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Resumo. Existem diversos tipos de sistemas de controle lineares ou não lineares desenvolvidos
para o posicionamento e atenuação de oscilações de pêndulos. No entanto, esses algoritmos não
utilizam explicitamente a energia cinética e potencial dos pêndulos. Eles utilizam equações
dinâmicas geralmente obtidas a partir da representação da dinâmica do pêndulo na forma de
equações lineares. Neste trabalho apresenta-se um sistema inteligente desenvolvido para além de
controlar a posição de um pêndulo, atenuar as suas oscilações. O pêndulo é posicionado (ou sua
oscilação atenuada) utilizando um controlador neural direto usando uma Rede Neural Multi
Camadas que utiliza as informações sobre a energia cinética e potencial do pêndulo
adequadamente representadas na forma da Lógica Fuzzy. Apresentam-se também, resultados
experimentais obtidos a partir do controle de posição e da atenuação de oscilação do pêndulo.

Palavras-chave: Controle fuzzy e neural, planta não linear, sistemas inteligentes.

1. INTRODUÇÃO

A utilização do denominado controle inteligente tem aberto uma nova perspectiva  no
tratamento de sistemas não-lineares e no projeto de seus controladores (Haykin, 2001). Muitos
trabalhos foram desenvolvidos seguindo esta linha de pesquisa na tentativa de desenvolver um
controle mais versátil.

As redes neurais artificiais, devido a sua capacidade de aproximar arbitrariamente bem qualquer
mapeamento contínuo não-linear (Kurkova, 1995 e Narendra, 1991), têm assumido papel
fundamental no campo de identificação e controle de sistemas dinâmicos não-lineares, pois através



delas consegue-se desenvolver estratégias de controle que podem ser aplicadas de uma forma geral,
independente da não-linearidade existente no sistema em questão (Zadeh, 1988). Neste trabalho
apresentam resultados experimentais e obtidos de simulações obtidos do controle de posição de um
pêndulo utilizando um sistema inteligente (SI). O SI utiliza um microcomputador padrão tipo IBM
PC para análise e processamento dos dados, um motor elétrico de corrente continua, que serve
como atuador, agindo no eixo do centro de rotação do pêndulo.

A seguir serão apresentadas as características principais de uma Rede Neural Multi Camada
(RNMC) utilizada para controlar a posição do pêndulo, o modelo matemático do pêndulo simples, a
análise das energias potenciais e cinéticas observadas durante o movimento do pêndulo, o
desenvolvimento de um algoritmo para atenuação da oscilação de um pêndulo e os resultados
experimentais obtidos na atenuação da oscilação de um pêndulo. Conclui-se este trabalho com a
análise dos resultados e são sugeridas algumas modificações no controlador.

2. REDES NEURAIS ARTIFICIAIS

A partir de 1980 a rede neural artificial começou a ser utilizada no controle de processos. A rede
neural artificial pode ser vista como um conjunto de neurônios ligados pôr conexões denominadas
sinápticas, dividido em neurônios de entrada, que recebem estímulos do meio externo, neurônios
internos ou ocultos e neurônios de saída, que se comunicam com o exterior.

A rede neural passa por um processo de treinamento a partir dos casos reais conhecidos,
adquirindo, a partir daí, a sistemática necessária para executar adequadamente o processo desejado
dos dados fornecidos. Sendo assim, a rede neural é capaz de extrair regras básicas a partir de dados
reais, diferindo da computação programada, onde é necessário um conjunto de regras rígidas pré-
fixadas e algoritmos (Haykin, 2001). O algoritmo de treinamento da RNMC comumente mais
utilizado é o da retropropagação do erro (“Error Backpropagation”). Este algoritmo se baseia na
propagação do erro observado na saída da RNMC (Cavalcanti, 2001 e Rummelhart, 1986).

3. MODELO DO PÊNDULO SIMPLES

No pêndulo simples, admite-se que ele oscile num plano vertical, sob a influência da gravidade.
Na Fig.(1) apresenta-se a configuração de um pêndulo simples acoplado a um mancal de um motor
de corrente contínua.

