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Resumo. Este trabalho apresenta uma investigação numérica do comportamento dinâmico de uma
alavanca de câmbio de transmissão mecânica considerando a presença de não-linearidades na
estrutura. Na simulação, curvas de resposta em freqüência não lineares de primeira ordem da
alavanca foram levantadas pela utilização do método de continuação “arc-length” para a
resolução de sistemas não-lineares. Efeitos não-lineares, modelados por juntas localizadas foram
quantificados por funções descritivas, que linearizam o modelo das juntas para definir as funções
de transferência que relacionam os componentes fundamentais de entrada e saída. Para fazer esses
modelos simplificados mais semelhantes ao sistema físico, vários parâmetros do modelo foram
determinados experimentalmente, incluindo parâmetros do modelo de atrito adotado. Curvas
simuladas de funções de resposta em freqüência não-lineares foram também obtidas com modelos
simplificados da alavanca. Estas investigações mostraram a complexidade de modelar uma
estrutura com características não-lineares e a necessidade de modelos mais completos.

Palavras-chave: Alavanca de Câmbio, Não-Linearidade, Resposta em Freqüência, Modelagem de
sistemas mecânicos, Vibro-Impacto.



1 INTRODUÇÃO

O vibro-impacto em transmissões manuais constitui um problema para os fabricantes de
veículos no que diz respeito ao ruído, vibração e confiabilidade (Gaillard e Singh, 2000).
Ultimamente um dos desafios da indústria é alcançar uma qualidade acústica cada vez maior em
seus automóveis.

Os fenômenos de vibração em baixa freqüência, tais como vibro-impacto (“rattle”) de marcha
lenta e vibro-impacto de transmissão, vêm sendo estudados na tentativa de se minimizar ruídos
indesejáveis, uma vez que o nível de ruído é um dos parâmetros de avaliação da qualidade de um
automóvel (Wang, 1997). O sistema de transmissão de potência de um automóvel é altamente não-
linear e a dinâmica do vibro-impacto de seus componentes é afetada por vários parâmetros de
projeto, incluindo o “backlash”, folgas, freqüência de engrenamento, rigidez e amortecimento da
embreagem, carregamento e inércia da transmissão (Wang, 1997), que dificultam a análise destes
sistemas.

O problema de vibro-impacto é um problema da dinâmica não-linear. O modo de se caracterizar
um sistema como linear ou não-linear pode ser baseado na presença ou na ausência da característica
de superposição. Um sistema mostra a característica de superposição quando dobrando-se a força de
entrada tem-se como resultado o dobro da resposta de vibração e quando a adição das respostas
devido a duas contribuições independentes resulta na mesma resposta da aplicação das duas
contribuições superpostas. Se a característica de superposição não estiver presente, o sistema é
considerado não-linear. Então, quando o sistema for classificado como não-linear, técnicas não-
lineares devem estar disponíveis para permitir a inclusão dos fenômenos não-lineares na descrição
dinâmica do modelo e para a solução das equações não-lineares do movimento.

A primeira técnica para solução de equações diferenciais não-lineares foi a solução analítica de
equações diferenciais (Hayashi, 1964). Embora isto possa dar uma solução exata para casos
simples, a maioria dos sistemas não-lineares são complexos, tornando impossível a obtenção de
uma solução analítica de forma fechada. Para tanto, métodos foram desenvolvidos para que se
encontrassem soluções analíticas aproximadas (Hayashi, 1964).

O objetivo do presente trabalho é investigar numericamente o comportamento dinâmico de uma
alavanca de transmissão mecânica, tendo como foco a obtenção de curvas de resposta em
freqüência não-lineares. Os modelos desenvolvidos são simples, porém consideram efeitos não-
lineares de atrito e de folga mecânica.

2 CONCEITOS DE MODELAGEM DE ESTRUTURAS NÃO-LINEARES

2.1 Modelos de Juntas Não-Lineares

Muitas estruturas são compostas por mecanismos de união que interligam as subestruturas.
Como a modelagem desses mecanismos é complicada, modelos analíticos preditos podem não
corresponder aos modelos físicos (Ewins e Imregun, 1986). Estes mecanismos de união, conhecidos
como juntas, podem ser definidos como qualquer conexão entre duas subestruturas. As superfícies
de contato das juntas são definidas como interface (Prado, 2002).

Uma junta pode ser linear ou não-linear, dependendo da relação força-resposta. Juntas não-
lineares são juntas onde o efeito não-linear é representativo na faixa de resposta de interesse. Estas
juntas são facilmente encontradas em juntas projetadas para fácil montagem e desmontagem de
subestruturas. Seu comportamento dinâmico é de difícil predição e sensível a vários parâmetros. A
característica mais evidenciada de uma junta não-linear é a sua resposta em freqüência, que quando
excitada numa freqüência responde em várias freqüências, resultando numa distorção da resposta.

