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Resumo. O presente trabalho investiga o problema da não consideração dos modos de alta 
freqüência no modelo de projeto de um sistema de controle. Durante a fase de construção de um 
controlador, o modelo de projeto é de ordem reduzida e esta escolha se sustenta principalmente na 
questão da limitação do número de sensores e atuadores que podem ser empregados. Desta forma, 
em função da ordem do modelo, a localização dos zeros, associados ao sistema em malha aberta, é 
distorcida. Na tentativa de corrigir estes efeitos, um termo constante é adicionado na função de 
transferência do sistema. Para avaliar o procedimento descrito, uma viga flexível contendo um par 
de materiais piezelétricos e modelada a partir do método dos modos assumidos é empregada na 
análise. 
 
Palavras-chave: Modos de alta freqüência, termo de correção, viga flexível, materiais piezelétricos 
e método dos modos assumidos. 
 
1. INTRODUÇÃO 
 

Os sistemas estruturais, sejam manipuladores robóticos, construções civis, veículos de transporte 
etc., estão freqüentemente sujeitos à excitações externas e internas que provocam vibrações 
indesejáveis, colocando em risco a própria integridade estrutural do sistema e até mesmo a saúde 
dos usuários. No âmbito da indústria aeroespacial, por exemplo, a atenuação das vibrações pode 
permitir aos sistemas aeroespaciais, como antenas e apêndices de veículos espaciais, uma operação 
mais eficiente e segura, proporcionando manutenções periódicas menos freqüentes evitando com 
isso gastos dispendiosos. Neste contexto, a necessidade atual de redução de peso para minimizar os 
custos de lançamento de satélites e o uso de estruturas mais leves e atuadas por motores de baixo 
torque em robótica, conduz ao projeto de estruturas cada vez mais flexíveis. Por tudo isso, o 
controle de vibrações tem sido objeto de preocupação de inúmeros centros de pesquisa e a literatura 
especializada é rica em propostas de soluções para esta questão. 

Atualmente, grande parte dos esforços dos pesquisadores tem sido dedicada a redução do ruído 
causado por vibração estrutural (Elliott e Nelson, 1993). Neste sentido, as soluções propostas para a 
atenuação de vibrações em sistemas mecânicos vão desde o emprego de mecanismos passivos de 
absorção de vibrações, que aumentam a massa e/ou o amortecimento da estrutura (Cunha Jr, 1999 e 
Steffen Jr. e Rade, 1999) até a utilização de propostas baseadas no controle ativo e que empregam 
materiais ditos “inteligentes” cujas propriedades se modificam mediante uma ação de controle 
(Rogers et al, 1995; Banks et al, 1996). Destaque especial para os materiais piezelétricos que têm 
possibilitado a concepção de tipos inovadores de sensores e atuadores (PS, 2003). Tais materiais 



  

possuem a propriedade de sofrer polarização (surgimento de cargas elétricas) quando são 
deformados por esforços mecânicos externos (efeito piezelétrico direto). Inversamente, estes 
materiais têm sua forma alterada quando seus dipolos elétricos se alinham sob a ação de um campo 
elétrico externo, causando deformação em sua estrutura (efeito piezelétrico inverso). 

A utilização dos materiais piezelétricos é, nos dias atuais, uma realidade concreta. Eles têm sido 
empregados em diversas aplicações de Engenharia, principalmente aquelas que requerem atuações 
de alta precisão e velocidade, tais como: sistemas de rastreamento óptico, microposicionadores para 
robôs, impressoras a jato de tinta e auto-falantes. Pesquisas recentes têm sido dedicadas ao uso de 
atuadores piezelétricos em sistemas de controle de ruído (Fuller et al, 1996) e de monitoramento de 
danos estruturais (Chaudhry et al, 1995). 

