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Resumo: Este trabalho apresenta um estudo acerca do efeito conhecido por enrijecimento por
tensées e sua influéncia sobre as caracteristicas dindmicas de sistemas estruturais. E proposto um
procedimento inverso para a identificacdo de cargas externas a partir das respostas dinamicas
observadas. Para tanto, utilizam-se modelos de elementos finitos de porticos planos. As respostas
dindmicas sdo caracterizadas em termos dos parametros modais (freqiiéncias e modos naturais de
vibragdo) e de fungoes de resposta em freqiiéncia. As variacoes observadas das freqiiéncias
naturais em func¢do da magnitude do carregamento sdo interpretadas no contexto de um critério
dindamico para determinagdo de cargas criticas de flambagem. O procedimento de identificagcdo é
ilustrado através de simulagoes numéricas nas quais as freqiiéncias e os modos naturais de
vibragdo da estrutura sujeita ao carregamento externo sdo usados para formar uma fun¢do
objetivo tendo como variaveis de projeto as cargas que sdo supostas desconhecidas. O processo de
minimiza¢do da fung¢do objetivo utiliza um algoritmo de busca linear baseado no método de
Lagrange-Newton-SQP (programag¢do quadrdtica seqiiencial). Com base nos resultados obtidos,
conclui-se acerca da eficiéncia da técnica de identificagdo na determinagdo de cargas pelo uso das
respostas dindmicas.

Palavras chave: identificacdo, problemas inversos, respostas dinamicas, flambagem.
1. INTRODUCAO

Em diversas situacdes ¢ de fundamental importancia conhecer os carregamentos externos a que
estdo submetidas as estruturas de Engenharia Civil em condi¢des reais de servigo, com o objetivo de
avaliar o nivel de seguranca, verificar as consideracdes adotadas no projeto e, se necessario,
promover o redimensionamento dos elementos estruturais para novas condigdes operacionais. Um
fator que dificulta a determinacdo experimental do carregamento resulta da freqiiente inviabilidade
de se introduzirem transdutores na estrutura durante sua montagem, previamente a aplicacao das
cargas.

Por outro lado, ¢ bem conhecido o fato que as solicitagdes externas tém significativa influéncia
sobre as caracteristicas dinamicas de componentes estruturais, através do efeito conhecido por
stress-stiffenning (enrijecimento por tensdes) (Mead, 2001; Greening e Lieven, 1999, 2000 e
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2003). Este efeito ocorre igualmente em outros tipos de elementos estruturais, tais como vigas,
placas e cascas, conforme evidenciado por Lurie (1952).

Considerando a influéncia exercida pelo carregamento estitico externo sobre as respostas
vibratdrias, torna-se possivel, em principio, obter, por um procedimento inverso, informagao acerca
do nivel e distribuicdes de cargas, a partir das respostas dindmicas medidas na estrutura e de um
modelo numérico relacionando as cargas e as respostas dindmicas.

Um procedimento desta natureza tem numerosas vantagens praticas, tais como:

a relativa facilidade de medi¢do e processamento das respostas dindmicas e a ampla
acessibilidade a pontos de medig¢do, considerando que as respostas dinamicas sao
caracteristicas globais das estruturas;

possibilidade de empregar procedimentos ja bem estabelecidos de excitagao e captagcdo das
respostas dinamicas.

Por outro lado, os problemas de identificagdo, também denominados problemas inversos,
possuem algumas dificuldades intrinsecas, dentre as quais podem-se citar:

a precisao dos resultados da identificacdo ¢ determinada pela precisdo do modelo
matematico disponivel,;

do ponto de vista numérico, os problemas de identificagdo sdao geralmente mal-
condicionados, o que significa que sua solu¢do ¢ muito sensivel a presenga de incertezas e
ruidos que, inevitavelmente, contaminam os dados experimentais utilizados;

por razdes de natureza pratica, os dados experimentais utilizados sdo invariavelmente
incompletos, tanto no sentido espacial (respostas conhecidas em um ntimero limitado de
posicdes), quanto no espectral (respostas determinadas em uma banda de freqiiéncias).
Conseqlientemente, a unicidade da solu¢ao nao pode ser assegurada.

Nas secdes seguintes, apresentam-se os aspectos tedricos do procedimento de identificacdo de
cargas a partir das respostas dindmicas, seguindo-se a descricdo de aplicagdes de simulagdo
numérica, a titulo de validagdo do procedimento sugerido e avaliagdo de suas principais
caracteristicas operacionais.

