escala absoluta), ρ  é a densidade  e 0ρ  é a densidade à temperatura de referência. 

As expressões acima estabelecem que, exceto por um fator (T0ρ0/Tρ) para o módulo de 
cisalhamento (via de regra, desprezável), as propriedades dinâmicas obtidas a uma frequência ω e 
temperatura T são iguais às propriedades dinâmicas a uma frequência composta ωr e a uma 
temperatura T0 . Embora a temperatura de referência seja arbitrária, sua escolha, para um certo 
conjunto de dados experimentais, terá influência na qualidade da representação final obtida. 

A determinação do fator de deslocamento αT é de crucial importância para o processo de 
consolidação das curvas. Tipicamente, o que se faz é estimar os valores que fazem com que as 
curvas parciais se desloquem em frequência, de tal modo que superposições completas sejam 
alcançadas na temperatura de referência (Ferry, 1980). Uma expressão útil pode ser obtida pelo 
ajuste desses valores a uma equação empírica, consistente com a experiência e conhecida como 
equação WLF (Williams-Landel-Ferry), qual seja: 

 
( ) ( ) ( )10 1 0 2 0log T T T T T Tα θ θ= − − + −            (7) 

 
onde θ1 e θ2 são parâmetros a serem determinados para cada material. Um gráfico típico de fator de 
deslocamento versus temperatura absoluta é apresentado na Fig. (2a). 

Uma vez consolidadas, as propriedades dinâmicas são exibidas, de forma padronizada (ISO 
10112, 1991), em nomogramas, conhecidos como nomogramas de frequência reduzida, como 
ilustrado na Fig. (2b). Esses nomogramas têm sido adotados tanto por pesquisadores quanto 



fabricantes de materiais viscoelásticos. Expressões paramétricas têm sido ajustadas aos dados, de 
sorte que representações contínuas estejam disponíveis, tanto grafica quanto analiticamente. 
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Figura 2. Gráficos de caracterização dinâmica: (a) fator de deslocamento versus temperatura 
 (b) nomograma de frequência reduzida (fontes: ISO 10112, 1991; Espíndola, 1990) 

 
3. ABORDAGEM POR DERIVADAS GENERALIZADAS 
 

O módulo complexo de cisalhamento de um certo material viscoelástico pode ser descrito por 
uma expressão paramétrica simples, porém representativa, derivada pelo usos de cálculo fracional e 
teoria de transformadas (Bagley e Torvik, 1986), qual seja: 

 

( ) ( )
( )1

L HG G b i
G

b i

β

β

ω
ω

ω

+
=

+
            (8) 

 
onde LG  é o módulo elástico, HG  o módulo vítreo, b um parâmetro real e β a ordem da derivada 
generalizada (ou fracionária) associada, sendo que 0 < β < 1. 

O cálculo fracional tem sido aplicado, com sucesso, para se descrever o comportamento 
viscoelástico linear de polímeros. Nessas análises, as relações tensão-deformação são formuladas 
em termos de derivadas de ordem não inteira, ditas fracionais, ou generalizadas, em lugar dos 
clássicos operadores de ordem inteira.  

Considere-se, agora, a abordagem introduzida por Espíndola et al (2003), para a determinação 
do módulo complexo de cisalhamento de elastômeros, baseado no modelo representado na Fig. (3). 

Esse modelo consiste em uma massa m, conectada a uma base rígida vibrante através de um 
elemento flexível, cuja flexibilidade é fornecida simplesmente por sua porção viscoelástica. Com 
essa hipótese, a rigidez (complexa) k  desse elemento pode ser escrita como: 
 

( ) ( )k Gω υ ω=              (9) 
 

em que υ  é uma constante que só depende da geometria do elemento e suas inserções metálicas. 
O movimento x(t) da base é prescrito e, por hipótese, não retroalimentado. 
Na Figura (3), todas as quantidades envolvidas são escritas no domínio da frequência. O 

equilíbrio dinâmico da massa é expresso por: 
 
( ) ( ) ( ) ( )2k X Y m Yω ω ω ω ω − = −          (10) 



donde resulta: 
 

( ) ( )
( )

( )
( ) 2

Y k
T

X k m
ω ω

ω
ω ω ω

= =
−

         (11) 

 
A função ( )T ω  pode ser chamada transmissibilidade complexa e é uma função resposta em 

frequência ligando a saída ( )Y ω  à entrada ( )X ω  (observe-se que ( )X ω  e ( )Y ω  são as 
transformadas de Fourier de x(t) e y(t), respectivamente).  

