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Resumo. O estudo do comportamento dinamico e o diagnostico de falhas de méquinas rotativas
durante a partida, parada e passagem pelas velocidades criticas tém se tornado muito importante,
principalmente em maquinas que sdo ligadas e desligadas freqlientemente e que giram com altas
velocidades. Logo, o monitoramento das vibracdes durante o regime transiente, pode revelar
informagOes relacionadas a uma falha de natureza n&o-estacionéria que dificilmente seria
diagnosticado no regime estacionario. Neste estudo a decomposi¢cdo de um sinal através da
Transformada de Wavelet Packet (WPT) é usada como uma técnica alternativa de extracdo e
compactacdo de parametros em bandas de freqiéncia independentes. A formula da entropia de
Shannon ¢é utilizada para quantificar a energia contida no sinal transiente em cada banda de
freqiiéncia da wavelet packet, ja que a presenca de falhas na maquina indica niveis significativos
de energia relacionados as frequéncias do defeito. Do ponto de vista pratico, a utilizagdo de sinais,
tanto no dominio do tempo como no da freqliéncia, obtidos durante o regime estacionario ndo sao
muito adequados para utiliza¢cdo como dados de entrada de redes neurais. Por isso, consideram-se
neste trabalho os niveis de energia quantificados em cada banda de freqiiéncia do sinal transiente
através da wavelet packet como parametros de entrada das redes neurais. Uma das vantagens de se
utilizar estes parametros como entradas diz respeito a maior compactacdo dos dados. Diante dos
resultados obtidos, verifica-se que a utilizacdo da WPT em conjuncdo com redes neurais Sao
técnicas bastante efetivas para o diagndstico e classificacdo de falhas introduzidas numa bancada
experimental de testes.
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1. INTRODUCAO

Muitos programas de manutencdo preditiva e sistemas de diagndstico de falhas utilizam a
condigdo da maquina para identificar e classificar falhas através da analise de vibra¢des (Zhang et
al., 1996). A analise de vibracdes tem sido largamente usada no diagnostico de falhas e
monitoramento da condi¢do de maquinas rotativas e é feita, em geral, no dominio do tempo ou no
dominio da frequéncia.

Os métodos no dominio do tempo sdo geralmente mais sensiveis a falhas de natureza transitoria.
Caracteristicas contidas nos sinais com defeitos que estdo sendo monitorados podem ser extraidas
por esses métodos. Dentre os principais métodos no dominio do tempo, pode-se citar, valor de



R.M.S., valor de pico, fator de crista, kurtosis. Estes parametros, uma vez caracterizados,
freqlientemente fornecem diagndsticos satisfatorios. Contudo, se estas falhas tém comportamento
complexo, por exemplo, ndo-estacionério ou transiente, estes métodos no dominio no tempo ndo séo
confiaveis o suficiente para diagnostica-los.

Os métodos no dominio da frequéncia e que normalmente sdo utilizados no monitoramento de
maquinas rotativas incluem Analise Espectral, Analise Cepstral e Andlise de Envelope. Para sinais
estacionarios, a analise espectral ou transformada de Fourier (FT) é extremamente (til. Entretanto,
ela ndo é muito adequada para a andlise de sinais cujo comportamento € de natureza ndo-
estacionaria ou transiente.

A resposta transiente obtida durante a partida e parada da maquina € de natureza ndo-
estaciondria. Para tratar estes sinais, varias técnicas de analise em tempo-frequéncia (Transformada
de Gabor, Wigner-Ville, etc.) e tempo-escala (Transformada de Wavelet) foram desenvolvidas. A
Transformada de Wavelet (WT) € uma ferramenta efetiva para o processamento de sinais
estacionarios e ndo-estacionarios. A WT possibilita fornecer informacdes contidas no sinal
simultaneamente no dominio do tempo e frequéncia.

As vibracbes mecanicas em maquinas rotativas sdo, principalmente, causadas por
desbalanceamento, desalinhamento, folga mecénica, atrito, trincas, etc. A maioria dos estudos
publicados na literatura tem dado bastante atencdo ao diagnéstico dessas falhas utilizando o sinal
estacionario (Wauer, 1990; Xu & Marangoni, 1994; Sekhar & Prabhu, 1995; Hamzaqui et al., 1998;
Silva, 1999). Por outro lado, o estudo do comportamento dindmico de rotores e o diagndstico de
falhas durante o regime transiente, ou seja, durante a partida (‘run-up, start-up’) e parada (‘shut-
down, coast-down’) da maquina, despertaram o interesse de muitos pesquisadores (Smalley, 1989;
Gasch, 1993; Pacheco & Steffen Jr., 1995, Al-Bedoor, 2000; Santiago & Pederiva, 2003).