2. MODELAGEM DO EFEITO DE ENRIJECIMENTO POR TENSOES

Considere-se o elemento bidimensional de viga modelado segundo a teoria de Euler-Bernoulli,
incluindo o efeito da carga axial, ilustrado na Fig. 1.
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Figura 1. Elemento bidimensional de viga.



Na figura acima, u® e u” sdo os deslocamentos nodais longitudinais, vii e vP sdo os
deslocamentos nodais transversais, 9,-E e 9,-D sdo as rotagoes das se¢Oes transversais, /; € o
comprimento do elemento, E; ¢ o mddulo de elasticidade do material, 4, ¢ a area da secdo
transversal, /; ¢ o momento de inércia, p; ¢ o carregamento longitudinal distribuido e N; é o esfor¢o
axial concentrado nas extremidades do elemento. Os indices £ e D representam os deslocamentos e
rotacdes a esquerda e direita do elemento respectivamente.

Utilizando uma funcao de interpolagdo linear para o deslocamento longitudinal e aproximagao
cubica para o deslocamento transversal, obtém-se as seguintes expressdes para a matriz de rigidez
elementar e a matriz de massa consistente elementar (Zienkiewicz e Taylor, 1989):
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onde m, = p,Al , sendo p; a densidade volumétrica do material.

Deve-se observar que o esforco longitudinal intervém nos componentes da matriz de rigidez
referentes aos graus de liberdade de flexao.

Apods montagem das equacdes de movimento em nivel global, as equa¢des do movimento
resultantes sao dadas por:

MX(t)+K(p)X(1)=0(¢) 3)
onde p designa o vetor das forcas axiais aplicadas nos elementos que compdem o modelo de

elementos finitos.
Das equacdes de movimento (3) ¢ derivado o seguinte problema de autovalor:

[K(p)-AM]X =0 (4)



onde A = w? designa os autovalores (freqiiéncias naturais) e X os autovetores (modos naturais de
vibracao).
A matriz das funcdes de resposta em freqiiéncia (FRFs) sdo calculadas como indicado a seguir:

H(o)=[K(p)-&’M] (5)

As equagdes acima mostram que as respostas dindmicas dependem das forcas axiais aplicadas
nos elementos da estrutura, as quais, por sua vez, dependem diretamente do carregamento externo a
que a estrutura estd submetida. Isto significa que, antes de realizar a andlise dinamica,
primeiramente devem ser determinadas as forgas axiais que solicitam cada elemento, a partir de
uma analise estatica do efeito do carregamento externo na estrutura.

3. FORMULACAO DO PROBLEMA INVERSO

O procedimento de identificacdo de esforcos externos proposto consiste na minimiza¢ao de uma
funcdo objetivo traduzindo a diferenca normalizada entre as freqiiéncias € modos naturais obtidos
experimentalmente sobre a estrutura sujeita ao carregamento a ser determinado, e as
correspondentes respostas dinamicas previstas pelo modelo de elementos finitos. Neste problema
de otimizagdo, as varidveis de projeto sdo as cargas externas a serem introduzidas no modelo de
elementos finitos. Busca-se, assim, determinar as cargas a serem aplicadas no modelo que
conduzam a melhor reproducao das respostas experimentais da estrutura carregada.

A fungdo objetivo utilizada neste trabalho ¢ definida da forma:

0" (p)-a ‘Vi('”)( p)-V
- B P

W, {1=macly (p),v ]} )

i

onde:
i [V,»('") ( p)JT p
bl

« m ¢ onumero de modos utilizados;
« p¢éo vetor das cargas externas a serem identificadas;

. MAC[K('”) ( p),Vi(e)] ¢ o conhecido Modal Assurance Criterion;

. a).(’”)( p) e V('”)( p) sdo as freqiiéncias e os modos naturais previstos pelo modelo de
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elementos finitos, respectivamente;
. a).(e)( p) e ) (p) sdo as freqiiéncias e os modos naturais experimentais da estrutura

1
carregada, respectivamente;
. W,., Wy e Wy sdo fatores de ponderacdo.

3. SIMULACOES NUMERICAS
3.1. Descricao da Estrutura-Teste

Para ilustrar os procedimentos desenvolvidos neste trabalho, ¢ utilizado o modelo de elementos
finitos de um portico plano, constituido por elementos de vigas bidimensionais de Euler-Bernoulli.

O modelo do pértico de ago ¢ ilustrado na Fig. 2, suas dimensdes e propriedades mecanicas do
material sdo apresentadas na mesma figura.



Na Fig. 2, observa-se que o modelo ¢ constituido por 24 nods e 24 elementos. Cada n6 possui 3
graus de liberdade que correspondem ao deslocamento longitudinal, deslocamento transversal e a
rotagdo. Desta forma, o modelo consta de um total de 66 graus de liberdade, nimero este obtido
apos a restri¢ao dos graus de liberdade dos nds engastados na base do portico.
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Figura 2. Modelo de elementos finitos de um portico.

