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Resumo: Este trabalho apresenta um estudo acerca do efeito conhecido por enrijecimento por 
tensões e sua influência sobre as características dinâmicas de sistemas estruturais. É proposto um 
procedimento inverso para a identificação de cargas externas a partir das respostas dinâmicas 
observadas. Para tanto, utilizam-se modelos de elementos finitos de pórticos planos. As respostas 
dinâmicas são caracterizadas em termos dos parâmetros modais (freqüências e modos naturais de 
vibração) e de funções de resposta em freqüência. As variações observadas das freqüências 
naturais em função da magnitude do carregamento são interpretadas no contexto de um critério 
dinâmico para determinação de cargas críticas de flambagem. O procedimento de identificação é 
ilustrado através de simulações numéricas nas quais as freqüências e os modos naturais de 
vibração da estrutura sujeita ao carregamento externo são usados para formar uma função 
objetivo tendo como variáveis de projeto as cargas que são supostas desconhecidas. O processo de 
minimização da função objetivo utiliza um algoritmo de busca linear baseado no método de 
Lagrange-Newton-SQP (programação quadrática seqüencial). Com base nos resultados obtidos, 
conclui-se acerca da eficiência da técnica de identificação na determinação de cargas pelo uso das 
respostas dinâmicas. 
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1. INTRODUÇÃO 
 

Em diversas situações é de fundamental importância conhecer os carregamentos externos a que 
estão submetidas as estruturas de Engenharia Civil em condições reais de serviço, com o objetivo de 
avaliar o nível de segurança, verificar as considerações adotadas no projeto e, se necessário,  
promover o redimensionamento dos elementos estruturais para novas condições operacionais. Um 
fator que dificulta a determinação experimental do carregamento resulta da freqüente inviabilidade 
de se introduzirem transdutores na estrutura durante sua montagem, previamente à aplicação das 
cargas. 

Por outro lado, é bem conhecido o fato que as solicitações externas têm significativa influência 
sobre as características dinâmicas de componentes estruturais, através do efeito conhecido por 
stress-stiffenning (enrijecimento por tensões) (Mead, 2001; Greening e Lieven, 1999, 2000 e 
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2003). Este efeito ocorre igualmente em outros tipos de elementos estruturais, tais como vigas, 
placas e cascas, conforme evidenciado por Lurie (1952).  

Considerando a influência exercida pelo carregamento estático externo sobre as respostas 
vibratórias, torna-se possível, em princípio, obter, por um procedimento inverso, informação acerca 
do nível e distribuições de cargas, a partir das respostas dinâmicas medidas na estrutura e de um 
modelo numérico relacionando as cargas e as respostas dinâmicas. 

Um procedimento desta natureza tem numerosas vantagens práticas, tais como: 
 

• a relativa facilidade de medição e processamento das respostas dinâmicas e a ampla 
acessibilidade a pontos de medição, considerando que as respostas dinâmicas são 
características globais das estruturas; 

• possibilidade de empregar procedimentos já bem estabelecidos de excitação e captação das 
respostas dinâmicas. 

 
Por outro lado, os problemas de identificação, também denominados problemas inversos, 

possuem algumas dificuldades intrínsecas, dentre as quais podem-se citar: 
 

• a precisão dos resultados da identificação é determinada pela precisão do modelo 
matemático disponível; 

• do ponto de vista numérico, os problemas de identificação são geralmente mal-
condicionados, o que significa que sua solução é muito sensível à presença de incertezas e 
ruídos que, inevitavelmente, contaminam os dados experimentais utilizados; 

• por razões de natureza prática, os dados experimentais utilizados são invariavelmente 
incompletos, tanto no sentido espacial (respostas conhecidas em um número limitado de 
posições), quanto no espectral (respostas determinadas em uma banda de freqüências). 
Conseqüentemente, a unicidade da solução não pode ser assegurada. 

 
Nas seções seguintes, apresentam-se os aspectos teóricos do procedimento de identificação de 

cargas a partir das respostas dinâmicas, seguindo-se a descrição de aplicações de simulação 
numérica, a título de validação do procedimento sugerido e avaliação de suas principais 
características operacionais. 
 
2. MODELAGEM DO EFEITO DE ENRIJECIMENTO POR TENSÕES 
 

Considere-se o elemento bidimensional de viga modelado segundo a teoria de Euler-Bernoulli, 
incluindo o efeito da carga axial, ilustrado na Fig. 1.  