Figura 1 - Sistema proposto
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Uma massa m, está ligada à extremidade de uma barra rígida, porém sem peso, de comprimento
l . A outra extremidade da barra está suportada no mancal do motor. A posição do sistema está
descrita pelo ângulo θ  entre a barra e a linha vertical, tomando-se o sentido anti-horário como o
positivo. A força gravitacional mg  atua para baixo, enquanto a força de amortecimento /c d dtθ ,
onde c  é positivo, sempre se opõe à direção do movimento. Admitindo-se que θ  e /d dtθ  sejam
ambos positivos. A equação do movimento pode ser deduzida a partir do teorema do momento
angular (Boyce, 1998). O momento angular em torno da origem é 2( / )ml d dtθ , então a equação
que representa a dinâmica da planta é dada por:
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os fatores l  e lsenθ , no segundo membro da equação, são o braço do momento da força resistiva e
o da força gravitacional, respectivamente, e os sinais negativos se devem ao fato de as duas forças
tenderem a fazer o pêndulo girar no sentido horário (negativo). Por uma manipulação algébrica
direta pode-se escrever a Eq. (1) na forma
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A fim de converter a Eq. (2) a um sistema de duas equações de primeira ordem, faz-se x θ=  e
d

y
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θ
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Uma vez que ,  ,   e c g l m  são todas constantes, o sistema (3) é um sistema autônomo com a
forma

 dy( , ),      ( , )dt
dx F x y G x ydt = =                                                                                              (4)

Os pontos críticos se encontram pela resolução das equações

0,                ( / ) ( / ) 0.y g l senx c ml y= − − =                                                                                (5)

Considere-se que a estrutura esteja na posição de equilíbrio no instante da aplicação da força
externa ( )u t . Se a massa for ligeiramente deslocada da posição de equilíbrio, ela oscilará com
amplitudes gradualmente decrescente, até chegar à posição de equilíbrio, quando a energia potencial
inicial tiver sido dissipada pela força de amortecimento. Este tipo de movimento ilustra a
estabilidade assintótica (Meirovitch, 1998).

Uma forma alternativa de se expressar uma equação diferencial é na forma de variáveis de

estado (Ogata, 1998). Por exemplo, Fazendo  
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que descreve o modelo linearizado apresentado na Fig. (1) será,
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A fim de converter a Eq. (6) a um sistema de duas equações de primeira ordem, escolhe-se o
deslocamento e a velocidade da massa como variáveis de estados denotando-as por 1 2( ) e ( )x t x t
respectivamente,
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A partir do sistema de equações definido na Eq. (7) obtém-se um outro sistema de equações
relacionados com a derivada primeira, descrito na Eq. (8),
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Uma vez que ,  ,   e c g l m  são todas constantes, o sistema na Eq. (8) é um sistema autônomo.

Substituindo-se 1( ) ( ) ( ) ( ) ( )
c g

t t t ml u t
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θ θ θ −= − − +&& &  na Eq. (8), obtém-se a Eq. (9).
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Geralmente, as equações de mesmo estado são escritas em um vetor-matriz, já que permite que
as equações sejam manipuladas mais facilmente (Phillips, 1997). Desta forma as equações (9)
podem ser obtidas utilizando-se a notação matricial, na forma da Eq. (10).
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Definindo-se os vetores de estados através das equações matriciais, Eq. (11) e Eq. (12).
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E denotando-se por A  (matriz do sistema) e B  (matriz de entrada) e y(t) matriz de saída
conforme Eq. (13) e Eq. (14),
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4. AS ENERGIAS CINÉTICAS E POTENCIAIS

Na Figura (2) apresenta-se um pêndulo posicionado entre os quadrantes I e II (posição em que
θ=90o) do seu espaço de trabalho. Na Figura (2), os quadrantes estão indicados por I, II, III e IV e
são referenciados como Q1, Q2, Q3 e Q4, respectivamente. O torque do pêndulo Tl(t) é positivo em
Q1 e Q2 necessitando de um torque negativo do motor Tm(t) para parar o pêndulo. O torque do
pêndulo Tl(t) é negativo em Q3 e Q4 necessitando de um torque positivo do motor Tm(t) para parar
o pêndulo. Sabe-se que Tm(t) é proporcional à tensão da armadura do motor de corrente contínua
(u(t)). As regras fuzzy 1 e 2 representam o posicionamento do pêndulo. Nessa regras, a expressão
θm == Q1 indica pêndulo posicionado em Q1).

