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Resumo: Neste trabalho apresenta-se o projeto, a analise e os resultados obtidos de simulactes e
experimentos de um sistema desenvolvido para a analise e identificacdo da dinamica de sistemas
complexos. O sistema complexo analisado é um sistema de dois graus de liberdade representado
por um péndulo duplo. As simulacbes e as experimentacdes foram feitas com e sem massas
adicionais acopladas aos péndulos o que possibilitou a determinacéo da variacdo das massas
sobre um dos péndulos. Utilizou-se Rede Neural Artificial e Légica Fuzzy para identificacdo do
péndulo duplo. A dindmica do sistema complexo serd analisada usando informagdes sobre a
energia cinética e potencial dos dois péndulos. Durante as simulagdes usou-se o método de Runge-
Kutta de quarta ordem para solugdo das equacOes diferenciais do modelo. Os resultados
experimentais mostraram-se favoraveis na identificacao do péndulo duplo.

Palavra-chave: Controle e Robdtica, Vibragdes e Acustica, Fendmenos Nao-Lineares e Cadticos.
1. INTRODUCAO

Sistemas complexos, tais como o0s sistemas de suspensdo das motocicletas, suspensdo dos
automoveis, péndulos duplos ou 0 nosso proprio corpo podem ser modelados matematicamente
como sistemas de mais de um grau de liberdade. Esses sistemas podem ter tantos graus de liberdade
guantos forem necessérios para a sua modelagem. O que determina os graus de liberdade de um
sistema € 0 nimero de coordenadas independentes necessérias para especificar sua dindmica. Num
sistema de péndulo duplo por exemplo, pode-se especificar a dindmica dos dois péndulos
conhecendo-se as suas posi¢oes, velocidades e acel eragOes representadas em duas coordenadas, que
podem ser coordenadas no eixo X ou no eixo 'y, ou coordenadas angulares.

Atualmente algumas técnicas de andlise de vibragcdo (ou oscilagdo de péndulos) sofisticadas
estdo sendo disponibilizadas para serem utilizadas em diagnostico e previsdo de falhas em sistemas
complexos. Dentre elas, pode-se citar as técnicas de Inteligéncia Artificial representadas por
Sistemas Especiaistas, Redes Neurais Artificiais, Logica Fuzzy, etc.

O objetivo deste trabalho é desenvolver um sistema de identificagcdo de parémetros,
caracterizado pelo amortecimento de oscilagbes de sistemas complexos, utilizando Rede Neural
Artificial e Logica Fuzzy. A dindmica do sistema complexo sera analisada usando informacdes
sobre a energia cinética e potencial dos dois péndulos.
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2.0 SISTEMA COMPLEXO

A equacdo de movimento de um sistema dinamico de segunda ordem pode ser calculada
utilizando o principio da conservacdo de energia, onde a energia cinética é conservada na massa em
razdo da velocidade e a energia potencia é conservada sob a forma de esfor¢o de deformagdo
el astica ou sob aforma de trabal ho.

Na Fig. (1) apresenta-se um desenho simplificado de um sistema complexo composto de dois
péndulos articulados nas suas extremidades. Observe-se que sO existe detector de posicdo no
péndulo 1.

Péndulo 2

Figura 1. Péndulo duplo

Neste artigo apresentam-se resultados obtidos de simulagdes e resultados experimentais de um
novo método para a identificagcdo da dindmica de um péndulo duplo. O novo método utiliza as
informacfes sobre a energia potencial e a energia cinética representadas pela posicéo e a velocidade
angular dos péndulos respectivamente. Durante as simulagfes e na fase experimental os dois
péndul os s&o posicionados em angul os apropriados e em seguida séo soltos, fazendo-o0s se moverem
em movimento livre. As simulagbes foram feitas com e sem massas adicionais (de diferentes
valores) acoplados aos péndulos. Os resultados experimentais foram obtidos a partir da montagem
de um péndulo duplo naforma apresentada na Fig. (1).