A modelagem desta estrutura foi desenvolvida em ambiente MATLAB®. O modelo foi validado
pela confrontagdo das respostas dinamicas (pardmetros modais e funcdes de resposta em freqii€ncia)
com seus semelhantes, obtidos por meio de simulagdes realizadas em um programa comercial de
elementos finitos. O efeito do carregamento nas respostas dindmicas foi incluido na modelagem, os
bons resultados na comparagdo das respostas dinamicas confirmaram a confiabilidade do modelo
utilizado.

3.2. Caracterizagdo da Influéncia das Cargas Externas Sobre as Respostas Dindmicas

A partir da aplicacdo de uma for¢a concentrada vertical (paralela ao eixo y), aplicada no no
central da viga superior (n6 nimero 11) (ver Fig. 2), caracteriza-se a influéncia do carregamento
sobre comportamento dindmico da estrutura. Para tanto, o valor e sentido da forca aplicada ¢
variado, calculando-se, para os diferentes valores, as freqiiéncias naturais do portico.

A Fig. 3 ilustra a modificagdo das freqiiéncias naturais em func¢ao da variagdo da magnitude e
do sentido de aplicacao da carga (valores positivos indicam for¢a aplicada segundo a orientagao do
eixo y).
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Figura 3. Variacao das freqiiéncias naturais em fun¢do da magnitude e sentido do carregamento.

Na figura anterior, observa-se a diminuicdo das freqiiéncias naturais a medida que a carga
oposta a y aumenta, ou seja, o portico perde rigidez com o acréscimo da carga. Verifica-se também
que a primeira freqiiéncia natural torna-se nula quando a estrutura ¢ solicitada com o valor da carga
que corresponde a carga de flambagem linear. Este resultado ilustra o critério dinamico para a
determinag¢do da carga de flambagem, que consiste em encontrar a carga que anula a primeira
freqiiéncia natural (Chajes, 1974). Realizando este procedimento, para o caso estudado, encontra-se
0, para a carga de flambagem da estrutura, o valor: P, =20121 [N].

crit

A Fig. 4 mostra as variacdes (absolutas e relativas) das freqiiéncias naturais em funcdo de
fracdes da carga critica de flambagem, para os dois sentidos de aplicacdo da carga externa.
Observa-se que, em geral, as freqiiéncias naturais ndo apresentam nenhuma relagdo de
proporcionalidade em relacao a carga. A primeira freqiiéncia natural sofre maiores variagdes que as
demais e a medida que a carga se aproxima ao valor critico, estas variagdes sdo mais acentuadas. A
partir da segunda freqiiéncia natural, nota-se que os valores das freqiiéncias variam com o aumento
de carga de forma aproximadamente linear. Quando o sentido da forga aplicada ¢ positivo em
relagdo ao eixo y, verifica-se o aumento das freqiiéncias naturais com o acréscimo de carga, ou seja,
ocorre o enrijecimento da estrutura.
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Figura 4. Freqiiéncias naturais do pdrtico em fung¢do do acréscimo da carga.

A Fig. 5 permite observar a influéncia do carregamento externo sobre algumas func¢des de
resposta em freqiiéncia do portico. Sdo mostradas as amplitudes das FRFs pontuais e cruzadas
correspondentes ao deslocamento transversal nos ndés 7 e 9 do modelo ilustrado na Fig. 2,
considerando-se um carregamento externo aplicado para baixo. Observa-se que quanto maior a
carga aplicada, as ressonancias e anti-ressonancias tornam-se cada vez menores até que, sob o valor
da carga de flambagem, o primeiro pico de ressonadncia ocorre a freqiiéncia zero.
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Figura 5. Amplitudes das FRFs H; e H79 para diferentes valores da carga adimensional
3.3. Identificacdo de Cargas Externas

Com o objetivo de avaliar a eficiéncia da técnica de identificacdo de cargas externas, foi
proposto identificar a magnitude de cada uma das forcas esquematizadas na Fig. 6, na qual estao
indicados os valores exatos. Neste problema, a posi¢cdo e o sentido de aplicagdo das cargas foram
consideradas conhecidas, de acordo com a ilustragdo da Fig. 6.
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Figura 6. Cargas externas aplicadas no portico.