Regra 1: if θm == Q1 or θm == Q2 then u(t)<0;
Regra 2: if θm == Q3 or θm == Q4 then u(t)>0;

Durante o desenvolvimento do sistema para o controle de posição de pêndulos usando energia
cinética e potencial considerou-se, em todos os experimentos, que inicialmente o pêndulo está
posicionado em θ = 90o e é deixado oscilar livremente como pode ser visto na Fig.(2). No instante t
= 0 o pêndulo é solto na posição θ = 90o, ele começa a se movimentar e fica oscilando em torno da
posição θ = 0o. Analisando-se a Figura (2) vê-se que se for utilizado um controlador padrão do tipo
PID para posicionamento do pêndulo (o pêndulo sendo considerado como um sistema de primeira
ordem) em θ = 0o, o algoritmo de controle gerará uma tensão na armadura do motor tal que o
torque Tm(t) será positivo. O torque Tm(t) será adicionado ao torque Tl(t) do pêndulo o que
aumentará a velocidade do pêndulo ao passar em θ = 0. Isto ocorre porque o controlador foi
desenvolvido para o posicionamento do objeto sem considerar a sua dinâmica.
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Figura 2 - Posição inicial do pêndulo

Na Fig.(3) apresentam-se as curvas obtidas a partir da simulação de um trecho do movimento
amortecido do pêndulo a partir de θ = 90o. A abscissa representa o tempo em milisegundos, a curva
na cor azul representa a posição do pêndulo (ângulo θ), a curva na cor vermelha representa a
velocidade, e a curva na cor preta representa a ação do torque sobre o motor para se por ao torque
devido à energia cinética do pêndulo. As curvas apresentadas na Fig. (3) podem ser usadas para a
análise da dinâmica do pêndulo durante a sua oscilação. Considere-se que se deseje sustentar
(posicionado na posição representada pelo ângulo θ e com velocidade zero) o pêndulo num ângulo
θ qualquer.

No intervalo de tempo entre t = 0 e t = t1 a velocidade é negativa, θ inicialmente é positivo e se
torna negativo. O torque do pêndulo Tl(t) é negativo necessitando de um torque positivo do motor
Tm(t) para parar o pêndulo (Tl(t) < 0 e Tm(t) > 0). Conclui-se que, no intervalo de tempo entre t = 0
e t = t1, o valor da variável de controle será positivo (u(t) > 0) para parar o movimento do pêndulo
(regra fuzzy 4). No intervalo de tempo entre t = t1 e t = t2 a velocidade é positiva, θ inicialmente é
negativo e se torna positivo. O torque do pêndulo Tl(t) é positivo necessitando de um torque



negativo do motor Tm(t) para parar o pêndulo (Tl(t)>0 e Tm(t)<0). Conclui-se que, no intervalo de
tempo entre t = t1 e t = t2, o valor da variável de controle será negativo (u(t)<0) para parar o
movimento do pêndulo (regra fuzzy 3).

Regra 3: if vel > 0 then u(t) < 0
Regra 4: if vel < 0 then u(t) > 0
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Figura 3 - Oscilação livre do pêndulo

Neste trabalho associou-se a energia cinética à velocidade do pêndulo e a energia potencial a sua
posição. O índice de desempenho do sistema proposto para o posicionamento do pêndulo (ou a
função de Lyapunov do sistema, (função de Lyapunov é discutida em Äström(1995)), é apresentado
na Eq.(15). Definiu-se Ep como o índice de desempenho referente à energia potencial, Eq.(16).
Definiu-se Ec como o índice de desempenho referente à energia cinética do sistema. Eq.(17).
Utilizou-se E=Yr-Y (sendo Y a saída da planta e Yr a posição desejada da planta) e definiu-se
vel=dθ/dt, β  é o fator de adaptação.

I(t)= Ep + Ec                      (15)

Ep=½E2                      (16)

Ec= ½β vel2                      (17)

Na área das redes neurais artificiais, um dos métodos utilizado para a redução do erro médio
quadrático é o da regra delta (Kovács, 1996). O erro deve ser reduzido a partir da modificação dos
pesos das conexões da rede neural. Os pesos (W) são iterativamente calculados pela Eq.(18). Nesta
equação, µ é um parâmetro que controla a estabilidade e a razão da convergência do treinamento, e
∇(I(W)) é o valor do gradiente do índice de desempenho no ponto representado por Wik.

Wk+1 = Wk+µ(- ∇) = Wk+µ(- ∇(I(W)))                                                                                      (18)



Utilizando-se a definição de regra delta para o desenvolvimento do algoritmo de controle
obtém-se a Eq.(19).

Uk+1 = Uk+µ(- ∇(I(U)))                                                                                    (19)

Decidiu-se desenvolver o algoritmo de controle baseado ou na energia cinética, ou na energia
potencial do pêndulo. Na Eq.(20) apresenta-se o algoritmo desenvolvido para atenuar a oscilação da
planta baseado na energia cinética. Considerou-se que durante o movimento do pêndulo a parte da
Eq.(19) referente à energia potencial deve ser zerada. Além disso, baseado nas regras fuzzy 3 e 4
decidiu-se utilizar um controlador ON e OFF representado pela Eq.(20). Na eq.20 SGN(vel) indica
a função sinal de vel. A Eq. (20) só é utilizada quando vel ≠ 0.