2.1 Analise do sistema complexo

A equacao dinamica de um manipulador (Gray, 1997) pode ser escritanaformadaEq. (1).
T=M(6)6 +V (6 +8)+G(6) @

onde M (6) é a matriz de massa do manipulador, V(6 +6) é um vetor dos termos centrifugo e
coriolis, e G(8) €& um vetor dos termos de gravidade. A Eq. (1) é conhecida como equagdo de
espaco de estado porque o termo V(6 +6), aparece na equacdo com dependéncia de posicdo e
velocidade. Cada elemento de M (6) e G(6) depende de 6, que é a posi¢éo de todas as jungdes do

manipulador. Cada elemento de V(6+6) depende tanto de 6 quanto de 6. Separando-se os

diversos tipos de termos que aparecem nas equacdes dinamicas forma-se a matriz de massa do
manipulador, os vetores centrifugo e de coriolis, e 0 vetor de gravidade.
A matriz de massa do manipulador M (8) é composta de todos aqueles termos que multiplicam

0 , e éumafuncio de 6. Dessaformatem-se:



M (6) = EDﬂémz +20,me, +Ii(m+m)  Im, +ll,mg, ] @
O l;m +ll,mgc, ;om0
O termo velocidade , V(6 +86), contém todos aquel es termos que possuem alguma dependéncia
com avelocidade. Dessa forma tem-se;

. e 2 .. 0
V(e’e) — EI m2|1|25262 2[T]2|1|2529162D (3)

B myl | ,s,6; B

O termo - mzlllzgé?z2 € causado por uma forga centrifuga, que é reconhecida porgque depende do

quadrado da velocidade. O termo como -2m,.1,s,6,8, € causado por uma forga coriolis e contém o
produto de duas velocidades diferentes.

O termo gravidade, G(8), contém todos agqueles termos nos quais a constante gravitacional g,
aparece. Dessa formatem-se:

() = gmzlzgclz +(my +m2)llgclg @
U myl,gc,, U

Seguindo a metodologia de projeto de Craig (1986), a expressao para o calculo do torque de um
manipulador de dois graus de liberdade € dada em funcéo da posic¢éo, velocidade e aceleracdo. Que
podem ser escritas da forma apresentada nas Eq. (5) e Eq. (6).

T, =my| 3 (6, +6,) + ml,l,c, (26, +6,) +(m +m,)I 6, —myl|,s,67

- (5)
-2myl 1,s,6,0, + m,l,gc, +(m, +m,)l,gc

T, =myl,1,c,0, + myl1,,67 + m,l,gc, + m,lZ (6, +6,) (6)
3.SIM ULAQAO DO SISTEMA COMPLEXO

As simulagdes foram feitas para a andise e identificagdo dos pardmetros do sistema complexo.
Durante as simulacfes utilizou-se 0 modelo da dindmica de dois péndulos apresentados por Craig
(1986) (Eq. (5) e Eq. (6)). Além disso, usou-se 0 método de Runge-Kutta de quarta ordem para
solucdo das equacdes diferenciais do modelo.

Os resultados das simulagBes sdo apresentados através do comportamento das variaveis de
estados referentes a posi¢éo e a velocidade de cada péndulo. Serdo apresentados também os sinais
no dominio da freguéncia referentes ao movimento oscilatério dos péndulos.

Nas simulacfes iniciais foram admitidas massas adicionais para cada péndulo. A partir dessas
massas foram acrescidas massas adicionais isoladamente em cada péndulo ou em ambos. As massas
adicionais acrescentadas tinham valores diferentes e foram colocados em posi¢coes variadas ao
longo do péndulo.

3.1. Simulagéo dos péndulos sem massa adicional extras

Os resultados apresentados nesta secéo foram obtidos com os péndulos sem massa adicional. A
Fig. (2.a) apresenta os péndulos na posicéo inicial (posicdo instavel). O péndulo 1, apresentado na
cor vermelha na Fig. (2.a), foi posicionado a 90° com relagdo a posi¢édo de repouso. O péndulo 2,
apresentado na cor azul, foi posicionado a-30° em relacdo ao primeiro péndulo.