Neste trabalho utiliza-se a resposta transiente para fins de aplicacdo da transformada de wavelet
visando o diagnostico de falhas introduzidas numa bancada experimental de testes tais como,
desbalanceamento, desalinhamento e folga mecénica. A decomposicdo de um sinal através da
Transformada de Wavelet Packet (WPT) € usada como uma técnica alternativa de extracdo e
compactacdo de pardmetros em bandas de frequéncia independentes. A formula da entropia de
Shannon é utilizada para quantificar a energia contida no sinal transiente em cada banda de
freqliéncia da wavelet packet, ja que a presenca de falhas na maquina indica niveis significativos de
energia relacionados as frequéncias do defeito. Do ponto de vista prético, a utilizacdo de sinais,
tanto no dominio do tempo como no da freqliéncia, obtidos durante o regime estacionario ndo séo
muito adequados para utilizacdo como dados de entrada de redes neurais (Lépore et al., 2001;
Santiago et al., 2002; Santiago, 2004).

Assim sendo, consideram-se 0s niveis de energia quantificados em cada banda de frequéncia do
sinal transiente através da wavelet packet como parametros de entrada das redes neurais. Uma das
vantagens de se utilizar estes parametros como entradas diz respeito a maior compactacdo dos
dados. Diante dos resultados obtidos, verifica-se que a utilizacdo da WPT em conjuncdo com redes
neurais sdo técnicas bastante efetivas para a classificacdo de falhas introduzidas numa bancada
experimental de testes.

2. TRANSFORMADA DE WAVELET

A Transformada Continua de Wavelet (CWT) de um sinal x(t) € definida por:
CWT(a,b) = [ x()wap(t)dt, aebe®,az0 (1)
onde w() €é a wavelet mide, w'(t) é o conjugado complexo de w(t) e

Wap(t) =]7/ Jla| w((t—b)/a) sio as wavelets filhas. O parametro a, chamado de escala, escalona
uma funcdo por compressdo ou dilatacdo; e b é chamado de coeficiente de translacdo e



simplesmente avanca ou atrasa a posi¢cdo da wavelet no eixo do tempo. A diferenca basica entre a
Transformada de Fourier de Curta Direcdo (STFT) e a CWT é que na CWT usa-se uma escala a
variavel, ao invés de uma frequéncia f variavel na STFT (Chan, 1996).

No calculo da CWT o parametro escala e posicdo muda continuamente. Contudo, o calculo dos
coeficientes da wavelet para toda escala possivel pode representar um consideravel esforco
computacional e uma quantidade de dados muito grande para posteriormente serem analisados.
Assim sendo, o uso da Transformada Discreta de Wavelet (DWT) torna-se importante, pois ela
permite a discretizacdo da wavelet numa escala baseada na poténcia de dois, ou seja, na escala 2’,

chamada de escala diadica. O uso dessa escala torna a implementacdo computacional mais rapida e
a analise dos dados bastante eficiente. Portanto, os parametros a e bda expressdo (1) sdo

substituidos por 2’ e k2!, respectivamente, e a DWT é definida por (Chui, 1992):

DWT (j, k) :j_*:x(t).y/}k(t) dt, jekez, )

onde, v, (t) = 1/@ w((t —k2H)/ 21) sdo funcgdes wavelets ortogonais (Daubechies, 1988).

Semelhante a Transformada Rapida de Fourier (FFT), existe um algoritmo para implementacao
da DWT baseado na decomposicdo Rapida da Transformada de Wavelet (FWT), que ¢é
normalmente utilizado, e conhecido como Anélise de Multiresolugdo (MRA) ou Algoritmo
Piramidal de Mallat, o qual foi desenvolvido por Mallat em 1988 (Misiti et al, 1997; Mallat, 1989).
Este algoritmo utiliza um processo especial de filtragem para decompor o sinal, onde, o contetdo
do sinal em baixa freqiéncia é chamado de aproximacéo, e o de alta frequéncia € chamado de
detalhe. Este processo de filtragem decompde o sinal original em aproximagdes e detalhes, e podem
ser interpretados como filtros passa-baixa e passa-alta, respectivamente, como mostra a Fig. (1a).
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Figura 1. (a) Diagrama esquematico da analise de multiresolugéo;
(b) Arvore de decomposicao da wavelet em trés niveis.

