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Abstract: The aim of this work is to study the vibration of Timoshenko rotating beams. An
analytical solution and a Finite Element solution were proposed. The equations of motion were
obtained from Lagrange equations. The gyroscopic effect according Timoshenko has been
considered. In order to obtain the analytical solution and the mass, gyroscopic effect and stiffness
matrices, Mathematica®  software was used. A computer software written in Fortran® assembles
the beam's global matrices and simulates the response, according to the givens dimensions,
material, angular velocity and unbalancing. Results are presented, discussed and compared.
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1. INTRODUCTION

Design of rotating equipments that operate under various conditions of load and speed has been
a chdlenge to desgners. Every rotating equipment has dways some unbaancing, o there will
dways be a harmonic load and the designers have to obtain the criticd speed of system, and
compare with the operating range, to make sure the motion is stable a the operating condition.
Timoshenko theory was first developed to study non rotating beams, and it has been extended in
this work, to take into account the rotations effects. This work includes the gyroscopic effect
according Timashenko at the kinetic functiond. The rotating beam is Smply supported at both ends.

1.1 - Problem Formulation

Consgdering the beam in bending, Fig. 1.1, where y(x,t) is the transverse displacement, f(x,t)
is the transverse force per unit length, m(X)is the mass per unit length, E is the Young modulus,
Alx) is the area, 1,(x)is the area moment of inertia eJ_(x) is the mass moment of inertia of the
Cross sectiond area

According to the free body diagram of a beam dement of length dx, Fig. 1.2, M(x,t) is the

bending moment, Q(x,t) is the shear transverse force, b(x,t) is the deformation due the bending
and z (x,t) isthe deformation due the transverse shear
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Q(x.t) = kGAx) (x.t) (13)

where k( is a numeric factor depending on the shape of the cross section and G is the shear
modulus.

(1.2)

The energy functionds are
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Y okoyama (1988) proposed a solution modd to Timoshenko beams clamped at a rotating shaft,
presenting a Finite Element that indudes a diffness matrix rdaed to the angular veocity.
According to Yokoyama (1988), without this siffness matrix, the other matrices are the same
obtained by Archer (1965).

1.2 - The Gyroscopic Effect
Timoshenko (1918) showed, using the principle of angular momentum, that, under certain

conditions, not only the unbdancing forces should be taking in account when obtaining the critica
Speeds of rotating beams. Then

d db 0
= E‘| — = 1.
|8 a4t g (16)



2. ANALYTICAL SOLUTION

Congdering the rotating beam as a continuous system, Fig. 2.1.

Fig. 2.1- Rotating beam in bending
2.1 — Obtaining the Equations of M otion

The equations of motion will be obtained from Lagrange Equations (Meirovitch, 1997):
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where
L=T-V 2.2)

is the Lagrangian specific functiond, T is the kinetic energy specific functiond, V is the
deformetion energy specific functiond, g, are the generalized coordinates, Q are the generdized
forces, X is the variable dong the beam, and L is the rotating beam length. The over dots indicate

time derivations and the primes indicate spatia derivation.
The eguations of motion obtained will be for the transverse plane (Y 2), Fig. 2.2.
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Fig 2.2 - Generdized coordinates
The transverse kinetic energy is the sum of the kingtic energy a Y and Z directions, and the
Kingtic energy in each direction is the sum of the kinetic energy due the trandation, the rotatory

inertia and the gyroscopic effect
The variation of the center of gravity postion of any cross sectiona can be showed at Figs. 2.3 e

2.4.
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Fig. 2.3 - Crosssectional at rest velodity




where a is the angular initid pogdtion of the center of gravity M, "e" is the distance of the center of
gravity M and the geometric center C, W is the angular velocity, y and z are the coordinates of the
geometric center C. Only the'Y direction equations will be showed

According to Meirovitch (Merovitch, 1997):
L 2

2y, (x.t)

_1 0
T = 0Ly o (23
v, (xt) = y(xt)+e(x)cos(Wt +a (x)) (2.4)

and y, (x,t) isthe center of gravity displacements.
The kinetic energy functionals due the rotatory inertiais (RAY LEIGH, 1877):
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The kinetic energy functionds due the gyroscopic effect is (Timoshenko, 1918):

(ot (x0) 10y 9

where | p(X) is the mass polar moment of inertia

The transverse deformation energy is the sum of the deformations energy a Y e Z directions, and
the deformation energy in each direction is the sum of deformations energy due the bending an
transverse shear (Meirovitch, 1997):

_1 aé[b(x,t)g2

Vi = 2><§)E><Ia(x)><g x ‘.adx 2.7)
I PO y(x.t) 6

V. = 2x9<c1><; A(x) >§ o b (x,t)édx (2.8)

Considering an unbdancing e(x), A(x)=A, m(x)=m, 1,(x)=1,, 1 ,(x)=1, 3,(x)=3,, the
obtained equations of motion are

kGA(y#x,t)- b&x.t))- my(x,t) = - mWPe(x)cos(Wt +a (x)) (2.9)

kGA(y€x,t)- b(xt))- J,b(xt)+El ,b&xt)+1 W(xt)=0 (2.10)

2.2 - Solution for the Equations of Motion

Conddering



e(x) = esen@® x2 (2.12)
eL

a
a(x):a (2.12)
r=1 (2.13)
The solution can be expressed as.
P 4 .
y(x,t) = sen> xBR C coslw,t+f, )+ C, cos{Wt +a )* (2.14)
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¢, = (k&AL ww- kGAI W2 - El,mw? )’ - 4KGAEI (I,nw* - KBAMW? - | mw*W) (2.17)
Equation (2.36) has been solved using Mathematica software (FALEIROS, 1998).

em*W (kGAL +Elp2 +(1, - 3, )2W?)