Na Fig. (2.b) apresentam-se as curvas tragadas das varidvels de estado (trgjetorias) obtidas do
movimento dos péndulos apos serem soltos na posicdo inicial. A forma de onda em cor vermelha,
representa o comportamento das variaveis de estado (vel ocidade em fungdo da posicdo) observadas
no péndulo 1. A formade onda em cor azul representa 0 comportamento das variaveis de estado do
péndulo 2. Observa-se que a trajetéria do péndulo 1 apresentou uma forma quase espiral, e a
trajetéria do péndulo 2 apresentou uma trajetéria cadtica.
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Figura2. Posicdo inicia (a) e astrgjetdrias dos péndulos (b)

Na Fig. (3.a) apresenta-se 0 deslocamento do péndulo 1 em fung&o do tempo. Na Fig. (3.b)
apresenta-se 0 espectro do sinal do péndulo 1 no dominio da frequéncia obtido usando a
transformada de Fourier. O espectro apresenta uma harmonica bem evidenciada que representa a
fregiiéncia do movimento do péndulo 1 (freqiiéncia natural — 6 Hz). A frequéncia que representa o
movimento do péndulo 2 (freqiéncia natural — 4 Hz) ndo esté evidenciada no espectro do sinal da
Fig. (3.b).

Na Fig. (3.c) apresenta-se 0 deslocamento do péndulo 2 em fungéo do tempo. Na Fig. (3.d)
apresenta-se 0 espectro do sinal do péndulo 2 no dominio da frequéncia obtido usando a
transformada de Fourier. O espectro apresenta duas harmonicas que representam as freqiiéncias dos
movimentos dos péndulos 1 e 2 (freqiéncias naturais, fl=6Hz e f2=4Hz), evidenciadas através dos
respectivos picos.
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Figura 3. Sinal no dominio do tempo (a,c) e na freqliéncia dos péndulos (b,d)

3.2. Simulacéo dos péndulos com massa adicional




Nessa simulagdo foi adicionado massa ao péndulo 2, e observado o comportamento da trgjetoria
dos dois péndulos. Na Fig. (4) observa-se que a espira do movimento do péndulo 1 apresenta uma
forma diferente da que foi apresentada na Fig. (3.b) (smulagdo dos dois péndulos sem massa
adicional).
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Na Fig. (5.a) apresenta-se 0 deslocamento do péndulo 1 em funcéo do tempo. Na Fig. (5.b)
apresenta-se 0 espectro obtido da analise harménica usando a transformada de Fourier do
movimento do pendulo 1. O espectro apresenta uma harmonica bem evidenciada que representa a
freqiéncia do movimento do péndulo 1 (freqiiéncia natural — 7 Hz) e uma harmdnica, fracamente
evidenciada, que representa 0 movimento do péndulo 2 (frequiéncia natural — 4 Hz).

Na Fig. (5.c) apresenta-se 0 deslocamento do péndulo 2 em func&o do tempo. Na Fig. (5.d)
apresenta-se o resultado obtido da andlise harmdnica usando transformada de Fourier do movimento
do pendulo 2. Observa-se que agora é possivel a visualizagdo das duas harménicas (f1=7Hz e
f2=4Hz), embora a segunda harmonica ainda € a que apresenta um valor mais acentuado. com a
massa adicional.
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Figura 5. Sinal no dominio do tempo (a,c) e na freqiéncia dos péndulos (b,d) com peso extra

4. IDENTIFICACAO DA DINAMICA DOS DOIS PENDUL OS



Na identificagcdo da dinémica dos dois péndulos observa-se que a determinagdo da primeira
harmonica usando-se a trajetoria do péndulo 1 depende fortemente do peso utilizado no péndulo 2.
Pois as curvas das trgjetdrias do péndulo 1 (com e sem massa adicional) indicam a perturbagdo
exercida pelo péndulo 2.

