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Resumo: Neste trabalho apresenta-se o projeto, a análise e os resultados obtidos de simulações e 
experimentos de um sistema desenvolvido para a análise e identificação da dinâmica de sistemas 
complexos. O sistema complexo analisado é um sistema de dois graus de liberdade representado 
por um pêndulo duplo. As simulações e as experimentações foram feitas com e sem massas 
adicionais acopladas aos pêndulos o que possibilitou a determinação da variação das massas 
sobre um dos pêndulos. Utilizou-se Rede Neural Artificial e Lógica Fuzzy para identificação do 
pêndulo duplo. A dinâmica do sistema complexo será analisada usando informações sobre a 
energia cinética e potencial dos dois pêndulos. Durante as simulações usou-se o método de Runge-
Kutta de quarta ordem para solução das equações diferenciais do modelo. Os resultados 
experimentais mostraram-se favoráveis na identificação do pêndulo duplo.   
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1. INTRODUÇÃO 
 

Sistemas complexos, tais como os sistemas de suspensão das motocicletas, suspensão dos 
automóveis, pêndulos duplos ou o nosso próprio corpo podem ser modelados matematicamente 
como sistemas de mais de um grau de liberdade. Esses sistemas podem ter tantos graus de liberdade 
quantos forem necessários para a sua modelagem. O que determina os graus de liberdade de um 
sistema é o número de coordenadas independentes necessárias para especificar sua dinâmica. Num 
sistema de pêndulo duplo por exemplo, pode-se especificar a dinâmica dos dois pêndulos 
conhecendo-se as suas posições, velocidades e acelerações representadas em duas coordenadas, que 
podem ser coordenadas no eixo x ou no eixo y, ou  coordenadas angulares.  

Atualmente algumas técnicas de análise de vibração (ou oscilação de pêndulos) sofisticadas 
estão sendo disponibilizadas para serem utilizadas em diagnóstico e previsão de falhas em sistemas  
complexos. Dentre elas, pode-se citar as técnicas de Inteligência Artificial representadas por 
Sistemas Especialistas, Redes Neurais Artificiais, Lógica Fuzzy, etc.  

O objetivo deste trabalho é desenvolver um sistema de identificação de parâmetros, 
caracterizado pelo amortecimento de oscilações de sistemas complexos, utilizando Rede Neural 
Artificial e Lógica Fuzzy. A dinâmica do sistema complexo será analisada usando informações 
sobre a energia cinética e potencial dos dois pêndulos.  
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2. O SISTEMA COMPLEXO 
 

A equação de movimento de um sistema dinâmico de segunda ordem pode ser calculada 
utilizando o princípio da conservação de energia, onde a energia cinética é conservada na massa em 
razão da velocidade e a energia potencial é conservada sob a forma de esforço de deformação 
elástica ou sob a forma de trabalho. 

Na Fig. (1) apresenta-se um desenho simplificado de um sistema complexo composto de dois 
pêndulos articulados nas suas extremidades. Observe-se que só existe detector de posição no 
pêndulo 1. 
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Figura 1. Pêndulo duplo 
 

Neste artigo apresentam-se resultados obtidos de simulações e resultados experimentais de um 
novo método para a identificação da dinâmica de um pêndulo duplo. O novo método utiliza as 
informações sobre a energia potencial e a energia cinética representadas pela posição e a velocidade 
angular dos pêndulos respectivamente. Durante as simulações e na fase experimental os dois 
pêndulos são posicionados em ângulos apropriados e em seguida são soltos, fazendo-os se moverem 
em movimento livre. As simulações foram feitas com e sem massas adicionais (de diferentes 
valores) acoplados aos pêndulos. Os resultados experimentais foram obtidos a partir da montagem 
de um pêndulo duplo na forma apresentada na Fig. (1).  
 
2.1 Análise do sistema complexo 
 

A equação dinâmica de um manipulador (Gray, 1997) pode ser escrita na forma da Eq. (1). 
 

