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Abstract: The aim of this work is to study the vibration of Timoshenko rotating beams. An 
analytical solution and a Finite Element solution were proposed. The equations of motion were 
obtained from Lagrange equations. The gyroscopic effect according Timoshenko has been 
considered. In order to obtain the analytical solution and the mass, gyroscopic effect and stiffness 
matrices, Mathematica   software was used. A computer software written in Fortran assembles 
the beam's global matrices and simulates the response, according to the givens dimensions, 
material, angular velocity and unbalancing. Results are presented, discussed and compared. 
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1. INTRODUCTION 
 

Design of rotating equipments that operate under various conditions of load and speed has been 
a challenge to designers. Every rotating equipment has always some unbalancing, so there will 
always be a harmonic load and the designers have to obtain the critical speed of system, and 
compare with the operating range, to make sure the motion is stable at the operating condition. 
Timoshenko theory was first developed to study non rotating beams, and it has been extended in 
this work, to take into account the rotations effects. This work includes the gyroscopic effect 
according Timoshenko at the kinetic functional. The rotating beam is simply supported at both ends. 

 
1.1 - Problem Formulation 
 

Considering the beam in bending, Fig. 1.1, where ( )txy ,  is the transverse displacement, ( )txf ,  
is the transverse force per unit length, )(xm is the mass per unit length, E is the Young modulus, 

( )xA  is the area, ( )xI a is the area moment of inertia e ( )xJ a  is the mass moment of inertia of the 
cross sectional area. 

According to the free body diagram of a beam element of length dx, Fig. 1.2, ( )txM ,  is the 
bending moment, ( )txQ ,  is the shear transverse force, ( )tx,β  is the deformation due the bending 
and ( )tx,ζ  is the deformation due the transverse shear 

 
 



 

 
 

Fig. 1.1 - Beam in bending 
 

Fig. 1. 2 - Free body diagram according 
Timoshenko 
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where k ′  is a numeric factor depending on the shape of the cross section and G is the shear 
modulus.  

The energy functionals are 
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Yokoyama (1988) proposed a solution model to Timoshenko beams clamped at a rotating shaft, 

presenting a Finite Element that includes a stiffness matrix related to the angular velocity. 
According to Yokoyama (1988), without this stiffness matrix, the other matrices are the same 
obtained by Archer (1965). 
 
1.2 - The Gyroscopic Effect 
 

Timoshenko (1918) showed, using the principle of angular momentum, that, under certain 
conditions, not only the unbalancing forces should be taking in account when obtaining the critical 
speeds of rotating beams. Then 
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2. ANALYTICAL SOLUTION 
 

Considering the rotating beam as a continuous system, Fig. 2.1. 
 

 
 

Fig. 2.1- Rotating beam in bending 
 
 2.1 – Obtaining the Equations of Motion 
 

The equations of motion will be obtained from Lagrange Equations (Meirovitch, 1997): 
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where 
 

V̂T̂L̂ −=                                  (2.2) 
 
is the Lagrangian specific functional, T̂  is the kinetic energy specific functional,  V̂  is the 
deformation energy specific functional, iq  are the generalized coordinates, iQ  are the generalized 
forces, x  is the variable along the beam, and L  is the rotating beam length. The over dots indicate 
time derivations and the primes indicate spatial derivation. 

The equations of motion obtained will be for the transverse plane (YZ), Fig. 2.2. 

 
Fig 2.2 - Generalized coordinates 

The transverse kinetic energy is the sum of the kinetic energy  at Y and Z directions, and the 
kinetic energy in each direction is the sum of the kinetic energy due the translation, the rotatory 
inertia and the gyroscopic effect 

The variation of the center of gravity position of any cross sectional can be showed at Figs. 2.3 e 
2.4. 

 
 

Fig. 2.3 - Cross sectional at rest 

 
 

Fig. 2.4 - Cross sectional with angular 
velocity 



 
where α  is the angular initial position of the center of gravity M, "e" is the distance of the center of 
gravity M and the geometric center C, Ω  is the angular velocity, y and z are the coordinates of the 
geometric center C. Only the Y direction equations will be showed 

According to Meirovitch (Meirovitch, 1997): 
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( ) ( ) ( ) ( )( )xtxetxytxym α+Ω+= cos,,                       (2.4) 

 
and ( )txym ,  is the center of gravity displacements. 

The kinetic energy functionals due the rotatory inertia is (RAYLEIGH, 1877): 
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The kinetic energy functionals due the gyroscopic effect is (Timoshenko, 1918): 
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where ( )xI p  is the mass polar moment of inertia. 
The transverse deformation energy is the sum of the deformations energy at Y e Z directions, and 
the deformation energy in each direction is the sum of deformations energy due the bending an 
transverse shear (Meirovitch, 1997): 
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Considering an unbalancing ( )xe , ( ) AxA = , ( ) mxm = , ( ) aa IxI = , ( ) pp IxI = , ( ) aa JxJ = , the 

obtained equations of motion are 
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2.2 - Solution for the Equations of Motion 
 

Considering 
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The solution can be expressed as:  
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( ) ( )Ω−′−′−−′−Ω′= 324222 4 ωωωωωωλ mIGAmkmJGAEIkmEIGAJkGAIkc paaaap     (2.17) 
 

Equation (2.36) has been solved using Mathematica software (FALEIROS, 1998). 
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One may observe that the denominator of C9 e C10 are the same and will be equal to zero if 
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In this case one of the natural frequencies is equal to the angular velocity and the solution of 
(2.21) - (2.22) can be write as: 
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It is possible to see that the displacements and the rotations increase without bound as the time 
is increased, and the resonance occurs. So for this case of unbalancing and considering only the first 
vibration mode, the angular velocity from Eq. (2.20) can be considered the first critical angular 
velocity for this rotating beam. 
 