Na Fig. (6) faz-se um comparativo entre as trajetérias dos péndulos sem (Fig. (6.a)) e com
massa adicional (Fig. (6.b)) no péndulo 2. Na Fig. (6.a), sem massa adicional, a espiral relativa ao
movimento dos péndulos apresenta-se com uma geometria padrdo. Ja a Fig. (6.b), com peso extra
no péndulo 2, a espira relativa ab movimento apresenta-se com deformagdo na sua geometria.
Nesse caso, pode-se considerar que houve uma variagdo na energia cinética e potencial da curva do
péndulo 1 que deve ter sido causada pela existéncia do outro péndulo. E que através da andlise da
trajetéria do péndulo 1 pode-se detectar a existéncia do péndulo extra (péndulo 2) num sistema com
dois péndulos.
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Figura 6. Comparagdo entre as duas trgjetdrias: (a) sem e (b) com massa adicional.

Na Fig. (7) apresentase a curva do deslocamento do péndulo 1 para diferentes massas
adicionais colocadas no péndulo 2. As massas adicionais foram colocadas sempre com valores
crescentes a partir da Fig. (7.a). Na Fig. (7.a) percebe-se que 0s valores maximos consecutivos da
curva se mantém sempre decrescente ndo indicando a agdo do péndulo 2 sobre o péndulo 1. Na Fig.
(7.b) o peso foi um pouco maior que o anterior, € mesmo assim foi mantido o padréo decrescente
dos valores maximos da curva, caracterizando a ndo influéncia do péndulo 2 sobre o péndulo 1. Nas
Fig. (7.c) enaFig. (7.d), onde os massa adicional extras tiveram maior valor que os massa adicional
extras utilizados para obtencdo das Fig. (7.a) e Fig. (7.b), aparecem maximos consecutivos
decrescentes e crescentes, indicando a agéo do péndulo 2 sobre o péndulo 1.
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Figura 7. Movimento oscilatério dos péndulos com massa adicional extras diferenciados (Tab. (1))

Na Tabela (1) apresentam-se os resultados obtidos de simulagdes para sete valores (valores
crescentes) de massa adicional extras acoplados ao péndulo 2. Observa-se que os valores
consecutivos dos méximos para os dois primeiros massa adicional extras se comportam de forma
decrescente . Do terceiro peso extra em diante 0 comportamento dos valores maximos consecutivos
apresentam-se crescentes e decrescentes. A coluna 2 Pend da Tab. (1) indica a ocorréncia de peso
extra no péndulo 2. Na coluna Objetivo foi associado o valor um quando os valores dos maximos
eram decrescentes, foram associados valores zero quando 0s maximos eram decrescentes e
crescentes.

Tabela 1. Vaores maximos do movimento dos péndul os para massa adicional diferentes

Maximos 2 Pend Objetivo |RNMC
Peso 1 1.5575 | 1.1347 0.8682 0.7402 [ Nao 1. 0.9999
Peso 2 1.5566 | 1.0374 0.8958 0.7586 [ Nao 1. 0.9953
Peso 3 1.5560 | 0.9123 0.9490 0.7068 JSm 0. 0.0018
Peso 4 1.5558 | 0.8027 0.9938 0.6298 JSm 0. -0.0021
Peso 5 1.5559 | 0.6980 1.0210 0.5758 JSm 0. -0.0016
Peso 6 1.5564 | 0.6254 1.0561 0.5414 JSm 0. 0.0020
Peso 7 1.5572 | 0.6492 0.2456 0.8902 JSm 0. 0.0000

5. ANALISE NEURAL

A seguir, decidiu-se utilizar uma RNMC (Rede Neural Multi-Camada) para a identificacéo do
péndulo duplo utilizando as informacdes contidas na Tab. (1). Na Fig. (8) a esquerda, apresenta-se a
RNMC utilizada. A RNMC possui quatro neurdnios lineares na camada de entrada (X1, X2, X3 e
X4), oito neurénios sigmdides na camada de saida, e um neurdnio do tipo tangente hiperbdlico na
camada de saida (Z). A RNMC foi treinada durante 100 iteragdes utilizando como entrada os sete
conjuntos dos quatro valores méximos da Tab. (1). O objetivo do treinamento da RNMC (valor
desgjado na saida da RNMC) foram os valores apresentados na coluna Objetivo da Tab. (1). Na
Fig. (8) a direita apresenta-se a variagdo do indice de desempenho durante 100 iteracBes. Os erros
observados no treinamento foram menores que 1%. Os resultados apresentados pela RNMC estdo
na ultima colunada Tab. (1).
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6. DADOS EXPERIMENTAIS

