
 

 

 
 

CLASSIFICAÇÃO DE FALHAS EM MÁQUINAS ROTATIVAS USANDO A 

RESPOSTA TRANSIENTE E TRANSFORMADA DE WAVELET PACKET 

 
Darley Fiácrio de Arruda Santiago 
CEFET / PI  - Centro Federal de Educação Tecnológica do Piauí / UNED-Floriano 
UNICAMP - Faculdade de Engenharia Mecânica - Departamento de Projeto Mecânico 
Rua Francisco Urquiza Machado, 462, Floriano, PI., CEP:  64800-000 - darley@cefetpi.br 
 
Robson Pederiva 
UNICAMP - Faculdade de Engenharia Mecânica - Departamento de Projeto Mecânico 
Caixa Postal: 6051 - Campinas, S.P., CEP: 13083-970 - robson@fem.unicamp.br 
  
Resumo. O estudo do comportamento dinâmico e o diagnóstico de falhas de máquinas rotativas 
durante a partida, parada e passagem pelas velocidades críticas têm se tornado muito importante, 
principalmente em máquinas que são ligadas e desligadas freqüentemente e que giram com altas 
velocidades. Logo, o monitoramento das vibrações durante o regime transiente, pode revelar 
informações relacionadas a uma falha de natureza não-estacionária que dificilmente seria 
diagnosticado no regime estacionário. Neste estudo a decomposição de um sinal através da 
Transformada de Wavelet Packet (WPT) é usada como uma técnica alternativa de extração e 
compactação de parâmetros em bandas de freqüência independentes. A fórmula da entropia de 
Shannon é utilizada para quantificar a energia contida no sinal transiente em cada banda de 
freqüência da wavelet packet, já que a presença de falhas na máquina indica níveis significativos 
de energia relacionados às freqüências do defeito. Do ponto de vista prático, a utilização de sinais, 
tanto no domínio do tempo como no da freqüência, obtidos durante o regime estacionário não são 
muito adequados para utilização como dados de entrada de redes neurais. Por isso, consideram-se 
neste trabalho os níveis de energia quantificados em cada banda de freqüência do sinal transiente 
através da wavelet packet como parâmetros de entrada das redes neurais. Uma das vantagens de se 
utilizar estes parâmetros como entradas diz respeito a maior compactação dos dados. Diante dos 
resultados obtidos, verifica-se que a utilização da WPT em conjunção com redes neurais são 
técnicas bastante efetivas para o diagnóstico e classificação de falhas introduzidas numa bancada 
experimental de testes. 
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1. INTRODUÇÃO 

 
Muitos programas de manutenção preditiva e sistemas de diagnóstico de falhas utilizam a 

condição da máquina para identificar e classificar falhas através da análise de vibrações (Zhang et 
al., 1996). A análise de vibrações tem sido largamente usada no diagnóstico de falhas e 
monitoramento da condição de máquinas rotativas e é feita, em geral, no domínio do tempo ou no 
domínio da freqüência.  

Os métodos no domínio do tempo são geralmente mais sensíveis à falhas de natureza transitória. 
Características contidas nos sinais com defeitos que estão sendo monitorados podem ser extraídas 
por esses métodos. Dentre os principais métodos no domínio do tempo, pode-se citar, valor de 



R.M.S., valor de pico, fator de crista, kurtosis. Estes parâmetros, uma vez caracterizados, 
freqüentemente fornecem diagnósticos satisfatórios. Contudo, se estas falhas têm comportamento 
complexo, por exemplo, não-estacionário ou transiente, estes métodos no domínio no tempo não são 
confiáveis o suficiente para diagnosticá-los. 

Os métodos no domínio da freqüência e que normalmente são utilizados no monitoramento de 
máquinas rotativas incluem Análise Espectral, Análise Cepstral e Análise de Envelope. Para sinais 
estacionários, a análise espectral ou transformada de Fourier (FT) é extremamente útil. Entretanto, 
ela não é muito adequada para a análise de sinais cujo comportamento é de natureza não-
estacionária ou transiente. 

A resposta transiente obtida durante a partida e parada da máquina é de natureza não-
estacionária. Para tratar estes sinais, várias técnicas de análise em tempo-freqüência (Transformada 
de Gabor, Wigner-Ville, etc.) e tempo-escala (Transformada de Wavelet) foram desenvolvidas. A 
Transformada de Wavelet (WT) é uma ferramenta efetiva para o processamento de sinais 
estacionários e não-estacionários. A WT possibilita fornecer informações contidas no sinal 
simultaneamente no domínio do tempo e freqüência.  