 
 
 
 
 
 
 
 
 

                                                                                                                                                                    
 

Figura 1. Elemento bidimensional de viga. 
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Na figura acima,  ui
E e ui

D  são os deslocamentos nodais longitudinais, vi
E e vi

D  são os 
deslocamentos nodais transversais, θi

E e θi
D são as rotações das seções transversais, li é o 

comprimento do elemento, Ei é o módulo de elasticidade do material, Ai
 é a área da seção 

transversal, Ii é o momento de inércia, pi é o carregamento longitudinal distribuído e Ni é o esforço 
axial concentrado nas extremidades do elemento. Os índices E e D representam os deslocamentos e 
rotações à esquerda e direita do elemento respectivamente. 

Utilizando uma função de interpolação linear para o deslocamento longitudinal e aproximação 
cúbica para o deslocamento transversal, obtêm-se as seguintes expressões para a matriz de rigidez 
elementar e a matriz de massa consistente elementar (Zienkiewicz e Taylor, 1989): 
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onde =i i i im Alρ , sendo ρi a densidade volumétrica do material. 
 Deve-se observar que o esforço longitudinal intervém nos componentes da matriz de rigidez 
referentes aos graus de liberdade de flexão.  
 Após montagem das equações de movimento em nível global, as equações do movimento 
resultantes são dadas por: 
 

( ) ( ) ( ) ( )t t t+ =��M X K p  X Q                    (3) 
 
onde p  designa o vetor das forças axiais aplicadas nos elementos que compõem o modelo de 
elementos finitos. 

Das equações de movimento (3) é derivado o seguinte problema de autovalor: 
 

( ) λ− =   0K p M X                   (4) 
 



onde λ ω 2222====  designa os autovalores (freqüências naturais) e X  os autovetores (modos naturais de 
vibração). 

A matriz das funções de resposta em freqüência (FRFs) são calculadas como indicado a seguir: 
 

( ) ( ) 12ω ω
−

 = − H K p M                  (5) 
 
As equações acima mostram que as respostas dinâmicas dependem das forças axiais aplicadas 

nos elementos da estrutura, as quais, por sua vez, dependem diretamente do carregamento externo a 
que a estrutura está submetida. Isto significa que, antes de realizar a análise dinâmica, 
primeiramente devem ser determinadas as forças axiais que solicitam cada elemento, a partir de 
uma análise estática do efeito do carregamento externo na estrutura. 

 
3. FORMULAÇÃO DO PROBLEMA INVERSO 
 

O procedimento de identificação de esforços externos proposto consiste na minimização de uma 
função objetivo traduzindo a diferença normalizada entre as freqüências e modos naturais obtidos 
experimentalmente sobre a estrutura sujeita ao carregamento a ser determinado, e as 
correspondentes respostas dinâmicas previstas pelo modelo de elementos finitos.  Neste problema 
de otimização, as variáveis de projeto são as cargas externas a serem introduzidas no modelo de 
elementos finitos. Busca-se, assim, determinar as cargas a serem aplicadas no modelo que 
conduzam à melhor reprodução das respostas experimentais da estrutura carregada.  

A função objetivo utilizada neste trabalho é definida da forma: 
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 é o conhecido Modal Assurance Criterion; 

• m é o número de modos utilizados; 
• p é o vetor das cargas externas a serem identificadas; 
• 

( ) ( )m
iω p  e ( ) ( )m

iV p  são as freqüências e os modos naturais previstos pelo modelo de 
elementos finitos, respectivamente; 

• 
( ) ( )e
iω p  e ( ) ( )e

iV p  são as freqüências e os modos naturais experimentais da estrutura 
carregada, respectivamente; 

• ωW , WV  e WM são fatores de ponderação. 
 

3. SIMULAÇÕES NUMÉRICAS 
 
3.1. Descrição da Estrutura-Teste 
 

Para ilustrar os procedimentos desenvolvidos neste trabalho, é utilizado o modelo de elementos 
finitos de um pórtico plano, constituído por elementos de vigas bidimensionais de Euler-Bernoulli.  

O modelo do pórtico de aço é ilustrado na Fig. 2, suas dimensões e propriedades mecânicas do 
material são apresentadas na mesma figura.  



Na Fig. 2, observa-se que o modelo é constituído por 24 nós e 24 elementos. Cada nó possui 3 
graus de liberdade que correspondem ao deslocamento longitudinal, deslocamento transversal e à 
rotação. Desta forma, o modelo consta de um total de 66 graus de liberdade, número este obtido 
após a restrição dos graus de liberdade dos nós engastados na base do pórtico.  