No caso de juntas não-lineares, o primeiro passo a ser feito é a escolha de uma força de
excitação que permita identificar e caracterizar a junta facilmente (Prado, 2002). Atualmente o
método de excitação usado em estudos de vibração para sistemas não-lineares é o método de
excitação senoidal, devido às suas características e precisão (Storer e Tomlinson, 1993).



2.1.1 Rigidez Anti-Simétrica Linear por Partes

Um elemento confinado em um alojamento com folga 2xcrítico  e uma rigidez constante
( )K cte=  pode ter uma relação entre força e resposta escrita como:
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como mostra a Figura 1.

Figura 1. Característica da rigidez anti-simétrica linear por partes

2.1.2 Modelo de Microdeslizamento de Ren

O modelo de microdeslizamento de Ren (Ren, 1992) é um modelo de atrito que usa uma área
pequena da interface como elemento básico em vez de utilizar um elemento em cada aspereza. Cada
área é modelada como um elemento bilinear. Uma rigidez de área h é definida com uma rigidez
inicial total com que a área contribui. A rigidez de área total de área h é a unidade. Definindo a
rigidez de área, o problema é transformado do modelo de junta no domínio do deslocamento em
[ ]∞,0x  para o domínio [ ]1,0h , onde )( ii hxx = . A relação força-deformação pode ser escrita da

seguinte forma:
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onde a representa a máxima deformação elástica, e b representa a diferença entre o
microdeslizamento e os elementos bilineares.Quando o elemento é sujeito à cargas cíclicas,
dependendo dos valores escolhidos de a e b, diferentes ciclos de histerese podem ser formados.

Quando o valor de b está próximo de zero, o ciclo de histerese é o parecido com o elemento
bilinear mostrado na Figura 2.



Figura 2. Característica de um elemento bilinear

Quando b começa a aumentar, o ciclo de histerese tem um mistura de macro e
microdeslizamento como mostrado na Figura 3.

Figura 3. Macro e microdeslizamento

2.2 Resposta em Freqüência de Estruturas Não-Lineares

A análise no domínio da freqüência de estruturas não-lineares é caracterizada por um conjunto
de respostas em freqüência (RFs) que pode ser definido como quantidades dependentes da
freqüência calculadas a partir da relação entre a resposta e a força de excitação harmônica. Para
estruturas não-lineares, a resposta em freqüência exibe duas diferenças principais quando
comparada à definição para um sistema linear. A primeira diferença é que a resposta total de um
sistema não-linear no domínio do tempo é representada no domínio da freqüência por uma
seqüência de respostas em freqüência ao invés de apenas uma função como no caso linear. Quanto
mais intensas as não-linearidades, mais funções de resposta em freqüência serão necessárias para
melhor representar a resposta total. Por outro lado, para uma ampla classe de não-linearidades a
maior parte dos efeitos dominantes está contida nas chamadas respostas em freqüência de primeira,
segunda e terceira ordem e estas são freqüentemente suficientes para caracterizar o sistema
precisamente (Sanliturk et al., 1997; Vinh e Liu, 1989). A segunda diferença é que cada resposta em



freqüência é função de múltiplas variáveis, mesmo para um sistema sujeito a uma única excitação.
Esta característica aumenta a dificuldade da análise de estruturas não-lineares.

Conceitualmente, as respostas em freqüência (RF) de primeira ordem são uma extensão das
funções de resposta em freqüência (FRF) de estruturas lineares para estruturas não-lineares. No caso
de uma excitação senoidal pura, a resposta em freqüência de primeira ordem de uma estrutura não-
linear é definida como a relação espectral da resposta ix  e da força jf  à freqüência de excitação,
ω , escrita como:
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Neste caso, apenas o componente da freqüência fundamental da resposta x  composta de r
harmônicas é usado e todas as sub-harmônicas, super-harmônicas e combinações de ambas são
ignoradas.

2.3 O método Arc-Length

O método arc-length de Crisfield (Crisfield, 1997) é um dos mais populares métodos para traçar
caminhos complexos no espaço carregamento/deslocamento. Suas curvas apresentam grande
similaridade com curvas de resposta em freqüência não-lineares.

A matriz da equação diferencial de movimento para uma estrutura não-linear sujeita a uma força
externa { }f , pode ser escrita da seguinte forma:

[ ]{ } [ ]{ } [ ] { } { }ffxKxCxM nl =+++ &&& (4)

onde [ ]M  é a matriz de massa, [ ]C  é a matriz de amortecimento viscoso, [ ]K é a matriz de

rigidez, { }nlf  é a força não-linear e { } { } { },x x e x&& & são respectivamente os vetores de aceleração,
velocidade e deslocamento.