 

 
 

Figura 3. Modelo para a determinação do módulo complexo de cisalhamento 
 
Com o uso da Exp. (9), sendo ( )G ω dado pela Exp. (8) e m mυ υ= , a Exp. (11) torna-se: 
 

( ) ( )
( ) 2

G
T

G mυ

ω
ω

ω ω
=

−
          (12) 

 
A função ( )T ω , dada pela Exp. (12), é um modelo para a transmissibilidade complexa, tal que 

( ) ( ), , , , ,L HT f G G b mυω ω β= . 
Considere-se, a seguir, que y(t) e x(t) são medidos digitalmente nos instantes de tempo ti, i = 

1,N, onde N é um número da forma N = 2n, sendo n um número inteiro. A partir dessas duas séries 
temporais, a transmissibilidade experimental ( )E jT ω  é computada como: 

 
( ) ( ) ( ) ,    j 1,E j XY j YY jT S S pω ω ω= =         (13) 

 
onde p é um número inteiro, menor ou igual a N / 2, 2Nω  é a frequência de Nyquist, ( )XY jS ω  é o  

espectro cruzado de potência de x(t) e y(t) e ( )YY jS ω  é o auto-espectro de potência de y(t). 

Defina-se o vetor complexo e , cujas entradas são: 
 

( ) ( ) ,    j 1,Ej j je T T pω ω= − =          (14) 
 
Pode-se, então, definir uma função objetivo tal que: 
 
( ) [ ] [ ]Hf x e e=            (15) 

( )k ω

m

( )y t

( )x t ( ) ( ) ( )k ω X ω -Y ω    

( ) ( ) ( )k ω X ω -Y ω    ( )X ω

( )Y ω  
m



onde x é um vetor tal que [ ]T
L Hx G ,G , b, , mυ= β  . 

Acima, o índice H significa transposto do conjugado e o índice T significa transposto. 
Computando-se o vetor x de forma a minimizar f(x), ou seja, de sorte que a soma dos erros 

quadráticos definida pela Exp. (15) alcance seu valor mínimo, obtêm-se os valores dos parâmetros 
materiais na temperatura de ensaio. A repetição desse procedimento em outras temperaturas resulta 
no levantamento de parâmetros para toda a faixa de interesse.  

De posse dos parâmetros materiais acima, curvas de fator de perda versus módulo real  para 
cada temperatura de ensaio podem ser construídas num gráfico como o da Fig. (4), conhecido como 
“wicket plot” (ASTM E756, 1998). Seu uso, nesse contexto, permite que sejam determinados 
valores únicos de GL e GH, correspondentes aos limites inferior e superior do módulo real. Permite, 
também, que se visualize a curva com maior fator de perda. A temperatura associada a essa curva é 
escolhida como a temperatura de referência, ao passo que os valores de b e β identificados para  
essa curva são tomados como valores únicos desses parâmetros para a representação conjunta final. 

O fator  αT  é calculado, nas temperaturas de ensaio, pela seguinte expressão (Lopes, 1998): 
 

( ) ( )10T T b b βα =            (16) 
 

onde 0b  é o valor do parâmetro b na temperatura de referência. 
Ressalta-se que a abordagem sumarizada acima não usa a representação de elastômeros por 

derivadas generalizadas para tão somente ajustar dados experimentais relativos àqueles materiais. 
Ela faz daquela representação a sua pedra angular, sendo essa uma de suas inovações.  
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Figura 4. “Wicket plot” (fonte: Espíndola et al, 2003) 
 

4. CARACTERIZAÇÃO DINÂMICA INTEGRADA 
 
A Expressão (8) pode ser ampliada pela inserção da Exp. (16), para a inclusão dos efeitos de 

temperatura (Lopes, 1998), de forma que: 
 

( ) ( )
( )

0

0

,
1

L H T

T

G G b i T
G T

b i T

β

β

α ω
ω

α ω

+   =
+   

        (17) 

 
Sendo o fator de deslocamento dado pela Exp. (7), tem-se, para a transmissibilidade complexa: 

 



( ) ( )
( ) 2

,
,

,
G T

T T
G T mυ

ω
ω

ω ω
=

−
         (18) 

 
em que ( ) ( )0 1 2 0, , , , , , , , , ,L HT T f T G G b m Tυω ω β θ θ=  . 