 
 

 
 

 
 
 
 
 
 
 

 
 

 
 
 

 
Figura 2. Modelo de elementos finitos de um pórtico. 

 
A modelagem desta estrutura foi desenvolvida em ambiente MATLAB®. O modelo foi validado 

pela confrontação das respostas dinâmicas (parâmetros modais e funções de resposta em freqüência) 
com seus semelhantes, obtidos por meio de simulações realizadas em um programa comercial de 
elementos finitos. O efeito do carregamento nas respostas dinâmicas foi incluído na modelagem, os 
bons resultados na comparação das respostas dinâmicas confirmaram a confiabilidade do modelo 
utilizado.  

 
3.2. Caracterização da Influência das Cargas Externas Sobre as Respostas Dinâmicas 

 
A partir da aplicação de uma força concentrada vertical (paralela ao eixo y), aplicada no nó 

central da viga superior (nó número 11) (ver Fig. 2), caracteriza-se a influência do carregamento 
sobre comportamento dinâmico da estrutura. Para tanto, o valor e sentido da força aplicada é 
variado, calculando-se, para os diferentes valores, as freqüências naturais do pórtico. 

A Fig. 3 ilustra a modificação das freqüências naturais em função da variação da magnitude e 
do sentido de aplicação da carga (valores positivos indicam força aplicada segundo a orientação do 
eixo y).  
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Figura 3. Variação das freqüências naturais em função da magnitude e sentido do carregamento. 
 

Na figura anterior, observa-se a diminuição das freqüências naturais à medida que a carga 
oposta a y aumenta, ou seja, o pórtico perde rigidez com o acréscimo da carga. Verifica-se também 
que a primeira freqüência natural torna-se nula quando a estrutura é solicitada com o valor da carga 
que corresponde à carga de flambagem linear. Este resultado ilustra o critério dinâmico para a 
determinação da carga de flambagem, que consiste em encontrar a carga que anula a primeira 
freqüência natural (Chajes, 1974). Realizando este procedimento, para o caso estudado, encontra-se 
o, para a carga de flambagem da estrutura, o valor: 20121=critP  [N]. 

A Fig. 4 mostra as variações (absolutas e relativas) das freqüências naturais em função de 
frações da carga crítica de flambagem, para os dois sentidos de aplicação da carga externa. 
Observa-se que, em geral, as freqüências naturais não apresentam nenhuma relação de 
proporcionalidade em relação à carga. A primeira freqüência natural sofre maiores variações que as 
demais e à medida que a carga se aproxima ao valor crítico, estas variações são mais acentuadas. A 
partir da segunda freqüência natural, nota-se que os valores das freqüências variam com o aumento 
de carga de forma aproximadamente linear. Quando o sentido da força aplicada é positivo em 
relação ao eixo y, verifica-se o aumento das freqüências naturais com o acréscimo de carga, ou seja, 
ocorre o enrijecimento da estrutura. 

 

    



     
Figura 4. Freqüências naturais do pórtico em função do acréscimo da carga. 

 
A Fig. 5 permite observar a influência do carregamento externo sobre algumas funções de 

resposta em freqüência do pórtico. São mostradas as amplitudes das FRFs pontuais e cruzadas 
correspondentes ao deslocamento transversal nos nós 7 e 9 do modelo ilustrado na Fig. 2, 
considerando-se um carregamento externo aplicado para baixo. Observa-se que quanto maior a 
carga aplicada, as ressonâncias e anti-ressonâncias tornam-se cada vez menores até que, sob o valor 
da carga de flambagem, o primeiro pico de ressonância ocorre à freqüência zero. 
 

     
 

Figura 5. Amplitudes das FRFs H77 e H79  para diferentes valores da carga adimensional 
 
3.3. Identificação de Cargas Externas 

 
Com o objetivo de avaliar a eficiência da técnica de identificação de cargas externas, foi 

proposto identificar a magnitude de cada uma das forças esquematizadas na Fig. 6, na qual estão 
indicados os valores exatos. Neste problema, a posição e o sentido de aplicação das cargas foram 
consideradas conhecidas, de acordo com a ilustração da Fig. 6. 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 6. Cargas externas aplicadas no pórtico. 

 
A função objetivo foi construída usando os 6 primeiros conjuntos de parâmetros modais e 

restringindo o valor da carga total identificada entre zero e o valor correspondente  à primeira carga 
de flambagem. Propôs-se identificar sucessivamente, diferentes cenários de carregamento, 
caracterizados por um número crescente de cargas desconhecidas, objetivando avaliar a influência 
do número de incógnitas do desempenho do procedimento de identificação. No caso mais simples, 
quando foi identificada somente uma força, adotou-se a ponderação WM = 0. A partir da 
identificação simultânea de duas até cinco forças, todos os fatores de ponderação da função 
objetivo, tiveram valor unitário.  