A seguir apresenta-se os resultados de um teste experimental do péndulo duplo. Os dois
péndulos tinham a mesma massa m=0.01Kg e comprimento L=0.1m e massa adicional com
m=0.02Kg. Utilizou-se um sensor fotoelétrico acoplado ao péndulo 1 (conforme Fig. (1)) que
através de um programa desenvolvido no ambiente C++ builder, com comunicagcdo com a porta
paraela do computador, fazia a leitura da posicdo do péndulo. Foi desenvolvida uma placa
amplificadora de sinal para o0 sensor que também digitalizava esse sinal para ser lido pelo
computador. Ap6s o sinal ser coletado (800 pontos) era novamente convertido em sinal analégico e
analisado usando o Matlab.

NaFig. (7.a) apresenta-se a espiral relativa ao movimento do péndulo 1 sem massa adicional no
péndulo 2. Observe-se que a espiral apresentada € regular.

0.015 T T T T T T T 0.01

7.a

0.01-
0.005 -

0.005

-0.005+
-0.005

-0.01-

-0.01+
-0.015-

-0.02 I I I I I I I 0015 ) ) ) ) ) )
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.3 04 05 0.6 0.7 0.8 0.9 1

Figura 7. Deslocamento do péndulo 1: (a) com e (b) sem peso extra

NaFig. (7.b) apresenta-se a espiral relativa ao movimento do péndulo 1 com massa adiciona no
péndulo 2. Observa-se que a espiral apresentada é irregular. Embora os gréficos da Fig. (7) se
apresentem com ruido, é possivel verificar que a trajetoria dos péndulos sem peso extra no péndulo
2 (Fig. (7.a)) apresenta uma espiral com uma forma bem comportada. J& na Fig. (7.b) a espira
apresenta-se bastante deformada com relacéo a anterior, caracterizando perfeitamente a influéncia
do péndulo 2 sobre 0 péndulo 1.

Na Fig. (8.a) apresentam-se os valores minimos do deslocamento obtido com o péndulo 2 sem
massa adicional, os minimos estdo na ordem crescente como esperado. Na Fig. (8.b) apresentam-se
os valores minimos do deslocamento obtidos com o péndulo 2 com massa adicional, 0s minimos
estdo na ordem crescente e decrescente indicando a presenca do peso extra no péndulo 2.
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7.CONCLUSAO

Foi apresentado um sistema capaz de detectar a existéncia de dois péndulos e capaz de
identificar a dindmica dos péndulos usando massas adicionais convenientemente acoplados tanto
nas simulagdes como no teste experimental.

A partir de resultados de simulagbes observou-se que para se detectar a existéncia de dois
péndulos:

1) para pequenas oscilagbes do péndulo 2 pode ser necessaria a utilizagdo de massa adicional
grande (em relagdo as massas dos péndul os);

2) o gréfico da velocidade em funcdo do deslocamento (varidaveis de estados) se mostrou
indicado para a detec¢cdo da dindmica do novo péndulo;

3) a curva dos maximos (ou dos minimos) dos valores de deslocamento se apresentou como uma
forma adequada para a determinac&o da dinamica dos dois péndul os,

4) a RNMC se mostrou adequada a andlise dos valores dos maximos (ou dos minimos) do
deslocamento do péndulo 1 para a detecgdo da dinamica dos péndul os.
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Abstract: This work shows the project, the analysis and the results obtained with simulations and
experiences of a system developed for analysis and identification of the dynamics of complex
systems. The analyzed complex system is a system of two degrees of freedom represented by a
double pendulum. The ssimulations and the experimentations had been made with and without
additional masses connected to the pendulums what it made possible the determination of the
variation of the masses on one of the pendulums. Artificial Neural Net and Logical Fuzzy was used
for identification of double pendulum. The dynamics of the complex system will be analyzed using
information on the kinetic and potential energyof the two pendulums. During the simulations the
method of Runge-Kutta of fourth order for solution of the distinguishing equations of the model was
used. The experimental results had revealed favorable in the identification of the double pendulum.
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