)()()( θθθθθτ GVM +++= &&&         (1) 
 
onde )(θM  é a matriz de massa do manipulador, )( θθ &+V  é um vetor dos termos centrifugo e 
coriolis, e )(θG  é um vetor dos termos de gravidade. A Eq. (1) é conhecida como equação de 
espaço de estado porque o termo )( θθ &+V , aparece na equação com dependência de posição e 
velocidade. Cada elemento de )(θM  e )(θG  depende de θ , que é a posição de todas as junções do 
manipulador. Cada elemento de )( θθ &+V  depende tanto de θ  quanto de θ& . Separando-se os 
diversos tipos de termos que aparecem nas equações dinâmicas forma-se a matriz de massa do 
manipulador, os vetores centrifugo e de coriolis, e o vetor de gravidade.  

A matriz de massa do manipulador )(θM  é composta de todos aqueles termos que multiplicam  
θ&& , e é uma função de θ . Dessa forma tem-se: 
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O termo velocidade , )( θθ &+V , contém todos aqueles termos que possuem alguma dependência 
com a velocidade. Dessa forma tem-se: 
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O termo 2

22212 θ&sllm−  é causado por uma força centrifuga, que é reconhecida porque depende do 
quadrado da velocidade. O termo como 2122122- θθ &&sllm  é causado por uma força coriolis e contém o 
produto de duas velocidades diferentes. 

O termo gravidade, )(θG , contém todos aqueles termos nos quais a constante gravitacional g, 
aparece. Dessa forma tem-se: 
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Seguindo a metodologia  de projeto de Craig (1986), a expressão para o cálculo do torque de um 

manipulador de dois graus de liberdade é dada em função da posição, velocidade e aceleração. Que 
podem ser escritas da forma apresentada nas Eq. (5) e Eq. (6). 
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3. SIMULAÇÃO DO SISTEMA COMPLEXO 
 

As simulações foram feitas para a análise e identificação dos parâmetros do sistema complexo. 
Durante as simulações utilizou-se o modelo da dinâmica de dois pêndulos apresentados por Craig 
(1986) (Eq. (5) e Eq. (6)). Além disso, usou-se o método de Runge-Kutta de quarta ordem para 
solução das equações diferenciais do modelo.  

Os resultados das simulações são apresentados através do comportamento das variáveis de 
estados referentes à posição e à velocidade de cada pêndulo. Serão apresentados também os sinais 
no domínio da freqüência referentes ao movimento oscilatório dos pêndulos.  

Nas simulações iniciais foram admitidas massas adicionais para cada pêndulo. A partir dessas 
massas foram acrescidas massas adicionais isoladamente em cada pêndulo ou em ambos. As massas 
adicionais acrescentadas tinham valores diferentes e foram colocados em posições variadas ao 
longo do pêndulo. 

 
3.1. Simulação dos pêndulos sem massa adicional extras 
 

Os resultados apresentados nesta seção foram obtidos com os pêndulos sem massa adicional. A 
Fig. (2.a) apresenta os pêndulos na posição inicial (posição instável). O pêndulo 1, apresentado na 
cor vermelha na Fig. (2.a), foi posicionado a 90º com relação à posição de repouso. O pêndulo 2,  
apresentado na cor azul, foi posicionado a -30o em relação ao primeiro pêndulo.  