O crescente interesse na aplicação da tecnologia dos materiais piezelétricos para os problemas 
de controle de vibrações e acústica levou, nos últimos trinta anos, um grande número de 
pesquisadores a propor métodos matemáticos que permitissem descrever, de uma forma precisa, o 
mecanismo de atuação e sensoriamento destes materiais. Dada a simplicidade na formulação, o 
método dos modos assumidos (Junkins e Kim, 1993) tem sido extensivamente empregado para a 
modelagem numérica de sistemas contínuos. Neste tipo de abordagem, o comportamento das 
vibrações estruturais é descrito por funções que dependem de variáveis espaciais e temporais (Fuller 
et al, 1996). Devido a este tipo de representação matemática, tal método vem se mostrando como 
uma ferramenta de modelagem atraente e promissora, especialmente no campo do desenvolvimento 
de novas propostas de controladores (Abreu, 2003). Apesar deste atrativo, o uso de tal método em 
estruturas complexas torna-se, em muitos casos, proibitivo e em outros impossível (Lima Jr., 1999). 

Além do problema da formulação dos modelos matemáticos que descrevem o comportamento 
dinâmico e estático das estruturas, uma outra questão importante que deve ser analisada é a escolha 
da localização dos sensores e atuadores na estrutura. Esta etapa visa a melhoria da capacidade de 
sensoriamento e atuação do sistema de controle através do posicionamento ótimo destes elementos 
(Abreu, 2003). 

Para a síntese do controlador e uma vez definida a posição dos sensores e atuadores na estrutura 
torna-se necessário avaliar a questão da redução do modelo. Muitas vezes para se projetar as leis de 
controle é imprescindível reduzir os modelos, uma vez que o sistema flexível, quando formulado, 
normalmente resulta em modelos de alta ordem. Por outro lado, o procedimento de redução de 
modelos pode causar alterações no comportamento dinâmico do modelo truncado devido aos modos 
que foram descartados (Loix e Preumont, 1995). Neste ponto surgem os problemas decorrentes da 
dinâmica residual não considerada no modelo truncado. Assim, torna-se necessário incorporar, 
convenientemente estes efeitos no modelo de projeto do controlador (Clark, 1997). 

Este trabalho pretende enfim investigar os efeitos provocados pelo procedimento inevitável de 
redução de modelos e incorporar estes mesmos efeitos no modelo de projeto de um controlador. 
Para atentar aos objetivos expostos, o texto está assim organizado: na seção 2 a formulação do 
sistema dinâmico, constituído por uma viga flexível, é apresentada em detalhes; na seção 3 discute-
se o problema da incorporação dos modos descartados no modelo truncado através de um termo de 
correção constante; na seção 4, alguns resultados numéricos são gerados e apresentados e por fim a 
conclusão, onde são realizados as discussões e questionamentos a respeito da solução apresentada. 

 

2. MODELAGEM DO SISTEMA 
Todo sistema estrutural é um sistema contínuo ou dito sistema infinito-dimensional com 

parâmetros que são funções de variáveis espaciais e temporais. Assim, estes sistemas são 
classificados como sistemas a parâmetros distribuídos e são governados por equações diferenciais 
parciais do tipo (Meirovitch, 1997): 
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onde vρ  e vA  são a densidade e a área da seção transversal da viga ( vvv hbA = ), respectivamente, w 
é o deslocamento na direção transversal, vE  é o módulo de elasticidade da viga, vI  é o momento de 

inércia estrutural (
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v
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I = ) e ( )txf ,  é o carregamento externo aplicado na viga. 

Tem-se assim um sistema a parâmetros distribuídos, onde o comportamento das vibrações da 
estrutura dependem da distribuição de massa da mesma ( vv Aρ ), dos esforços externos ( )txf ,  a ela 
aplicados, dos vínculos físicos (espessura hv, largura bv e comprimento Lv) e da maneira como as 
vibrações se iniciam (condições iniciais). 

Engaste

Lv

Z

X

Atuador

Sensor

Viga
x1

x2

 
(a) 

ah

sh

vh

vb
sb

Viga Flexível

z

Y

xa1

xa2

Mx

Mx

xs1

xs2

ab
Atuator

Sensor

( )taΦ

( )tsΦ

 
(b) 

Figura 1. (a) Viga engastada-livre contendo atuador e sensor piezelétrico e (b) Propriedades 
geométricas dos elementos piezelétricos. 