A funcao objetivo foi construida usando os 6 primeiros conjuntos de parametros modais e
restringindo o valor da carga total identificada entre zero e o valor correspondente a primeira carga
de flambagem. Propos-se identificar sucessivamente, diferentes cenarios de carregamento,
caracterizados por um numero crescente de cargas desconhecidas, objetivando avaliar a influéncia
do numero de incognitas do desempenho do procedimento de identificagao. No caso mais simples,
quando foi identificada somente uma forca, adotou-se a ponderacdo W), = 0. A partir da
identificacdo simultanea de duas até cinco forgas, todos os fatores de ponderacdo da funcao
objetivo, tiveram valor unitario.

Os resultados mostrados na Tab. 2, considerando os diferentes cenarios de carregamento,
permitem concluir que a técnica de otimizacdo utilizada na identificacdo de varias cargas ¢
eficiente, j& que a minimizacao da funcao objetivo ¢ alcancada e a diferenga percentual entre as
cargas conhecidas e identificadas ¢ muito pequena. Nota-se, contudo, que quando sdo identificadas
simultanecamente 5 forgas, os resultados sdo menos precisos, o que pode ser atribuido a natural
dificuldade de se resolver o problema de otimizacdo em um espaco de busca de dimensdao mais
elevada. Em todos os casos, o tempo de processamento necessario mostrou-se bastante reduzido.

Tabela 2. Cargas identificadas no portico.

Carga [NV] Erro | Funcio Objetivo | Tempo
Identificada | E. Inicial Exata [%] |Inicial| Final [min.]
F; | -1006125 | -15000 | -10061,26 | 9x10° | 0,63 | 1,7x107 | 0,11
F; | -10061,26 212000 | -10061,26 | 9x10" 3
F; -6036,75 -5000 -6036.75 | 9x10° 4,211 3,06x107) 0,23
F; | -10061,20 12000 | -10061,26 | 6x107
F, | -6036,81 -5000 -6036,75 | 9x10* | 418 |2.93x10°| 0,38
F; | -4024,49 -3000 -4024,50 | 2x10*
F, | -2077,72 -10000 | -2012,25 | 3,25
F, | -1869,46 -10000 | -2012,25 | 7,10 B
F, | -2064,72 210000 | -2012,25 | 2,61 | 16,44 | 9,03x10™ | 62
F, | -2084,93 -10000 | -2012,25 | 3.61
F, | -1964,50 -10000 | -2012,25 | 2,37




A Fig. 7, ilustra a evolugdo da fung@o objetivo durante o procedimento de minimizagao.
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Figura 7. Evolugdo do valor da fungdo objetivo.
4. CONCLUSOES

As simulagdes numéricas evidenciam que as freqii€ncias naturais e as fungdes de resposta em
freqiiéncia sdo alteradas com o moddulo, direcdo e sentido de aplicacdo das cargas em sistemas
estruturais constituidos por elementos de vigas. Cargas de compressao axial reduzem as freqiiéncias
naturais associadas aos modos de flexdo, ou seja, tornam a estrutura mais flexivel, enquanto cargas
de tracdo as incrementam, provocando enrijecimento. Ficou também evidenciada a possibilidade de
se identificar o carregamento externo a partir do conhecimento de um conjunto de respostas
dindmicas, procedimento que pode ser explorado em diversas situacdes praticas da engenharia de
estruturas.

Como parte da continuacdo deste trabalho, em busca do aperfeicoamento do algoritmo de
identificacdo, estdo sendo utilizados métodos heuristicos de otimizagdao, os quais dispensam
estimativas iniciais para as cargas desconhecidas, que devem ser fornecidas como ponto de partida
para método classico de otimizagdo. Pretende-se também considerar o problema mais dificil em que
ndo se conhece a posi¢do e/ou sentido de aplicacdo das forcas externas, além de realizar a validagao
experimental da metodologia de identificacdo, etapa esta que se encontra atualmente em curso.
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Abstract: This paper presents a study on the influence of the so-called stress-stiffenning effect on
the dynamic characteristics of structural systems. It is proposed an inverse procedure intended for
the determination of external loads, given the dynamic responses of the loaded structure and a finite
element model. The dynamic responses are characterized in terms of modal parameters (natural
frequencies and mode shapes) as well as frequency response functions. The variations observed in
the natural frequencies as functions of the loads are interpreted in the context of a dynamic
criterion for determination of critical buckling loads. The identification procedure is illustrated by
means of numerical simulations in which natural frequencies and mode shapes of the structure
subjected to external loads are used to form a cost function having those loads, assumed to be
unknown, as the design variables. The optimization problem is solved by using a linear search
algorithm based on the Lagrange-Newton-SQP (Sequential Quadratic Programming) method.
Based on the results obtained, it is concluded about the efficiency of the load identification method
based on the dynamic responses.

Keywords: system identification, inverse problems, dynamic responses, buckling.
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