A teoria de multiresolucdo permite decompor um sinal da seguinte forma: primeiro, um sinal
original discreto S é decomposto no primeiro nivel em duas componentes A e D, por um filtro

passa-baixa e um passa-alta, respectivamente. O A, é chamado de aproximacéo do sinal e D,, é
chamado de detalhe do sinal. Para o segundo nivel, a aproximagdo A, é agora decomposta em uma
nova aproximagéo, A,, e um detalhe D, . Este procedimento pode ser repetido para o terceiro nivel,

quarto, etc. A Figura (1b) mostra a arvore de decomposicao da wavelet de um sinal em trés niveis.
Por outro lado, a Transformada de Wavelet Packet (WPT) é uma generalizagdo da transformada

discreta de wavelet. Enquanto a DWT mostrada na Fig. (2a) decompde o sinal somente em baixas

freqiiéncias, a WPT mostrada na Fig. (2b) decompde o sinal em baixas e altas frequéncias. Cada

vetor A; possui N /121 coeficientes, onde N,é o comprimento do sinal S, e fornece informagao a

respeito de uma banda de freqtiéncia [0, F /2j+1], e F,é a freqiéncia de amostragem do sinal.
Cada né ou packet WPT ¢ indexado por um par de inteiros (j,k), onde j é o nivel correspondente



de decomposicdo e k é a ordem da posicdo do né em um nivel especifico. Em cada nivel j, existe

2) nés e sua ordem é k=0,1...,2) —1. Por exemplo, no nivel trés ( j=3), existem 8 nés ou
packets. Um vetor de coeficientes da wavelet packet c; corresponde a cada nd (j,k) e o seu

comprimento e aproximadamente N /21,
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Figura 2. Decomposic¢do do sinal original com, (a) DWT e (b) Wavelet Packet

Observando-se a Fig. (2b), os vetores c;, contem informacéo do sinal original em diferentes

bandas de freqliéncias. Por exemplo, se a frequéncia de amostragem do sinal é 16000 Hz, entdo a
banda de freqiiéncia de analise relacionada ao vetor c,, € de 0-8000 Hz. Para c,, de 0-4000 Hz,

para c,, de 4000-8000 Hz, para c3, de 0-1000 Hz, e assim por diante. Uma vantagem da WPT &

que ela permite analisar as informacdes contidas no sinal, sejam elas estacionarias ou n&o-
estacionérias em diferentes resolugdes tempo-freqliéncia. Outra vantagem da WPT diz respeito a
compactacdo da informagdo contida no sinal. Por exemplo, para j=3 e N; =1024 amostras, 0

vetor cgqo possui N /21 =128 amostras e banda de freqtiéncia igual a 0-1000 Hz.
Nota-se que cada packet c; da WPT retém informacao do sinal original de forma compacta.

Este fato é muito importante na analise e processamento de sinais, principalmente na area de
diagnostico de falhas, pois podemos reter informacdo do sinal somente naquela banda de frequéncia
onde as freqliéncias da falha aparecem. Na pratica, normalmente escolhem-se os packets que retém
mais informacdo do sinal original e se descarta os packets que contém ruido e informagc6es menos
importantes. Para isso, utilizam-se alguns critérios de selecdo desses packets 6timos. Um critério
bastante usado é o critério baseado na quantificacdo da energia contida no sinal (Scheffer & Heyns,
2001). Neste trabalho, € usada a férmula da entropia de Shannon para estimar a energia contida no
sinal e em cada n6 da wavelet packet (Misiti et al., 1997), a qual é dada por:

E(s) =—iZsi2 log(s;)’ 3)

onde, s éosinal e s; é a amostra do sinal no instantei .

Portanto, conclui-se que a aplicacdo da Transformada de Wavelet Packet baseada na
quantificacdo da energia do sinal original em bandas de frequiéncias especificas permite a extracédo e
a obtencédo de informagdes de forma bastante compacta. Isto pode ser muito importante em tarefas
de reconhecimento de padrdes com aplicagdes em redes neurais. Estes aspectos serdo investigados
neste trabalho.