Uk+1= - βSGN(vel)                      (20)

Quando a velocidade do pêndulo é igual a zero foi utilizado o algoritmo para atenuar a oscilação
do pêndulo baseado na energia potencial. Na Fig.(4) apresenta-se o diagrama do sistema do pêndulo
representado na forma utilizada para o desenvolvimento do algoritmo de controle baseado na
energia potencial. Considerou-se o modelo do pêndulo como uma planta de primeira ordem. A
partir da Eq.(19) obtém-se a Eq.(21). A partir da Fig.(4) calcula-se ∂Y/∂U = η. Após alguns ajustes,
na Eq.(22) apresenta-se o algoritmo de controle baseado na energia potencial.

Uk+1= Uk +(-µ∇) = Uk +µE∂Y/∂U =                      (21)

Uk+1= Uk +-µηE = Uk +ϕE                      (22)

 
    Yk+1=Yk+ηYk 

Uk 
Yk 

Figura 4 – Diagrama do sistema do pêndulo

Utilizou-se a RNMC apresentada na Fig.(5) abaixo para o controle baseado na energia
potencial.
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Figura 5 – Rede neural multi camada



5. RESULTADOS EXPERIMENTAIS

A seguir, serão apresentados resultados experimentais utilizando controladores baseados na
energia cinética e potencial do pêndulo. Na Eq.(21) apresenta-se o algoritmo de treinamento
baseado na energia cinética que pode ser utilizado para atenuar a oscilação do pêndulo desenvolvido
usando a lógica fuzzy.

Realizou-se uma sessão de testes experimentais com um pêndulo simples. Observa-se na Fig.(6)
os resultados obtidos com um pêndulo em oscilação livre. A curva representada na cor azul indica a
posição e a curva representada na cor vermelha representa a velocidade do pêndulo. No pêndulo só
atuam as forças de atrito.
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Figura 6 - Oscilação livre

Na Figura (7) apresentam-se os resultados obtidos com o atenuador de oscilações usando o
controle ON e OFF. O algoritmo usado para o controle do pêndulo foi baseado nas regras (3) e (4).
Este tipo de controle somente foi baseado na energia cinética da planta.

Figura 7 - Atenuação da oscilação

Na Figura (8) apresentam-se os resultados obtidos com o atenuador de oscilações usando o
controle ON e OFF. O algoritmo usado para o controle do pêndulo foi baseado nas regras (3) e (4).
Este tipo de controle foi baseado na energia cinética e potencial da planta. Observa-se claramente,
pelos resultados apresentados, que houve uma melhor atenuação da oscilação do pêndulo,
comparando-se com os resultados apresentados na Fig. (7) onde usou-se controle baseado somente



na energia cinética. Na Fig.(9) apresenta-se o zoom no ponto em que o controle foi o baseado na
energia potencial.

Figura 8 - Atenuação da oscilação baseado na energia cinética e potencial da planta.

7. CONCLUSÃO

Apresentou-se o modelo da planta (pêndulo simples) e em seguida analisou-se, observando-se as
curvas apresentadas na Fig. (3), a dinâmica da planta durante a sua oscilação.

Descreveram-se as regras fuzzy utilizadas no controle da planta e utilizou-se a definição de
regra delta para obter os seguintes algoritmos: o algoritmo, utilizado para atenuar a oscilação da
planta, baseado na energia cinética; o algoritmo, utilizado para atenuar a oscilação da planta,
baseado na energia potencial, e o algoritmo, utilizado para atenuar a oscilação da planta, baseado na
energia cinética e na energia potencial.
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Abstract. There are several types of lineal or no lineal control systems developed for the positioning
and reduction of vibrations of pendulums. However, those algorithms don't used the kinetic and
potential energy of the pendulums explicitly. They used dynamic equations obtained usually starting
from the representation of the dynamics of the pendulum in the form of linear equations. In this
work present an intelligent system (SI) developed for besides controlling the position of a
pendulum, to lessen their oscillations. The SI used a microcomputer standard IBM PC type, an
electric motor of continues current, that it serves as atuador, acting in the axis of the center of
rotation of the pendulum. The pendulum is positioned (or your lessened oscillation) using a
controller direct neural using a Net Neural Multi Layers (RNMC) that used the information about
of the kinetic and potential energy of the pendulum appropriately acted in Lógica Fuzzy form.
Present also comes, experimental results obtained starting from the position control and of the
reduction of oscillation of the pendulum.
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