3. SOLUTION USING FINITE ELEMENTS 
 

The equations of motion will be obtained from Lagrange equations either. The kinetic and 
deformation energy functionals are the same used at the analytical solution. 
 
3.1 – Obtaining the equations of motion  
 

The behavior of any generalized coordinate inside the element is a function of the nodal 
displacements and the shape functions (BISMARCK, 1993): 
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where ( )tq i  are the nodal displacements and ( )xiφ  are the shape functions. The Lagrange equations 
can be simplified as (Meirovitch, 1997): 
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where T  is the kinetic energy, V  is the deformation energy and iQ  are the generalized forces.  

The beam element used, Fig. 3.1, has two nodes and two degree of freedom per node, as 
illustrated in Fig. 3.1. 
 

 
 

Fig. 3.1 - Finite Element Degrees of Freedom 
 

The shape functions can be found in  (Yokoyama, 1988).  
The differentiations of Lagrange Equations were made using Mathematica® software (BRITO, 

1999). Grouping the accelerations, velocities and displacements coefficients, the equations of 
motion can be written in matrix form: 
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The Myt, Myr, Kyf, Kyc, can be found at (Yokoyama, 1988) 
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3.2 - Solution for the Equations of Motion 
 

With the element's matrices, it is possible to obtain the global rotating beam matrices and 
simulate the response according initial conditions and loading. To carry out this simulation, a 
computer software was written in Fortran® using the Newmark Method of Direct Integration. 
According BATHE e WILSON (1976), an integration method is called direct when no 
transformation at the equations of motion is made before executing the numerical integration. 
 
4. RESULTS 

 
In this work, two methods for solving the dynamic response of a rotating beam according 

Timoshenko Theory were proposed, an analytical and a Finite Element method.  
Simulations were performed for a steel cylindrical rotating beam with: Diameter = 0.025m, 

Length = 0.15m, k’ = 0.75, Poisson = 0.3, Number of Elements = 20, e=0.00125m e a=-p/2, during 
0.002 seconds. 

Considering the angular velocity as 13618rad/s, the following natural frequencies for the first 
vibration mode are obtained (rad/s): 
 



Table 4.1 - Natural Frequencies 
 

Frequency 
[rad/s] without gyroscopic effect with gyroscopic effect 

? 1 13618 13414+2E-10i 
? 2  13824-2E-10i 
? 3 459119 445914-7E-12i 
? 4  472739+7E-12i 

 
The trajectories for the middle point of rotating beam obtained by the analytical solution and by 

the Finite Element Method for the first vibration mode are showed. In each simulation the beam 
will be rotating with an angular velocity of 50%, 95%, 150% and 200% from the first natural 
frequency without gyroscopic effect (13618 rad/s). The trajectories with null and fist critical angular 
velocity are also presented. For the F.E.M an 5101 −×  increment of time was used. 

 
5. CONCLUSIONS 
 

The results obtained by the analytical solutions shows the occurrence of two natural frequencies 
for each vibration mode of a simply supported non-rotating beam. With the gyroscopic effect, the 
results present four natural frequencies for each vibration mode. The characteristic equation roots 
are complex numbers. One notices that the gyroscopic effect produces a deviation upwards and 
downwards for each natural frequency of the non-rotating beam. 

The present work proposes the solution of the problem, includes a specific case of unbalancing, 
and a critical angular velocity is obtained. This critical angular velocity is different from the first 
natural frequency of a non-rotating beam, but is the same as the real part of one of the natural 
frequencies of the beam rotating at this angular velocity. Due to the unbalancing, if the beam is 
rotating with an angular velocity equal to the critical, resonance occurs. Near the critical angular 
velocity, the beating phenomenon occurs. The results obtained by the F.E.M reveal a good 
agreement in comparison with the analytical solution 

In future works, numerical methods for obtaining the eigenvalues and eigenvectors can be 
developed, to check the higher frequencies.  
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Fig. 4.1 - Y Displacement, O=0, analytical 

solution 
 

Fig. 4.2 - Y Displacement, O=0, F.E.M. 
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Fig. 4.3 - Y Displacement, O=50%, analytical 
solution 
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Fig. 4.4 - Y Displacement, O=50%, F.E.M. 
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Fig. 4.5 - Y Displacement, O=95%, analytical 

solution for a simulation time of 0,02 secs. 
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Fig. 4.6 - Y Displacement, O=95%, F.E.M. , for 
a simulation time of 0,02 secs  
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Fig. 4.7 - Y Displacement, O=critical, analytical 
solution 
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Fig. 4 8 - Y Displacement, O=critical, F.E.M. 
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Fig. 4.9 - Y Displacement, O=150%, analytical 
solution 
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Fig. 4.10 - Y Displacement, O=150%, F.E.M. 
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Fig. 4.11 - Y Displacement, O=200%, analytical 
solution 
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Fig. 4.12 - Y Displacement, O=200%, F.E.M. 
 

 
 
 