 
A solução da Eq. (1), dada por w(x,t), é obtida pelo produto de duas funções: uma função 

espacial ( )xφ  que representa as funções de forma ou formas modais do sistema (dependem das 
condições de contorno da viga) e uma função temporal denotada por ( )tη : 

( ) ( ) ( )∑
∞

=
=

1
,

k
kk txtxw ηφ                        (2) 

Por ser um sistema com propriedades distribuídas, ele tem um número infinito de modos de 
vibração. Computacionalmente, é impossível trabalhar com este tipo de estrutura, pois implicaria 
em um modelo de trabalho de ordem infinita. Objetivando analisar o comportamento dinâmico 
deste sistema, um modelo finito-dimensional deve ser determinado: 
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onde n é o número de modos de vibrações considerados no modelo em questão. 

Para fins de controle, considere uma viga submetida a atuação e sensoriamento de elementos 
piezelétricos perfeitamente colados e co-posicionados respectivamente na parte superior e inferior 
da estrutura segundo ilustra a Fig. 1. Da Figura 1 (b), tem-se que: ( )21 , xx  são os limites 
geométricos ou as coordenadas em x dos elementos piezelétricos, h é a espessura dos materiais, 

( )taΦ  é o potencial elétrico aplicado no elemento atuador e ( )tsΦ  é a voltagem de saída do 
elemento sensor. 



  

2.1 Obtenção da Equação do Atuador 
 

Para a modelagem do atuador, considera-se que a única contribuição do elemento piezelétrico 
na estrutura é a geração de forças ( )txf ,  e momentos externos Mx (veja Fig. 1), resultantes da 
aplicação de um potencial elétrico aplicado sobre o material. A aplicação deste potencial elétrico 
induz uma deformação aε  preferencial na direção X na forma: 
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onde d31 é a constante piezelétrica da cerâmica. 

Segundo Srinivasan e McFarland (2001), a equação que descreve o momento de flexão total Mx 
em função da deformação induzida ε  é dada por: 
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Deste modo, a força ou carregamento externo ( )txf ,  resultante, proporcionada pela ativação do 
atuador piezelétrico (de dimensões finitas), é expresso em termos de uma função distribuição R(x) 
que mapeia a área de atuação do elemento piezelétrico na estrutura. Assim, utiliza-se a função 
Heaviside H(x), dada por (Wang e Rogers, 1989): 
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para definir a distribuição uniforme R(x) escrita como: 

( ) ( ) ( )
21 aa xxHxxHxR −−−=                       (6) 

Desta forma, o momento distribuído M(x) devido à ativação do atuador finito pode ser escrito 
como: 

( ) ( ) ( )xRtMtxM x=,                         (7) 

O carregamento externo ( )txf ,  por sua vez é finalmente determinado pela relação (Bathe, 
1982): 
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onde o termo ( )
2

2

x
xR

∂
∂  descreve matematicamente dois momentos concentrados (dois conjugados 

iguais e de sentidos contrários) em 
1ax e 

2ax  na forma (Wang e Rogers, 1989): 
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e δ denota a função delta de Dirac dada pela relação: 
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Uma propriedade importante da função delta de Dirac é mostrada a seguir (Kwakernaak e 
Sivan, 1991): 
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onde ( )( )n  representa a n-ésima derivada de ( ) . 

Como pode ser observado pela Eq. (8), a atuação do elemento piezelétrico pode ser representada 
como um carregamento externo constituído por um par de momentos de sinais opostos Mx 
localizados nas extremidades do atuador conforme ilustra a Fig. 1. 

 
2.2 Obtenção da Equação do Sensor 

 

A equação do sensor piezelétrico é obtida com base no efeito direto da piezeletricidade e na 
relação entre tensão T e deformação sε  do sensor descritos na forma (Cady, 1946): 

zssa EeET 31−= ε                     (11) 

zsssz EeD 3331 ξε +=                     (12) 

onde zE  é o campo elétrico gerado na direção de polarização Z, Dz é o deslocamento elétrico,  33sξ  
é a constante dielétrica do sensor e 3131 dEe a= . 

Sob este efeito, a deformação do sensor produz uma carga elétrica (admite-se que a carga 
elétrica resultante é constante em toda a superfície do sensor) que transita através de sua espessura.  