3. APLICACAO EXPERIMENTAL
Normalmente o reconhecimento de falhas requer uma analise detalhada dos sinais das maquinas

para identificar padrdes de falhas especificos. Tradicionalmente isto € realizado através de inspecao
visual e por pessoas experientes em analise espectral ou através de métodos de processamento de



sinais. Entretanto, estes métodos sdo geralmente caros e ineficientes em alguns casos. Atualmente,
técnicas de andlise de vibracgdes sofisticadas estdo sendo disponibilizadas para serem utilizadas no
monitoramento e diagnostico de falhas de maquinas rotativas complexas. Dentre elas, podemos citar
as Técnicas de Inteligéncia Artificial como Redes Neurais, Logica Fuzzy, Sistemas Especialistas,
etc. As Redes Neurais s80 uma das ferramentas que tem despertado grande interesse de
pesquisadores nos ultimos anos, por ser uma técnica que possibilita 0 monitoramento on-line da
manutencdo preditiva visando a minimizacdo do tempo entre o recebimento das informacGes e o
diagnostico do problema (Lucifredi et al., 2000; Santiago et al., 2002).

Nesta parte, faz-se uma aplicacdo da Transformada de Wavelet Packet (WPT) na resposta
transiente, a qual foi obtida durante a partida e parada da maquina, com fins de diagnostico de
falhas em maquinas rotativas. As condi¢bes de falhas introduzidas na bancada experimental de
ensaios, mostrada na Figura 3, foram o desalinhamento angular (dois niveis de desalinhamento, 0,5
mm e 1 mm), folga mecanica. O sinal de partida e parada da condi¢cdo normal ou sem defeito foi
também medido para efeito de comparacdo com as condi¢Ges com falhas.
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Figura 3. Detalhes da instrumentag&o utilizada na bancada experimental.

A bancada experimental, a qual representa um sistema dindmico rotativo, consiste basicamente
de um motor elétrico, um acoplamento, um eixo flexivel suportando dois discos rigidos e apoiado
por dois mancais de rolamentos idénticos. O sistema é acionado por um motor elétrico WEG de
corrente alternada, trifasico, 3 CV e rotacdo nominal de 3465 rpm. O material do eixo € Aco ABNT
1045, cujo didmetro é de 17 mm. A instrumentacdo utilizada na aplicacdo experimental inclui cinco
sensores de proximidade do tipo indutivo ou “Eddy-current”, com faixa linear de 0 a 2 mm e
sensibilidade de 5 V/mm, para medi¢do dos deslocamentos. O sistema de aquisi¢cdo de sinais €
composto por um PC Pentium Il / 300 MHz, equipado com o Software LabView e uma placa de
aquisicdo de dados (8 canais) do tipo PCMCIA DAQCard-1200, com frequéncia de amostragem
méxima de 100 KHz, ambos da National Instruments. Na aquisicdo dos sinais de vibracao
(deslocamento), durante a partida e parada da maquina, foram usados 12000 pontos de amostragem,
freqtiéncia de amostragem de 1000 Hz e rotacdo variando de 0 a 2400 rpm.

Do ponto de vista pratico, a utilizacdo de sinais, tanto no dominio do tempo como no da
freqiiéncia, obtidos durante o regime estacionario ndo s@o muito adequados como dados de entrada
de redes neurais, devido a presenca de ruidos e informag6es redundantes contidos no sinal (Figura
4, Metodologia - 1).

Portanto, apresenta-se neste trabalho, uma aplicacdo da metodologia de compactacao e extragao
de parametros, descrita na secdo 2, chamada Wavelet Packet Neural Network (WPNN), para fins de
classificagdo de falhas em maquinas rotativas durante o regime transiente. A estrutura da Wavelet
Packet Neural Network (WPNN), Figura 4 (Metodologia - 3), é fundamentada na teoria de
transformada de wavelet em conjuncdo com redes neurais e funciona como uma técnica alternativa
de classificacdo de padrbes de falhas. Neste trabalho, utiliza-se a wavelet do tipo db10 da familia
Daubechies dbN (Misiti et al., 1997) ja disponibilizada no toolbox de wavelet do Matlab ®.
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Figura 4. Estrutura da metodologia Wavelet Packet Neural Network (WPNN)

Nesta se¢do, apresentam-se alguns resultados obtidos a partir da implementacéo e treinamento
de diversas arquiteturas de redes neurais do tipo perceptrons de multiplas camadas (MLP) com o
algoritmo backpropagation, utilizando dados reais como parametros de entrada da rede. O Toolbox
de redes neurais do software Matlab foi utilizado para implementacdo das arquiteturas de redes
neurais.