As vibrações mecânicas em máquinas rotativas são, principalmente, causadas por 
desbalanceamento, desalinhamento, folga mecânica, atrito, trincas, etc. A maioria dos estudos 
publicados na literatura tem dado bastante atenção ao diagnóstico dessas falhas utilizando o sinal 
estacionário (Wauer, 1990; Xu & Marangoni, 1994; Sekhar & Prabhu, 1995; Hamzaqui et al., 1998; 
Silva, 1999). Por outro lado, o estudo do comportamento dinâmico de rotores e o diagnóstico de 
falhas durante o regime transiente, ou seja, durante a partida (‘run-up, start-up’) e parada (‘shut-
down, coast-down’) da máquina, despertaram o interesse de muitos pesquisadores (Smalley, 1989; 
Gasch, 1993; Pacheco & Steffen Jr., 1995, Al-Bedoor, 2000; Santiago & Pederiva, 2003).  

Neste trabalho utiliza-se a resposta transiente para fins de aplicação da transformada de wavelet 
visando o diagnóstico de falhas introduzidas numa bancada experimental de testes tais como, 
desbalanceamento, desalinhamento e folga mecânica. A decomposição de um sinal através da 
Transformada de Wavelet Packet (WPT) é usada como uma técnica alternativa de extração e 
compactação de parâmetros em bandas de freqüência independentes. A fórmula da entropia de 
Shannon é utilizada para quantificar a energia contida no sinal transiente em cada banda de 
freqüência da wavelet packet, já que a presença de falhas na máquina indica níveis significativos de 
energia relacionados às freqüências do defeito. Do ponto de vista prático, a utilização de sinais, 
tanto no domínio do tempo como no da freqüência, obtidos durante o regime estacionário não são 
muito adequados para utilização como dados de entrada de redes neurais (Lépore et al., 2001; 
Santiago et al., 2002; Santiago, 2004).  

Assim sendo, consideram-se os níveis de energia quantificados em cada banda de freqüência do 
sinal transiente através da wavelet packet como parâmetros de entrada das redes neurais. Uma das 
vantagens de se utilizar estes parâmetros como entradas diz respeito a maior compactação dos 
dados. Diante dos resultados obtidos, verifica-se que a utilização da WPT em conjunção com redes 
neurais são técnicas bastante efetivas para a classificação de falhas introduzidas numa bancada 
experimental de testes. 
 
2. TRANSFORMADA DE WAVELET 

 
A Transformada Contínua de Wavelet (CWT) de um sinal  é definida por: )(tx
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( abtatba /)(||1)(, −= ψ )ψ  são as wavelets filhas. O parâmetro , chamado de escala, escalona 
uma função por compressão ou dilatação; e  é chamado de coeficiente de translação e 
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simplesmente avança ou atrasa a posição da wavelet no eixo do tempo. A diferença básica entre a 
Transformada de Fourier de Curta Direção (STFT) e a CWT é que na CWT usa-se uma escala  
variável, ao invés de uma freqüência  variável na STFT (Chan, 1996).  
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No cálculo da CWT o parâmetro escala e posição muda continuamente. Contudo, o cálculo dos 
coeficientes da wavelet para toda escala possível pode representar um considerável esforço 
computacional e uma quantidade de dados muito grande para posteriormente serem analisados. 
Assim sendo, o uso da Transformada Discreta de Wavelet (DWT) torna-se importante, pois ela 
permite a discretização da wavelet numa escala baseada na potência de dois, ou seja, na escala  
chamada de escala diadica. O uso dessa escala torna a implementação computacional mais rápida e 
a análise dos dados bastante eficiente. Portanto, os parâmetros  e b da expressão (1) são 
substituídos por  e  , respectivamente, e a DWT é definida por (Chui, 1992): 
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onde, ( jjj
kj ktt 2/)2(21)(, −= ψ )ψ   são funções wavelets ortogonais (Daubechies, 1988).  

Semelhante a Transformada Rápida de Fourier (FFT), existe um algoritmo para implementação 
da DWT baseado na decomposição Rápida da Transformada de Wavelet (FWT), que é 
normalmente utilizado, e conhecido como Análise de Multiresolução (MRA) ou Algoritmo 
Piramidal de Mallat, o qual foi desenvolvido por Mallat em 1988 (Misiti et al, 1997; Mallat, 1989). 
Este algoritmo utiliza um processo especial de filtragem para decompor o sinal, onde, o conteúdo 
do sinal em baixa freqüência é chamado de aproximação, e o de alta freqüência é chamado de 
detalhe. Este processo de filtragem decompõe o sinal original em aproximações e detalhes, e podem 
ser interpretados como filtros passa-baixa e passa-alta, respectivamente, como mostra a Fig. (1a). 