Sabe-se que o campo elétrico zE  é função da voltagem elétrica gerada pelo sensor, cuja relação 
é dada por: 

sz dz
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Através da equação (13) é possível obter a voltagem sΦ  integrando-se o campo elétrico ao 
longo da espessura hs do sensor segundo a expressão descrita a seguir (Tzou, 1989): 
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O campo elétrico zE  é obtido através da Eq. (12), resultando: 
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Substituindo-se a Eq. (15) em (14), tomando-se 
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Integrando-se a Eq. (16) sobre a superfície Ω  do material, resulta: 
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A condição de circuito aberto da voltagem sΦ  pode ser obtida fazendo a carga (expressa por 
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 ) igual a zero, isto é: 
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onde ( )
12 sss xxbA −=Ω . 

A deformação do elemento piezelétrico sε  (na direção X) em sua superfície, por sua vez, pode 
ser escrita como (Fuller et al, 1996): 
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Substituindo-se a Eq. (19) em (18), a equação do sensor pode ser reduzida a: 

( )
2

112

31

2
1 s

s

x

xss

s
ssvs x

w
xx

h
hhh

∂
∂

−
+=Φ                   (20) 

Como pode ser observado na Eq. (20), a voltagem gerada pelo sensor depende das condições de 
contorno da estrutura e da área efetiva da camada do sensor. Ela mostra também que o sinal de 

saída do sensor é proporcional à inclinação das extremidades do mesmo (termo 
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Consequentemente, o sinal do sensor é igual a zero se a inclinação na extremidade 
1s

xx =  for igual 
à inclinação na extremidade oposta (

2sxx = ). 

Para o caso do sensor conectado a um circuito (Loix e Preumont, 1995) mostrado no esquema 
ilustrado na Fig. 2, a voltagem sΦ  pode ser então calculada através da seguinte relação (Pota e 
Alberts, 1995): 
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onde k31 (medida adimensional) é o fator de acoplamento eletromecânico, g31 (unidade: [ Vm/N] ou 
[m2/C]) é a constante de voltagem piezelétrica e Cr é a capacitância do circuito mostrado na Fig. 2. 
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Figura 2. Circuito amplificador de carga para o sensor piezelétrico. 

2.3 Funções de Transferência do Sistema 
 

As funções de transferência do sistema podem ser determinadas a partir das equações 
desenvolvidas para o sensor e atuador mostradas nos tópicos anteriores. Assim, substituindo as Eqs. 
(8) e (2.1) na Eq. (1), resulta no sistema de equações descrito na forma: 
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Multiplicando-se a Eq. (21) por ( )∫
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φ , aplicando-se a propriedade de ortogonalidade (2.2) 
na equação resultante e reescrevendo-a em termos da k-ésima equação, obtém-se: 
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Aplicando-se a propriedade (10.1) no termo ( )
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( ) ( ) ( ) ( ) ( ) ( )[ ]
12

''

0

''''
akak

vv

x
k

L

kk
vv

vv
k xx

A
Mtdxxx

A
IEt v φφ

ρ
ηφφ

ρ
η −=








+ ∫&&                     (23) 

Substituindo-se a Eq. (4) em (23) e admitindo que o k-ésimo modo seja amortecido com um 
fator de kζ , a mesma pode ser escrita em função do potencial elétrico ( )taΦ  na forma: 
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Substituindo-se a Eq. (2.1) na Eq. (20), o sinal do sensor sΦ  pode ser então relacionado com a 
variável kη  na forma (omitindo o somatório): 
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Reorganizando as Eqs. 24 e 25, aplicando a transformada de Laplace nas equações resultantes 
(assumindo condições iniciais nulas) e colocando ηk como função de w, chega-se: 
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A equação 26 descreve a relação entre a deflexão da viga w em um ponto localizado em wx  

(sensor discreto) e o potencial elétrico aplicado aΦ  no atuador piezelétrico. 
Aplicando a transformada de Laplace nas Eqs. 25 e 24 e isolando aΦ , é possível obter uma 

relação entre sΦ  e aΦ  escrita na forma: 
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que descreve a relação entre a voltagem induzida pelo sΦ  sensor piezelétrico e o potencial elétrico 

aΦ  aplicado no atuador. 
As funções de transferência que relacionam a força mecânica Fq com a deflexão w e com o 

sinal do sensor sΦ  podem ser expressas, respectivamente, pelas relações: 
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3. INCORPORAÇÃO DOS EFEITOS DA DINÂMICA NÃO CONSIDERADA NO 
MODELO DE PROJETO DO CONTROLADOR 

 
Antes de proceder qualquer tipo de análise de caráter mais geral, tome-se, como exemplo, a 

estrutura flexível tratada neste trabalho cuja representação contínua admite uma função de 
transferência dada pela relação (27) e podendo ser reescrita na forma: 
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onde o termo Fk representa o parâmetro que depende da localização e das características físicas e 
geométricas dos elementos piezelétricos incorporados na estrutura principal. 