T TPW B 7+ (1, - 3, JPW )+ kGAlE L p - (7 + (3, -1, 7 W) (2.18)
C = ) kGAemLpW* ) - (2.19)
O mPWA(ELp 2 + (1, - 3, )LPWR )+ KGAELp* - L2(mL? +(3, - 1, p W) '
One may observe that the denominator of Cqg e C1 are the same and will be equd to zero if
- m2Elp? - KGAL?(mL? +(3, - 1, b %)+ /e,
- (2.20)
21, - 3, )L

cw = L (akeAELmp (1, - 3, )+ (mE1p? +keAmL2 +(3, - 1, )p2)f) (2.21)

In this case one of the naiurd frequencies is equa to the angular velocity and the solution of
(2.21) - (2.22) can be write as:

. 4 .
y(x,t) = send2 x LR C cos(w,t +, )+ﬂsen(Wt +a)? (2.22)
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It is possible to see that the displacements and the rotations increase without bound as the time
is increased, and the resonance occurs. So for this case of unbaancing and consdering only the first
vibration mode, the angular velocity from Eq. (220) can be consdered the first criticd angular
velocity for thisrotating beam.

3. SOLUTION USING FINITE ELEMENTS

The equations of motion will be obtaned from Lagrange equetions either. The kinetic and
deformation energy functionds are the same used at the andytica solution.

3.1 — Obtaining the equations of motion

The behavior of any generdized coordinate insde the dement is a function of the nodd
displacements and the shape functions (BISMARCK, 1993):

n

alxt)=a f,(x)at) (3.1)

i=1

where q, (t) are the nodal displacements and f,(x) are the shape functions. The Lagrange equations
can be smplified as (Meirovitch, 1997):

ﬂ T 0 1T ﬂV
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where T isthekinetic energy, V isthe deformation energy and Q. are the generalized forces.

The beam dement used, Fig. 3.1, has two nodes and two degree of freedom per node, as
illusrated in Fig. 3.1.

Fig. 3.1 - Finite Element Degrees of Freedom

The shgpe functions can befound in (Y okoyama, 1988).

The differentiations of Lagrange Equations were made using Mathematica® software (BRITO,
1999). Grouping the accderdtions, velocities and displacements coefficients, the equations of
motion can be written in matrix form:

M]X{e} +[c]H{ e} +[K]{a} ={Q} (3.3)

=y, b, z & Y, b, z g, (34)



éMy(1) My(12) 0 0 My(3 My(L4) 0 0 u
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The My, My, Kyt, Ky, can be found at (Y okoyama, 1988)
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3.2 - Solution for the Equations of Motion

With the dement's matrices, it is possble to obtan the globa rotating beam matrices and
dmulate the response according initid conditions and loading. To cary out this smulaion, a
computer software was written in Fortrai® using the Newmark Method of Direct Integration.
According BATHE e WILSON (1976), an integration method is cdled direct when no
transformation at the equations of motion is made before executing the numericd integration.

4. RESULTS

In this work, two methods for solving the dynamic response of a rotating beam according
Timashenko Theory were proposed, an andytica and a Finite Element method.

Smulations were peaformed for a sted cylindricd rotating beam with: Diameter = 0.025m,
Length = 0.15m, k' = 0.75, Poisson = 0.3, Number of Elements = 20, e=0.00125m e a=-p/2, during
0.002 seconds.

Congdering the angular velocity as 13618rad/s, the following natura frequencies for the firg
vibration mode are obtained (rad/s):



Table 4.1- Natural Frequencies

Fr[erqalét/e;]cy without gyroscopic effect| with gyroscopic effect
?1 13618 13414+2E-10i
?2 13824-2E-10i
?3 459119 445914-7E-12i
?4 A72739+7E-12i

The trgectories for the middle point of rotating beam obtained by the andyticd solution and by
the Finite Element Method for the first vibration mode are showed. In each smulaion the beam
will be rotating with an angular velocity of 50%, 95%, 150% and 200% from the firs naturd
frequency without gyroscopic effect (13618 rad/s). The trgectories with null and fig criticad angular
velocity are dso presented. For the F.E.M an 1” 10 *° increment of time was used.

5. CONCLUSIONS

The results obtained by the andyticd solutions shows the occurrence of tvo naturd frequencies
for each vibration mode of a smply supported non-rotating beam. With the gyroscopic effect, the
results present four natural frequencies for each vibration mode. The characteristic equation roots
are complex numbers. One notices that the gyroscopic effect produces a deviation upwards and
downwards for each naturd frequency of the non-rotating beam.

The present work proposes the solution of the problem, includes a specific case of unbaancing,
and a criticd angular velocity is obtained. This criticd angular veocity is different from the firg
naturd frequency of a non-rotating beam, but is the same as the red pat of one of the naurd
frequencies of the beam rotating a this angular velocity. Due to the unbdancing, if the beam is
rotating with an angular velocity equa to the criticd, resonance occurs. Near the criticd angular
velocity, the besting phenomenon occurs. The results obtained by the FEM reved a good
agreement in comparison with the andyticd solution

In future works, numericd methods for obtaining the egenvaues and eigenvectors can be
developed, to check the higher frequencies.
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Fig. 4.1 - Y Digplacement, O=0, andlytica
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Fig. 4.2 - Y Displacement, O=0, F.E.M.
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Fig. 4.3 - Y Digplacement, O=50%, andytica
solution
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Fig. 4.4 - Y Displacement, O=50%, F.E.M.
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Fig. 4.6 - Y Displacement, O=95%, F.E.M. , for
asmulation time of 0,02 secs
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Fig. 4.9 - Y Digplacement, O=150%, andytica
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