 

 

(a) (b) 

Figura 1. (a) Diagrama esquemático da análise de multiresolução; 
                                      (b) Árvore de decomposição da wavelet em três níveis. 
 
A teoria de multiresolução permite decompor um sinal da seguinte forma: primeiro, um sinal 

original discreto  é decomposto no primeiro nível em duas componentes  e  por um filtro 
passa-baixa e um passa-alta, respectivamente. O , é chamado de aproximação do sinal e , é 
chamado de detalhe do sinal. Para o segundo nível, a aproximação  é agora decomposta em uma 
nova aproximação, , e um detalhe . Este procedimento pode ser repetido para o terceiro nível, 
quarto, etc. A Figura (1b) mostra a árvore de decomposição da wavelet de um sinal em três níveis.  
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Por outro lado, a Transformada de Wavelet Packet (WPT) é uma generalização da transformada 
discreta de wavelet. Enquanto a DWT mostrada na Fig. (2a) decompõe o sinal somente em baixas 
freqüências, a WPT mostrada na Fig. (2b) decompõe o sinal em baixas e altas freqüências. Cada 
vetor  possui  coeficientes, onde é o comprimento do sinal , e fornece informação a 

respeito de uma banda de freqüência , e é a freqüência de amostragem do sinal. 
Cada nó ou packet WPT é indexado por um par de inteiros , onde  é o nível correspondente 

jA j
tN 2/ tN S

]2/,0[ 1+j
sF sF

),( kj j



de decomposição e é a ordem da posição do nó em um nível específico. Em cada nível , existe 
 nós e sua ordem é . Por exemplo, no nível três ( ), existem 8 nós ou 

packets. Um vetor de coeficientes da wavelet packet  corresponde a cada nó  e o seu 

comprimento é aproximadamente   
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(a) (b) 

Figura 2. Decomposição do sinal original com, (a) DWT e (b) Wavelet Packet 
 

Observando-se a Fig. (2b), os vetores  contém informação do sinal original em diferentes 
bandas de freqüências. Por exemplo, se a freqüência de amostragem do sinal é 16000 Hz, então a 
banda de freqüência de análise relacionada ao vetor  é de 0-8000 Hz. Para  de 0-4000 Hz, 
para de 4000-8000 Hz, para  de 0-1000 Hz, e assim por diante.  Uma vantagem da WPT é 
que ela permite analisar as informações contidas no sinal, sejam elas estacionárias ou não-
estacionárias em diferentes resoluções tempo-freqüência. Outra vantagem da WPT diz respeito à 
compactação da informação contida no sinal. Por exemplo, para 
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vetor   possui  amostras e banda de freqüência igual a 0-1000 Hz.   
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Nota-se que cada packet  da  WPT retém informação do sinal original de forma compacta. 
Este fato é muito importante na análise e processamento de sinais, principalmente na área de 
diagnóstico de falhas, pois podemos reter informação do sinal somente naquela banda de freqüência 
onde as freqüências da falha aparecem. Na prática, normalmente escolhem-se os packets que retém 
mais informação do sinal original e se descarta os packets que contém ruído e informações menos 
importantes. Para isso, utilizam-se alguns critérios de seleção desses packets ótimos. Um critério 
bastante usado é o critério baseado na quantificação da energia contida no sinal (Scheffer & Heyns, 
2001). Neste trabalho, é usada a fórmula da entropia de Shannon para estimar a energia contida no 
sinal e em cada nó da wavelet packet (Misiti et al., 1997), a qual é dada por: 
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onde,  é o sinal e  é a amostra do sinal no instante i . s is

Portanto, conclui-se que a aplicação da Transformada de Wavelet Packet baseada na 
quantificação da energia do sinal original em bandas de freqüências específicas permite a extração e 
a obtenção de informações de forma bastante compacta. Isto pode ser muito importante em tarefas 
de reconhecimento de padrões com aplicações em redes neurais. Estes aspectos serão investigados 
neste trabalho.     