Os resultados mostrados na Tab. 2,  considerando  os diferentes cenários de carregamento, 
permitem concluir que a técnica de otimização utilizada na identificação de várias cargas é 
eficiente, já que a minimização da função objetivo é alcançada e a diferença percentual entre as 
cargas conhecidas e identificadas é muito pequena. Nota-se, contudo, que quando são identificadas 
simultaneamente 5 forças, os resultados são menos precisos, o que pode ser atribuído à natural 
dificuldade de se resolver o problema de otimização em um espaço de busca de dimensão mais 
elevada. Em todos os casos, o tempo de processamento necessário mostrou-se bastante reduzido.  

 
Tabela 2. Cargas identificadas no pórtico. 

 
Carga [N] Função Objetivo 

 Identificada E. Inicial Exata 
Erro 
[%] Inicial Final 

Tempo
[min.] 

F1 - 10061,25 -15000 -10061,26 9x10-5 0,63 1,7x10-7 0,11 
F1 
F2 

-10061,26 
-6036,75 

-12000 
-5000 

-10061,26 
-6036,75 

9x10-8 

9x10-8 4,21 3,06x10-7 0,23 

F1 
F2 
F3 

-10061,20 
-6036,81 
-4024,49 

-12000 
-5000 
-3000 

-10061,26 
-6036,75 
 -4024,50 

6x10-4 

9x10-4 

2x10-4
4,18 2,93x10-6 0,38 

F4 
F4 
F4 
F4 
F4 

-2077,72 
-1869,46 
-2064,72 
-2084,93 
-1964,50 

-10000 
-10000 
-10000 
-10000 
-10000 

-2012,25    
-2012,25    
-2012,25    
-2012,25    
-2012,25 

3,25   
7,10    
2,61    
3,61    
2,37 

16,44 9,03x10-5 0,62 
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A Fig. 7, ilustra a evolução da função objetivo durante o procedimento de minimização. 
 

 
 

Figura 7. Evolução do valor da função objetivo. 
 
4. CONCLUSÕES 
 

As simulações numéricas evidenciam que as freqüências naturais e as funções de resposta em 
freqüência são alteradas com o módulo, direção e sentido de aplicação das cargas em sistemas 
estruturais constituídos por elementos de vigas. Cargas de compressão axial reduzem as freqüências 
naturais associadas aos modos de flexão, ou seja, tornam a estrutura mais flexível, enquanto cargas 
de tração as incrementam, provocando enrijecimento. Ficou também evidenciada a possibilidade de 
se identificar o carregamento externo a partir do conhecimento de um conjunto de respostas 
dinâmicas, procedimento que pode ser explorado em diversas situações práticas da engenharia de 
estruturas. 

Como parte da continuação deste trabalho, em busca do aperfeiçoamento do algoritmo de 
identificação, estão sendo utilizados métodos heurísticos de otimização, os quais dispensam 
estimativas iniciais para as cargas desconhecidas, que devem ser fornecidas como ponto de partida 
para método clássico de otimização. Pretende-se também considerar o problema mais difícil em que 
não se conhece a posição e/ou sentido de aplicação das forças externas, além de realizar a validação 
experimental da metodologia de identificação, etapa esta que se encontra atualmente em curso. 
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Abstract: This paper presents a study on the influence of the so-called stress-stiffenning effect on 
the dynamic characteristics of structural systems. It is proposed an inverse procedure intended for 
the determination of external loads, given the dynamic responses of the loaded structure and a finite 
element model. The dynamic responses are characterized in terms of modal parameters (natural 
frequencies and mode shapes) as well as frequency response functions. The variations observed in 
the natural frequencies as functions of the loads are interpreted in the context of a dynamic 
criterion for determination of critical buckling loads. The identification procedure is illustrated by 
means of numerical simulations in which natural frequencies and mode shapes of the  structure 
subjected to external loads are used to form a cost function having those loads, assumed to be 
unknown, as the design variables. The optimization problem is solved by  using a linear search 
algorithm based on the Lagrange-Newton-SQP (Sequential Quadratic Programming) method. 
Based on the  results obtained, it is concluded about the efficiency of the load identification method  
based on the dynamic responses. 
 
Keywords: system identification, inverse problems, dynamic responses, buckling. 
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