Os dados reais (padrbes) utilizados para o treinamento, teste e validacdo das diversas
arquiteturas de redes neurais implementadas foram gerados numa bancada de testes, mostrada na
Fig. (3). As falhas foram introduzidas na bancada de testes separadamente, e, em seguida foram
feitas as aquisi¢Oes dos sinais de vibragdes (deslocamento) utilizando um sensor de proximidade e
posicionado nas vizinhancas do primeiro disco na diregcdo horizontal.

A seguir, mostram-se na Fig. (5) os sinais de deslocamento (padrdes de falhas) obtidos para
diferentes condicdes de falhas introduzidas na bancada de testes (Condicdo normal, Desalinhamento
de 0,5 mm, Desalinhamento de 1 mm e Folga mecanica). Foram feitas 80 aquisi¢cdes de sinais de
vibracOes aleatoriamente, sendo 20 aquisicdes para cada tipo de falha. Os sinais foram adquiridos
com 12000 amostras, tempo de aquisicdo de 12 segundos, freqiiéncia de amostragem de 1000 Hz e

rotagdo variando de 0 a 2400 rpm com aceleragdo de o = 20rad /s>.
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Figura 5. Sinal de partida (padréo); (a) Condi¢do normal, (b) Desalinhamento de 0,5 mm,
(c) Desalinhamento de 1 mm e (d) Folga mecénica.



O conjunto de dados reais utilizados para treinamento, teste e validagédo das arquiteturas de redes
neurais implementadas para classificar, por exemplo, as quatro falhas introduzidas na bancada de
testes foi dividido da seguinte maneira: 40 sinais de deslocamento (padrées) como conjunto de
dados de treinamento da rede (sendo 10 padrdes para cada tipo de falha); 20 padr6es como conjunto
de dados de teste da rede (sendo 5 padrdes para cada tipo de falha) e 20 padrées como conjunto de
dados de validacao da rede (sendo 5 padrdes para cada tipo de falha).

Foram utilizados como pardmetros de treinamento de entrada e saida das redes neurais os
seguintes dados: Como parametros de entrada foram utilizados os valores de energia contido no
sinal e em cada n6 da wavelet packet, dados por E;,E,..Ey conforme mostra a Fig. (4). A

férmula da entropia de Shannon, expressao (3), é utilizada para quantificar a energia contida no
sinal transiente em cada banda de frequéncia da wavelet packet; e como parametros de saida
atribuiram-se os seguintes valores (niveis de ativacdo): 1000 (Condi¢cdo Normal), 0100 (Folga
Mecanica), 0010 (Desalinhamento 1 ou de 0,5 mm) e 0001 (Desalinhamento 2 ou de 1 mm).

Alguns aspectos importantes observados neste estudo motivaram ainda mais a aplicacdo da
metodologia WPNN proposta para classificacdo de falhas em maquinas rotativas, dentre eles
podem-se destacar: (1) Tendéncia de uniformidade dos valores de energia e repetitibilidade dos
quatro padrdes de falhas, conforme mostra a Fig. (6a) para as dez primeiras aquisicdes; (2)
Diminuigdo dos valores quantificados da energia simultaneamente em cada packet ou banda de
freqliéncia para trés padrdes de falhas conforme a aceleracdo aumenta, como mostram as Figuras
(6b), (6¢c) e (6d).
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Figura 6. (a) Energia das 10 primeiras aquisicdes, (b) Energia para a =20 rad /s2,
(c) Energia para a =38 rad /s?e (d) Energia para a=75 rad /s

O objetivo da aplicagdo de redes neurais em casos reais é investigar a sua eficiéncia e
viabilidade como ferramenta de classificacdo de falhas em méaquinas rotativas. Utilizaram-se neste
trabalho como dados de treinamento 40 (padrdes) com quatro falhas diferentes e alimentados na
entrada da rede de forma aleatdria (Valores de energia E;,E,...Ey, dos sinais de cada falha

correspondentes aos 10 primeiros packets, neste caso N =10) e como dados de saida os niveis de
ativacdo correspondentes a cada tipo de falha ja citado anteriormente.

Durante as fases de implementacédo, treinamento, teste e validacdo da rede neural multilayer
perceptron (MLP) foram considerados os seguintes parametros de treinamento: 1) Camadas de
Entrada e Oculta: Funcdo de Ativacdo Tangente Hiperbolica; 2) Camada de Saida: Funcdo de



Ativagdo Linear; 3) Método de Otimizacdo: Levemberg-Marquardt; 4) Nimero de Epocas: 300
Epocas e 5) Erro Total Admissivel: 1e-5. A seguir, mostra-se na Tab. (1) um resumo dos resultados
obtidos com o treinamento de 5 tipos de arquiteturas de redes neurais.