 
3. APLICAÇÃO EXPERIMENTAL 

  
Normalmente o reconhecimento de falhas requer uma análise detalhada dos sinais das máquinas 

para identificar padrões de falhas específicos. Tradicionalmente isto é realizado através de inspeção 
visual e por pessoas experientes em análise espectral ou através de métodos de processamento de 



sinais. Entretanto, estes métodos são geralmente caros e ineficientes em alguns casos. Atualmente, 
técnicas de análise de vibrações sofisticadas estão sendo disponibilizadas para serem utilizadas no 
monitoramento e diagnóstico de falhas de máquinas rotativas complexas. Dentre elas, podemos citar 
as Técnicas de Inteligência Artificial como Redes Neurais, Lógica Fuzzy, Sistemas Especialistas, 
etc. As Redes Neurais são uma das ferramentas que tem despertado grande interesse de 
pesquisadores nos últimos anos, por ser uma técnica que possibilita o monitoramento on-line da 
manutenção preditiva visando à minimização do tempo entre o recebimento das informações e o 
diagnóstico do problema (Lucifredi et al., 2000; Santiago et al., 2002). 

Nesta parte, faz-se uma aplicação da Transformada de Wavelet Packet (WPT) na resposta 
transiente, a qual foi obtida durante a partida e parada da máquina, com fins de diagnóstico de 
falhas em máquinas rotativas. As condições de falhas introduzidas na bancada experimental de 
ensaios, mostrada na Figura 3, foram o desalinhamento angular (dois níveis de desalinhamento, 0,5 
mm e 1 mm), folga mecânica. O sinal de partida e parada da condição normal ou sem defeito foi 
também medido para efeito de comparação com as condições com falhas.  

 

 

Figura 3. Detalhes da instrumentação utilizada na bancada experimental. 
 

A bancada experimental, a qual representa um sistema dinâmico rotativo, consiste basicamente 
de um motor elétrico, um acoplamento, um eixo flexível suportando dois discos rígidos e apoiado 
por dois mancais de rolamentos idênticos. O sistema é acionado por um motor elétrico WEG de 
corrente alternada, trifásico, 3 CV e rotação nominal de 3465 rpm. O material do eixo é Aço ABNT 
1045, cujo diâmetro é de 17 mm. A instrumentação utilizada na aplicação experimental inclui cinco 
sensores de proximidade do tipo indutivo ou “Eddy-current”, com faixa linear de 0 a 2 mm e 
sensibilidade de 5 V/mm, para medição dos deslocamentos. O sistema de aquisição de sinais é 
composto por um PC Pentium II / 300 MHz, equipado com o Software LabView e uma placa de 
aquisição de dados (8 canais) do tipo PCMCIA DAQCard-1200, com freqüência de amostragem 
máxima de 100 KHz, ambos da National Instruments. Na aquisição dos sinais de vibração 
(deslocamento), durante a partida e parada da máquina, foram usados 12000 pontos de amostragem, 
freqüência de amostragem de 1000 Hz e rotação variando de 0 a 2400 rpm. 

Do ponto de vista prático, a utilização de sinais, tanto no domínio do tempo como no da 
freqüência, obtidos durante o regime estacionário não são muito adequados como dados de entrada 
de redes neurais, devido à presença de ruídos e informações redundantes contidos no sinal (Figura 
4, Metodologia - 1).  

Portanto, apresenta-se neste trabalho, uma aplicação da metodologia de compactação e extração 
de parâmetros, descrita na seção 2, chamada Wavelet Packet Neural Network (WPNN), para fins de 
classificação de falhas em máquinas rotativas durante o regime transiente. A estrutura da Wavelet 
Packet Neural Network (WPNN), Figura 4 (Metodologia - 3), é fundamentada na teoria de 
transformada de wavelet em conjunção com redes neurais e funciona como uma técnica alternativa 
de classificação de padrões de falhas. Neste trabalho, utiliza-se a wavelet do tipo  da família 
Daubechies (Misiti et al., 1997) já disponibilizada no toolbox de wavelet do Matlab ®. 
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Figura 4. Estrutura da metodologia Wavelet Packet Neural Network (WPNN) 
 
Nesta seção, apresentam-se alguns resultados obtidos a partir da implementação e treinamento 

de diversas arquiteturas de redes neurais do tipo perceptrons de múltiplas camadas (MLP) com o 
algoritmo backpropagation, utilizando dados reais como parâmetros de entrada da rede. O Toolbox 
de redes neurais do software Matlab foi utilizado para implementação das arquiteturas de redes 
neurais. 