Na Fig. (2.b) apresentam-se as curvas traçadas das variáveis de estado (trajetórias) obtidas do 
movimento dos pêndulos após serem soltos na posição inicial. A forma de onda em cor vermelha, 
representa o comportamento das variáveis de estado (velocidade em função da posição) observadas 
no pêndulo 1. A forma de onda  em cor azul representa o comportamento das variáveis de estado do 
pêndulo 2. Observa-se que a trajetória do pêndulo 1 apresentou uma forma quase espiral, e a 
trajetória do pêndulo 2 apresentou uma trajetória caótica. 
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Figura 2. Posição inicial (a) e as trajetórias dos pêndulos (b) 

 
Na Fig. (3.a) apresenta-se o deslocamento do pêndulo 1 em função do tempo. Na Fig. (3.b) 

apresenta-se o espectro do sinal do pêndulo 1 no domínio da freqüência obtido usando a 
transformada de Fourier. O espectro apresenta uma harmônica bem evidenciada que representa a 
freqüência do movimento do pêndulo 1 (freqüência natural – 6 Hz). A freqüência que representa o 
movimento do pêndulo 2 (freqüência natural – 4 Hz) não está evidenciada no espectro do sinal da 
Fig. (3.b).  

Na Fig. (3.c) apresenta-se o deslocamento do pêndulo 2 em função do tempo. Na Fig. (3.d) 
apresenta-se o espectro do sinal do pêndulo 2 no domínio da freqüência obtido usando a 
transformada de Fourier. O espectro apresenta duas harmônicas que representam as freqüências dos 
movimentos dos pêndulos 1 e 2 (freqüências naturais, fl=6Hz e f2=4Hz), evidenciadas através dos 
respectivos picos.  
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Figura 3. Sinal no domínio do tempo (a,c) e na freqüência dos pêndulos (b,d)  
 
 

3.2. Simulação dos pêndulos com massa adicional 
 



Nessa simulação foi adicionado massa ao pêndulo 2, e observado o comportamento da trajetória 
dos dois pêndulos. Na Fig. (4) observa-se que a espiral do movimento do pêndulo 1 apresenta uma 
forma diferente da que foi apresentada na Fig. (3.b) (simulação dos dois pêndulos sem massa 
adicional). 
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Figura 4. Trajetória dos pêndulos com peso extra 

 
Na Fig. (5.a) apresenta-se o deslocamento do pêndulo 1 em função do tempo. Na Fig. (5.b) 

apresenta-se o espectro obtido da análise harmônica usando a transformada de Fourier do 
movimento do pendulo 1. O espectro apresenta uma harmônica bem evidenciada que  representa a 
freqüência do movimento do pêndulo 1 (freqüência natural – 7 Hz) e uma harmônica, fracamente 
evidenciada, que representa o movimento do pêndulo 2 (freqüência natural – 4 Hz). 

Na Fig. (5.c) apresenta-se o deslocamento do pêndulo 2 em função do tempo. Na Fig. (5.d) 
apresenta-se o resultado obtido da análise harmônica usando transformada de Fourier do movimento 
do pendulo 2. Observa-se que agora é possível a visualização das duas harmônicas (f1=7Hz e 
f2=4Hz), embora a segunda harmônica ainda é a que apresenta um valor mais acentuado. com a 
massa adicional. 
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Figura 5. Sinal no domínio do tempo (a,c) e na freqüência dos pêndulos (b,d) com peso extra 

 
 
4. IDENTIFICAÇÃO DA DINÃMICA DOS DOIS PÊNDULOS  
 



Na identificação da dinâmica dos dois pêndulos observa-se que a determinação da primeira 
harmônica usando-se a trajetória do pêndulo 1 depende fortemente do peso utilizado no pêndulo 2. 
Pois as curvas das trajetórias do pêndulo 1 (com e sem massa adicional) indicam a perturbação 
exercida pelo pêndulo 2. 

Na Fig. (6) faz-se um comparativo entre as trajetórias dos pêndulos sem (Fig. (6.a)) e com 
massa adicional (Fig. (6.b)) no pêndulo 2. Na Fig. (6.a), sem massa adicional, a espiral relativa ao 
movimento dos pêndulos apresenta-se com uma geometria padrão. Já a Fig. (6.b), com peso extra 
no pêndulo 2, a espiral relativa ao movimento apresenta-se com deformação na sua geometria. 
Nesse caso, pode-se considerar que houve uma variação na energia cinética e potencial da curva do 
pêndulo 1 que deve ter sido causada pela  existência do outro pêndulo. E que através da análise da 
trajetória do pêndulo 1 pode-se detectar a existência do pêndulo extra (pêndulo 2) num sistema com 
dois pêndulos. 
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Figura 6. Comparação entre as duas trajetórias: (a) sem e (b) com massa adicional. 
 