Defina-se, agora, a matriz complexa E , cujas entradas são: 
 

( ) ( ), , ,    j 1,    e   k 1,Ejk j k j ke T T T T p qω ω= − = =       (19) 
 

onde q é o número de temperaturas de ensaio. 
Pode-se, então, definir uma nova função objetivo, tal que: 
 

( ) ( ) ( )
1 1

q p C

kj jk
k j

f x e e
= =

 
=  

 
∑ ∑          (20) 

 
onde o índica C significa conjugado e [ ]T

L H 0 1 2 0x G ,G , b , , m , , ,Tυ= β θ θ  . 
A minimização de f(x) permite que todas as transmissibilidades experimentais sejam utilizadas 

simultaneamente para a determinação integrada dos parâmetros finais do elastômero em tela, 
incluindo-se aqueles relativos ao fator de deslocamento. Dessa forma, numa única etapa, obtêm-se 
os elementos necessários à caracterização completa do material, tanto de forma gráfica, pelo 
nomograma de frequência reduzida, quanto de forma analítica, pelas Exp. (7) e (17). 

A novidade do procedimento exposto reside no levantamento concomitante das dependências 
em frequência e temperatura, tal como elas se manifestam no conjunto das transmissibilidades 
experimentais. Ressalta-se a introdução da temperatura de referência como um dos parâmetros a ser 
identificado, de modo a explicitar sua importância na qualidade dos resultados a serem obtidos. 

 
5. RESULTADOS EM ELASTÔMEROS USUAIS 
 

A Figura (5) ilustra uma montagem experimental típica para a obtenção das transmissibilidades. 
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Figura 5. Montagem experimental típica 
 

As Figuras (6a) e (6b) apresentam os gráficos de caracterização dinâmica de um exemplar de 
borracha butílica, obtidos através do procedimento em tela. As temperaturas de ensaio são indicadas 
pelas linhas diagonais do nomograma, sendo a faixa de frequência de ensaio indicada pelos trechos 
contínuos daquelas linhas. Observa-se no nomograma que, nas faixas em que a borracha butílica foi 
ensaiada, foram levantadas informações do final da região elástica ao início da vítrea. 
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Figura 6. Gráficos de caracterização dinâmica para borracha butílica: 

 (a) fator de deslocamento versus temperatura (b) nomograma de frequência reduzida 
 

A qualidade da identificação realizada pode ser observada na Fig. (7), onde são comparadas as 
transmissibilidades experimental e teórica para cada temperatura de ensaio.  
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Figura 7. Transmissibilidades experimentais e teóricas para borracha butílica 

 
As Figuras (8a) e (8b) mostram os gráficos de caracterização dinâmica de um exemplar de 

silicone, enquanto a Fig. (9) ilustra as transmissibilidades experimentais e teóricas correspondentes.  
Para o silicone, só foram colhidas informações da região elástica, o que, via de regra, dificulta a 

estimação de valores iniciais para os parâmetros. Aqui, contudo, foram usados valores iniciais 
típicos e tanto a convergência foi tranquila quanto os resultados foram excelentes, vide Fig. (9). 

Cabe observar que, em ambos os casos expostos acima, foi utilizada, por simplicidade e 
conveniência, a técnica de otimização de Nelder e Mead (“simplex”). Salienta-se que só foram 
considerados, no processo de minimização, os pontos experimentais associados a valores de 
coerência iguais ou bastante próximos de 1. 
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Figura 8. Gráficos de caracterização dinâmica para silicone: 

 (a) fator de deslocamento versus temperatura (b) nomograma de frequência reduzida 
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Figura 9. Transmissibilidades experimentais e teóricas para silicone 

 
6. CONCLUSÕES 
 

Um procedimento para a caracterização dinâmica integrada de elastômeros foi descrito, sendo os 
resultados de sua aplicação em exemplares de borracha butílica e silicone apresentados e discutidos.  

A originalidade do procedimento exposto reside no levantamento concomitante das 
dependências em frequência e temperatura dos materiais ensaiados, tal como elas se manifestam nos 
dados experimentais. A qualidade dos resultados obtidos convalida o procedimento em tela.  
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Abstract. Viscoelastic materials, particularly elastomers, are broadly used in passive vibration and 
noise control. Efficacious control designs demand the characterization of the materials’ behaviour, 
especially of their modulus of elasticity and loss factor. Those properties are frequency and 
temperature dependent. The mathematical modelling of viscoelastic materials by generalized 
derivatives has revealed itself as extremely adequate. A new approach to the characterization of 
viscoelastic materials by generalized derivatives has been introduced recently. In this paper, that 
approach is deepened. It is shown that, by the proposed modelling, the various transmissibility 
functions, obtained at various test temperatures, can be simultaneously used to an integrated 
characterization of a given material. Results to butyl rubber and silicone are presented and 
discussed.  The originality of the procedure, as well as the quality of its results, are highlighted.  
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