Os dados reais (padrões) utilizados para o treinamento, teste e validação das diversas 
arquiteturas de redes neurais implementadas foram gerados numa bancada de testes, mostrada na 
Fig. (3). As falhas foram introduzidas na bancada de testes separadamente, e, em seguida foram 
feitas as aquisições dos sinais de vibrações (deslocamento) utilizando um sensor de proximidade e 
posicionado nas vizinhanças do primeiro disco na direção horizontal. 

A seguir, mostram-se na Fig. (5) os sinais de deslocamento (padrões de falhas) obtidos para 
diferentes condições de falhas introduzidas na bancada de testes (Condição normal, Desalinhamento 
de 0,5 mm, Desalinhamento de 1 mm e Folga mecânica). Foram feitas 80 aquisições de sinais de 
vibrações aleatoriamente, sendo 20 aquisições para cada tipo de falha. Os sinais foram adquiridos 
com 12000 amostras, tempo de aquisição de 12 segundos, freqüência de amostragem de 1000 Hz e 
rotação variando de 0 a 2400 rpm com aceleração de . 2/20 srad=α

 

(a) (b) 

(c) (d) 
Figura 5. Sinal de partida (padrão); (a) Condição normal, (b) Desalinhamento de 0,5 mm, 

                        (c) Desalinhamento de 1 mm e (d) Folga mecânica. 



O conjunto de dados reais utilizados para treinamento, teste e validação das arquiteturas de redes 
neurais implementadas para classificar, por exemplo, as quatro falhas introduzidas na bancada de 
testes foi dividido da seguinte maneira: 40 sinais de deslocamento (padrões) como conjunto de 
dados de treinamento da rede (sendo 10 padrões para cada tipo de falha); 20 padrões como conjunto 
de dados de teste da rede (sendo 5 padrões para cada tipo de falha) e 20 padrões como conjunto de 
dados de validação da rede (sendo 5 padrões para cada tipo de falha). 

Foram utilizados como parâmetros de treinamento de entrada e saída das redes neurais os 
seguintes dados: Como parâmetros de entrada foram utilizados os valores de energia contido no 
sinal e em cada nó da wavelet packet, dados por  conforme mostra a Fig. (4). A 
fórmula da entropia de Shannon, expressão (3), é utilizada para quantificar a energia contida no 
sinal transiente em cada banda de freqüência da wavelet packet; e como parâmetros de saída 
atribuíram-se os seguintes valores (níveis de ativação): 1000 (Condição Normal), 0100 (Folga 
Mecânica), 0010 (Desalinhamento 1 ou de 0,5 mm) e 0001 (Desalinhamento 2 ou de 1 mm).   
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Alguns aspectos importantes observados neste estudo motivaram ainda mais a aplicação da 
metodologia WPNN proposta para classificação de falhas em máquinas rotativas, dentre eles 
podem-se destacar: (1) Tendência de uniformidade dos valores de energia e repetitibilidade dos 
quatro padrões de falhas, conforme mostra a Fig. (6a) para as dez primeiras aquisições; (2) 
Diminuição dos valores quantificados da energia simultaneamente em cada packet ou banda de 
freqüência para três padrões de falhas conforme a aceleração aumenta, como mostram as Figuras 
(6b), (6c) e (6d).   

 

 
(a) (b) 

 
(c) (d) 

Figura 6. (a) Energia das 10 primeiras aquisições, (b) Energia para  , 2/20 srada =

    (c) Energia para e (d) Energia para .   2/38 srada = 2/75 srada =
         

O objetivo da aplicação de redes neurais em casos reais é investigar a sua eficiência e 
viabilidade como ferramenta de classificação de falhas em máquinas rotativas. Utilizaram-se neste 
trabalho como dados de treinamento 40 (padrões) com quatro falhas diferentes e alimentados na 
entrada da rede de forma aleatória (Valores de energia , dos sinais de cada falha 
correspondentes aos 10 primeiros packets, neste caso 

NEEE ..., 21
10=N ) e como dados de saída os níveis de 

ativação correspondentes a cada tipo de falha já citado anteriormente.   
Durante as fases de implementação, treinamento, teste e validação da rede neural multilayer 

perceptron (MLP) foram considerados os seguintes parâmetros de treinamento: 1) Camadas de 
Entrada e Oculta: Função de Ativação Tangente Hiperbólica; 2) Camada de Saída: Função de 



Ativação Linear; 3) Método de Otimização: Levemberg-Marquardt; 4) Número de Épocas: 300 
Épocas e 5) Erro Total Admissível: 1e-5. A seguir, mostra-se na Tab. (1) um resumo dos resultados 
obtidos com o treinamento de 5 tipos de arquiteturas de redes neurais.  