A dinâmica residual Gr, que não foi considerada no modelo truncado, é expressa segundo a 
relação abaixo: 
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e o sistema completo, por sua vez, é descrito por: 
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A necessidade de se quantificar o resíduo Gr para saber seu efeito exato no comportamento 
dinâmico do sistema truncado despertou o interesse de alguns pesquisadores na área (Loix e 
Preumont, 1995 e Clark, 1997). Loix e Preumont (1995) demonstraram que quando se realiza o 
truncamento do modelo, a parte residual Gr, não considerada, provoca uma alteração na localização 
dos zeros no modelo truncado em malha aberta (Gas). 

Neste trabalho, tal afirmação é verificada a partir da determinação da localização dos pólos (x) 
e zeros (o) de uma viga engastada-livre contendo um par de elementos piezelétricos incorporados. 
As características físicas e geométricas da estrutura flexível e dos elementos cerâmicos são descritas 
na Tab. 1 e a representação gráfica dos pólos e zeros é ilustrada nas figuras que se seguem. 

 
    Tabela 1. Propriedades físicas e geométricas da viga e dos materiais piezelétricos. 

 
  Piezelétrico  

Propriedades Unidade Sensor Atuator Viga 
E (Módulo de Young) GPa 2 69 65 
ρ (densidade) Kg/m3 1780 7700 2711 
d31 (constante piezelétrica) m/V 23×10-12 -179×10-12 ---- 
g31 (const. de volt. piez.) mV/N 216×10-3 -11×10-3 ---- 
k31 (coef. de acoplamento) ---- 0.12 0.30 ---- 
b (largura) m × 10-3 10 20 30 
h (espessura) m × 10-3 0.205 0.254 3.4 
L (comprimento) m × 10-3 30 50 700 
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Figura 3. Localização dos pólos e zeros do sistema (a) truncado a três modos de vibrar e (b) completo. 
 
Nota-se, a partir das figuras apresentadas, que o procedimento de truncamento do modelo, para 

fins de controle, ocasiona alterações na localização dos zeros do sistema em malha aberta, podendo 
acarretar mudanças drásticas na performance do sistema em malha fechada (Loix e Preumont, 
1995). Uma análise mais detalhada nos gráficos apresentados revela que a mudança da localização 
dos zeros é a responsável pela distorção da distribuição de alguns pólos do sistema, ou seja, quanto 
menor o valor de n, empregado no procedimento de truncamento modal, maior será a “distância” 
entre pólos e zeros do modelo utilizado para o projeto do controlador. Isto significa, em termos 
práticos, que o ganho do sistema em malha aberta se altera consideravelmente (Ogata, 1998). 
Assim, no caso de se projetar um controlador para o sistema truncado, estas informações 
equivocadas irão se refletir, automaticamente, no desempenho esperado do sistema físico em que se 
deseja efetivamente controlar, isto é, o controlador será projetado para um outro tipo de sistema 
possuindo características particulares que não correspondem exatamente àquelas associadas ao 
sistema completo Gc na faixa de freqüência considerada. 



  

Percebe-se também que a resposta em freqüência do sistema, obtida pela Eq. (30), é também 
“distorcida” pelo procedimento de truncamento modal efetuado. A Fig. 4 ilustra este 
comportamento. 
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Figura 4. Resposta em freqüência para os sistemas truncado e completo. 
 

Clark (1997) propôs uma forma alternativa de contornar este problema e evitar quaisquer tipos 
de situações recorrentes do procedimento inevitável de truncamento modal. Nesta solução 
alternativa um novo modelo truncado asĜ  é obtido, adicionando-se um termo constante Das na Eq. 
(30), substituindo-se, desta forma, os modos residuais Gr que tendem a aumentar a ordem do 
sistema. 
 