Assumindo que a excitação é harmônica e que a resposta é dominada pela sua resposta
harmônica, pode-se escrever a matriz da equação diferencial agora no domínio da freqüência:

[ ] [ ] [ ]( ){ } { }appFXCiMK =Θ++− 112 ][ωω (5)

onde 1Θ  é a função descritiva de primeira ordem, appF  é a força harmônica aplicada no sistema

e 1X  é a primeira componente harmônica da resposta para aquele nível de força aplicada.
Para se obter a resposta em freqüência não-linear é necessário escolher a variável a ser

controlada. Essa variável pode ser a força aplicada no sistema, que nesse caso depende do nível do
sinal harmônico mandado ao excitador do sistema e a sua respectiva freqüência.

Uma vez definida a variável a ser controlada, uma equação na forma residual considerando uma
entrada e uma saída, relacionando a força aplicada no sistema e a força analítica a ser controlada
pode ser escrita como:

( ) ( ), ,app anaV F V Fλω λωΨ = − (6)

onde V e ω  são respectivamente a amplitude de deslocamento e o “vetor de carregamento
externo fixo”. O escalar λ  é um “parâmetro de nível de carga”, ( ),appF V λω  é o módulo de força

aplicada na estrutura medida e anaF  é o nível de força analítica para ser controlado (Ferreira, 2002).



A equação (6) pode ser resolvida por muitos procedimentos incrementais (Newton-Raphson,
Newton-Raphson modificado, Quasi-Newton, etc.) nos quais a força aplicada pode ser aplicada.
Todavia esses métodos não são apropriados para a solução de problemas onde os caminhos de
resposta precisam ser traçados além dos pontos limite. Em várias situações, tais como em problemas
de instabilidade estrutural onde métodos de continuação são empregados, o método arc-length
parece ser o mais indicado.

O método arc-length é descrito dentro dos métodos de continuação e é aplicado para se obter o
traçado de uma solução. Basicamente, o método arc-length considera primeiro um fator de
carregamento λ , como uma variável na equação residual (6). Então uma nova equação de restrição
é acrescentada a equação de equilíbrio residual (6) definindo o próximo ponto da solução em uma
intersecção entre as curvas da solução usando técnicas iterativas convencionais para obter o ponto
de equilíbrio.

Para resolver diretamente as variáveis do sistema estendido, um de deslocamento V e outro da
variável de carregamento λ , usando métodos iterativos, é necessário primeiro linearizar a equação
residual, com V e λ , junto com a restrição relevante do método arc-length pelas séries de Taylor.

Considerando a equação de restrição proposta por (Crisfield, 1997) no formato geral:

( )2 2 2 2 2a V lλ ψ ω= ∆ + ∆ −∆ (7)

onde l∆ é o raio fixo da equação desejada, os escalares V∆ , λ∆  e  são o deslocamento e fator
de carga incrementais.

Estes métodos requerem valores iniciais próximos para que o procedimento iterativo convirja
para pontos de soluções corretos. Então, o procedimento que obtém o próximo ponto de equilíbrio
( ),V λω  normalmente consiste em duas fases, uma fase de predição e uma fase de correção. Os
procedimentos preditores são aplicados para estimar a primeira solução e determinar a solução a ser
seguida. Os métodos corretivos iterativos são usados para calcular a seqüência de estimações e
obter a solução convergida.

Depois de convergir para a solução ( ),V λω , a aceleração e a força são medidas para o cálculo
de um ponto da RF. Depois o procedimento é repetido até o caminho da solução estar concluído até
a taxa de freqüência especificada.

É importante lembrar que no procedimento de linearização do método arc-length, ambos termos
V

ψ∂
∂  e ψ

λ
∂

∂  devem ser calculados a partir da equação residual (4).

3 FORMULAÇÃO DO PROBLEMA

Foi desenvolvido um modelo para a obtenção da resposta em freqüência da alavanca de
transmissão mecânica. As equações dos modelos apresentam dois termos relativos a funções
descritivas: dff que é o termo que representa a função descritiva de folga e dfh relativo a função
descritiva de atrito ou histerese.

O modelo de atrito que segue é o modelo de macro e microdeslizamento de Ren, apresentado na
seção 2.1.2, e é descrito pela equação (2) , podendo ser representado pelas Figura 2 e Figura 3,
podendo assumir qualquer uma das formas, de acordo com os valores dos parâmetros a, b, e K, que
foram determinados experimentalmente (Prado, 2002).  Este efeito de atrito está presente na rótula
da alavanca, onde se tem contato entre duas superfícies distintas.

O modelo de folga utilizado é o modelo de rigidez anti-simétrica linear por partes apresentado
na seção 2.1.1. O referido efeito se localiza no contato entre a haste da alavanca e seu respectivo
alojamento no conjunto do câmbio.