 
Tabela 1. Resultados das Taxas de Acerto de Diferentes Arquiteturas de Redes Neurais 

 

Arquitetura 
da Rede  

Número de 
Épocas 

Tempo de 
Treinamento (s)

Taxa de Acerto (%) 
Rede de Teste 

Taxa de Acerto (%) 
Rede de Validação 

10x5x4 14 10,37 95 95 
10x8x4 30 7,44 90 85 

10x10x4 10 5,87 100 100 
10x5x5x4 18 5,69 100 100 
10x8x8x4 29 13,11 100 100 

 
Observando-se a Tab. (1) chegam-se as seguintes conclusões: 

 
1.  A rede neural com arquitetura 10x8x4 (10 neurônios na camada de entrada, 8 neurônios na 1ª 
camada oculta e 4 neurônios na camada de saída) foi quem apresentou menor taxa de acerto dos 
sinais (padrões) a ela apresentados, ou seja, dos 20 padrões de testes apresentados a rede ela 
reconheceu 18 ou 90%, e dos 20 padrões de validação apresentados a rede ela reconheceu 17 ou 
85% deles; e a que melhor apresentou capacidade de generalização foi a rede 10x10x4; 
2.  Em geral, observa-se na Tab. (1) que as demais arquiteturas de redes neurais treinadas foram 
capazes de classificar com eficiência de até 100% as quatro falhas introduzidas na bancada de testes 
(máquina rotativa); 
3.  Os resultados obtidos mostram que a Wavelet Packet Neural Network pode ser utilizada 
satisfatoriamente como técnica alternativa de classificação e diagnóstico de falhas introduzidas em 
máquinas rotativas. A Fig. (7) mostra os resultados obtidos com a rede neural 10x10x4, a qual foi 
capaz de classificar satisfatoriamente as falhas introduzidas na bancada de testes.  
 

(a) (b) 

(c) (d) 
Figura 7. Comparação entre as Redes de Treinamento, Teste e Validação na Classificação de falhas, 
              (a) Condição Normal, (b) Folga Mecânica, (c) Desalinhamento 1 e (d) Desalinhamento 2. 



 
4. CONCLUSÕES 
 

A WPT retém informação do sinal original de forma compacta. Este fato é muito importante na 
análise e processamento de sinais, principalmente na área de diagnóstico de falhas, pois pode-se 
reter informação do sinal somente naquela banda de freqüência onde as freqüências do defeito 
aparecem. Na prática, normalmente escolhe-se os packets que retém mais informação do sinal 
original e se descarta os packets que contém ruído e informações menos importantes.  

A nova metodologia Wavelet Packet Neural Network (WPNN) pode ser utilizada 
satisfatoriamente como uma técnica alternativa de classificação e diagnóstico de falhas introduzidas 
em máquinas rotativas com eficiência de até 100%. 

A WPNN é valida para aplicações em sinais estacionários e transientes, bem como apresenta as 
seguintes vantagens: é robusta à presença de ruídos contidos no sinal, é computacionalmente rápida 
e de custo razoável e de fácil implementação. 
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Abstract. The study of the dynamic behavior and diagnostic of faults of the rotating machinery 
during run-up, shut-down and passage through critical speeds has become very important, mainly 
in machines that frequently starts-up and stops, and run with high speeds. Then, the monitoring 
vibration during transient state reveals information related to a fault of non-stationary nature that 
hardly would be diagnostic in the steady state. In this study the decomposition of the signal by 
Wavelet Packet Transform (WPT) is used as an alternative technique of extraction and compacting 
of parameters in independent frequency bands. The Shannon entropy formula is used to quantize 
the energy retained in the transient signal in each frequency band of the wavelet packet, as the 
presence of faults in the machine indicates significant levels of energy related to defect frequency. 
From the practical point of view, the utilization of signals, in time and frequency domain, obtained 
during steady state are not very suitables to be used as input data of neural networks. In this work 
are considered the levels of energy quantized in each frequency band of transient signal through 
wavelet packet as neural networks input parameters. One of the advantages of using this 
parameters as inputs in despite the high data compacting. The results show that the wavelet packet 
and neural networks can be used successfully as an alternative technique of diagnostic and 
classification of faults inserted in rotating machinery with high efficiency. 
 
Keywords: Rotating Machinery, Transient Response, Wavelet Packet, Neural Networks. 
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