( ) ( ) asasas DsGsG +=ˆ            (33) 
 

A idéia de se utilizar este termo no intuito de corrigir ou “reconstruir” o sistema truncado é 
motivada pelo comportamento dos modos residuais que corroboram com um efeito quase estático 
sobre o referido modelo (Loix e Preumont, 1995). Entretanto, o processo de obtenção deste termo 
não é trivial, pois demanda de um procedimento de otimização no qual a função objetivo é a 
distância (em termos da magnitude) entre os modelos truncado e completo. Em Moheimani (1999) é 
mostrado como foi obtido o termo Das dado por: 
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É com base no valor de Das que o novo modelo truncado ( asĜ ), representado pela Eq. (33), é 

novamente analisado. Deste modo, nas figuras que se sequem são apresentados os gráficos que 
mostram, respectivamente, o lugar das raízes e a função de transferência para o sistema modificado, 
onde Das = -3.1525 × 10-3. 
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Figura 5. Localização dos pólos e zeros do sistema (a) reconstruído e (b) completo. 

1.00 10.00 100.00 1000.00 10000.00

Freqüência (Hz)

-125.00

-100.00

-75.00

-50.00

-25.00

0.00

M
ag

ni
tu

de
 (d

B
)

Legenda

Modelo Completo

Novo Modelo Truncado

 
Figura 6. Resposta em freqüência para o sistema reconstruído e completo. 

Quando se realiza o procedimento descrito para a ”reconstrução” do novo sistema truncado, os 
zeros, distribuídos segundo a Fig. 5a, são realocados de tal forma a resultar numa distribuição 
similar ao que acontece com aquela associada ao sistema completo mostrado na Fig. 5b. Isto faz 
com que as características dinâmicas deste novo modelo sejam preferencialmente concordantes com 
as características dinâmicas do sistema completo Gc. Já na Fig. 6, observa-se, claramente, a boa 
concordância, em termos da magnitude, entre os modelos truncado e completo, o que demonstra a 
eficiência do procedimento descrito.  

A partir do mecanismo de reconstrução do modelo truncado, é possível resolver o problema no 
que tange à correção das funções de transferência descritas pelas Eqs. 26, 28 e 29. Neste caso, tal 
análise é feita da mesma maneira com o que foi exposto anteriormente. Assim, os novos termos de 
correção, associados às equações mencionadas, são listados a seguir (Moheimani, 2000): 
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onde aw
kF  e fs

kF  são funções que dependem das características físicas e geométricas do material 
piezelétrico (atuador ou sensor). 

Desta forma, para adequar este tipo de descrição do sistema ao projeto do controlador, as 
funções de transferência corrigidas devem ser representadas em espaço de estados adicionando-se 
os termos relacionados às saídas do sistema (w e sΦ ) (Abreu, 2003). 
 
4.    CONCLUSÕES 

 
Neste trabalho foi apresentada uma metodologia para o problema do controle de vibrações em 
estruturas flexíveis contendo materiais piezelétricos incorporados. A interação entre a estrutura e o 
elemento piezelétrico foi modelada pelo método dos modos assumidos. A partir do modelo 
desenvolvido e visando o projeto de um sistema de controle, um procedimento numérico foi 
elaborado no intuito de incluir os efeitos provocados pela dinâmica de alta freqüência não 
modelada. Através de testes numéricos realizados pode-se constatar a eficiência do procedimento 
descrito. Sob o ponto de vista prático, a metodologia apresentada revelou-se acertada e promissora 
para a solução do problema da não consideração dos modos de alta freqüência no modelo de projeto 
de um controlador. 
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Abstract. This paper investigates the problem of the ignored high frequency modes in the model 
used for the controller design. Because the limitation of sensors and actuators that can be used, the 
project model has a low order. Therefore, the zeros location of the open loop system is distorted. To 
correct the effect of higher frequency modes on the low frequency dynamics, a constant term is added to the 
transfer function of the system. To evaluate the usefulness of the procedure, a flexible beam containing one 
pair of piezoelectric materials and modeled by assumed modes method is analyzed. 
Keywords. High frequency modes, correction term, flexible beam, piezoelectric materials, assumed 
modes method. 
 