O modelo de 32 graus de liberdade da alavanca de transmissão mecânica é composto por um
grau de liberdade relativo ao deslocamento da base e os restantes pela viga, que foi modelada pelo
método dos elementos finitos. Para tanto, foi utilizado para a modelagem da alavanca um elemento



do tipo viga. Os movimentos estão contidos no plano X-Y e a alavanca possui apenas rotação na
rótula. O modelo completo é descrito pelo sistema de equações (8).

Na equação (8), os efeitos não-lineares de atrito e folga estão representados pelas funções
descritivas hdf  e fdf  respectivamente.
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mb → 0,3 kg

kf → 111350 [N/m]

kb → 2.1.109 [N/m]

cb → kb.0,0015 [Ns/m]

ch → 0,42 [Nms/rad]

folga → 0,5 [mm]

dff → Função descritiva da folga – Rigidez anti-simétrica linear por partes

dfh → Função descritiva do atrito – Modelo de Ren

( )F t → 2,0; 3,1; 4,1 [N]

Tabela 1. Parâmetros do modelo

Figura 4. Modelo da Alavanca de Transmissão mecânica – 32gdls



As simulações foram realizadas com uma excitação senoidal )(tF com os valores de 2,0N, 3,1N
e 4,1N. O método arc-length foi usado para obter o traçado da equação e o raio inicial equivalente
utilizado foi de 0,05 Hz.

4 RESULTADOS

As figuras 5 e 6 mostram as curvas de resposta em freqüência obtidas para o sistema simulado.
Mesmo em se tratando de um sistema com muitos graus de liberdade, o segundo pico da RF
encontra-se num valor muito distante do primeiro, estando fora da faixa de interesse.

Pode-se observar na Figura 5 o efeito não-linear causado pelo modelo de junta utilizado para
representar a folga, na qual o pico da RF inclina-se para a direita, indicando um aumento de rigidez.
A rigidez do sistema aumenta pois o movimento da massa da base (mb) torna-se maior que a folga,
ocasionando um contato entre a ponta da alavanca e a parede do alojamento de rigidez kf (Figura 4).

Quanto maiores foram as forças de excitação, maiores foram os efeitos não-lineares nas RFs. O
modelo de atrito usado na transmissão influenciou no amortecimento da estrutura.

Figura 5. RFs do modelo da alavanca de transmissão mecânica

O gráfico da Figura 6 é uma representação em três dimensões da inertância do modelo da
alavanca de transmissão, tendo como eixos a freqüência, a amplitude real e a amplitude imaginária.
Pode-se ver nesse gráfico os diferentes traçados das RFs para distintas forças de excitação.



Figura 6. RFs do modelo da alavanca de transmissão mecânica – Representação em três dimensões

5 CONCLUSÕES

A simulação numérica realizada mostra os efeitos que diversas não-linearidades podem causar
nas curvas de resposta em freqüência deste sistema mecânico. Para este modelo um esforço
computacional muito grande foi necessário para o cálculo das respostas em freqüência. O raio da
restrição calculado pelo método arc-length diminuía muito quanto o traçado da curva começava a
ser alterado devido aos efeitos não-lineares, que se iniciavam por volta de 96Hz, para que não
interceptasse outras soluções. Estes caminhos podem ser visualizados pelo gráfico tridimensional da
Figura 6.

Deve-se salientar também, que para a modelagem representativa do sistema, diversos
parâmetros foram obtidos experimentalmente, tais como parâmetros de atrito e rigidez.

Deste modo foi possível obter o um modelo matemático deste sistema com não-linearidades
localizadas e o levantamento das suas respectivas curvas de resposta em freqüência a ser utilizado
na próxima etapa de estudo de sensibilidade dos parâmetros.
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NUMERICAL INVESTIGATION OF THE DYNAMICAL BEHAVIOUR OF A
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Abstract. This work presents a numerical investigation of the dynamical behaviour of a gearshift
lever of mechanical transmission considering the presence of nonlinearities in the structure. In the
simulation, first order nonlinear frequency response curves of the lever were computed by using the
arc-length continuation method for solving nonlinear systems. Nonlinear effects, modeled by
localized joints, were quantified by describing functions, which linearized the joints to define
transfer functions that related fundamental components of the input and output. In order to make
these simplified models more closely to the physical system, several parameters of the model were
experimentally determined, including parameters of the adopted friction model. Simulated curves of
first order nonlinear frequency response were also obtained with simplified models of the lever.
These investigations showed the complexity of modeling a structure with nonlinear characteristics
and the need of more complete models.

Keywords: Gearshift Lever, Nonlinearity, Frequency Response, Mechanical Systems Modeling,
Rattle.