Tabela 1. Resultados das Taxas de Acerto de Diferentes Arquiteturas de Redes Neurais

Arquitetura Numero de Tempo de Taxa de Acerto (%) | Taxa de Acerto (%)
da Rede Epocas Treinamento (S) Rede de Teste Rede de Validacdo
10x5x4 14 10,37 95 95
10x8x4 30 7,44 90 85
10x10x4 10 5,87 100 100

10x5x5x4 18 5,69 100 100
10x8x8x4 29 13,11 100 100

Observando-se a Tab. (1) chegam-se as seguintes conclusoes:

1. A rede neural com arquitetura 10x8x4 (10 neurdnios na camada de entrada, 8 neurdnios na 12
camada oculta e 4 neurénios na camada de saida) foi quem apresentou menor taxa de acerto dos
sinais (padrdes) a ela apresentados, ou seja, dos 20 padrbes de testes apresentados a rede ela
reconheceu 18 ou 90%, e dos 20 padrBes de validacdo apresentados a rede ela reconheceu 17 ou
85% deles; e a que melhor apresentou capacidade de generalizagéo foi a rede 10x10x4;

2. Em geral, observa-se na Tab. (1) que as demais arquiteturas de redes neurais treinadas foram
capazes de classificar com eficiéncia de até 100% as quatro falhas introduzidas na bancada de testes
(maquina rotativa);

3. Os resultados obtidos mostram que a Wavelet Packet Neural Network pode ser utilizada
satisfatoriamente como técnica alternativa de classificacdo e diagndstico de falhas introduzidas em
maquinas rotativas. A Fig. (7) mostra os resultados obtidos com a rede neural 10x10x4, a qual foi
capaz de classificar satisfatoriamente as falhas introduzidas na bancada de testes.
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Figura 7. Comparacéo entre as Redes de Treinamento, Teste e Validacdo na Classificacdo de falhas,
(@) Condicdo Normal, (b) Folga Mecénica, (c) Desalinhamento 1 e (d) Desalinhamento 2.



4. CONCLUSOES

A WPT retém informacdo do sinal original de forma compacta. Este fato € muito importante na
analise e processamento de sinais, principalmente na area de diagndstico de falhas, pois pode-se
reter informacdo do sinal somente naquela banda de frequéncia onde as freqiiéncias do defeito
aparecem. Na pratica, normalmente escolhe-se os packets que retém mais informacdo do sinal
original e se descarta 0s packets que contém ruido e informag6es menos importantes.

A nova metodologia Wavelet Packet Neural Network (WPNN) pode ser utilizada
satisfatoriamente como uma técnica alternativa de classificacdo e diagnostico de falhas introduzidas
em maquinas rotativas com eficiéncia de até 100%.

A WPNN ¢ valida para aplicacfes em sinais estacionarios e transientes, bem como apresenta as
seguintes vantagens: é robusta a presenca de ruidos contidos no sinal, é computacionalmente rapida
e de custo razoavel e de facil implementacéo.
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Abstract. The study of the dynamic behavior and diagnostic of faults of the rotating machinery
during run-up, shut-down and passage through critical speeds has become very important, mainly
in machines that frequently starts-up and stops, and run with high speeds. Then, the monitoring
vibration during transient state reveals information related to a fault of non-stationary nature that
hardly would be diagnostic in the steady state. In this study the decomposition of the signal by
Wavelet Packet Transform (WPT) is used as an alternative technique of extraction and compacting
of parameters in independent frequency bands. The Shannon entropy formula is used to quantize
the energy retained in the transient signal in each frequency band of the wavelet packet, as the
presence of faults in the machine indicates significant levels of energy related to defect frequency.
From the practical point of view, the utilization of signals, in time and frequency domain, obtained
during steady state are not very suitables to be used as input data of neural networks. In this work
are considered the levels of energy quantized in each frequency band of transient signal through
wavelet packet as neural networks input parameters. One of the advantages of using this
parameters as inputs in despite the high data compacting. The results show that the wavelet packet
and neural networks can be used successfully as an alternative technique of diagnostic and
classification of faults inserted in rotating machinery with high efficiency.

Keywords: Rotating Machinery, Transient Response, Wavelet Packet, Neural Networks.
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