Na Fig. (7) apresenta-se a curva do deslocamento do pêndulo 1 para diferentes massas 
adicionais colocadas no pêndulo 2. As massas adicionais foram colocadas sempre com valores 
crescentes a partir da Fig. (7.a). Na Fig. (7.a) percebe-se que os valores máximos consecutivos da 
curva se mantêm sempre decrescente não indicando a ação do pêndulo 2 sobre o pêndulo 1. Na Fig. 
(7.b) o peso foi um pouco maior que o anterior, e  mesmo assim foi mantido o padrão decrescente 
dos valores máximos da curva, caracterizando a não influência do pêndulo 2 sobre o pêndulo 1. Nas 
Fig. (7.c) e na Fig. (7.d), onde os massa adicional extras tiveram maior valor que os massa adicional 
extras utilizados para obtenção das Fig. (7.a) e Fig. (7.b), aparecem máximos consecutivos 
decrescentes e crescentes, indicando a ação do pêndulo 2 sobre o pêndulo 1. 
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Figura 7. Movimento oscilatório dos pêndulos com massa adicional extras diferenciados (Tab. (1)) 

 
Na Tabela (1) apresentam-se os resultados obtidos de simulações para sete valores (valores 

crescentes) de massa adicional extras acoplados ao pêndulo 2. Observa-se que os valores 
consecutivos dos máximos para os dois primeiros massa adicional extras se comportam de forma 
decrescente . Do terceiro peso extra em diante o comportamento dos valores máximos consecutivos 
apresentam-se crescentes e decrescentes. A coluna 2 Pend da Tab. (1) indica a ocorrência de peso 
extra no pêndulo 2. Na coluna Objetivo foi associado o valor um quando os valores dos máximos 
eram decrescentes, foram associados valores zero quando os máximos eram decrescentes e 
crescentes. 

 
Tabela 1. Valores máximos do movimento dos pêndulos para massa adicional diferentes 

 
    Máximos   2 Pend  Objetivo RNMC 
Peso 1     1.5575  1.1347 0.8682 0.7402 Não  1. 0.9999 
Peso 2     1.5566  1.0374 0.8958 0.7586 Não  1. 0.9953 
Peso 3     1.5560  0.9123 0.9490 0.7068 Sim  0. 0.0018 
Peso 4     1.5558  0.8027 0.9938 0.6298 Sim  0. -0.0021 
Peso 5     1.5559  0.6980 1.0210 0.5758 Sim  0. -0.0016 
Peso 6     1.5564  0.6254 1.0561 0.5414 Sim  0. 0.0020 
Peso 7     1.5572  0.6492 0.2456 0.8902 Sim  0. 0.0000 
 

5. ANÁLISE NEURAL 
 

A seguir, decidiu-se utilizar uma RNMC (Rede Neural Multi-Camada) para a identificação do 
pêndulo duplo utilizando as informações contidas na Tab. (1). Na Fig. (8) à esquerda, apresenta-se a 
RNMC utilizada. A RNMC possui quatro neurônios lineares na camada de entrada (X1, X2, X3 e 
X4), oito neurônios sigmóides na camada de saída, e um neurônio do tipo tangente hiperbólico na 
camada de saída (Z). A RNMC foi treinada durante 100 iterações utilizando como entrada os sete 
conjuntos dos quatro valores máximos da Tab. (1). O objetivo do treinamento da RNMC (valor 
desejado na saída da RNMC) foram os valores apresentados na coluna Objetivo da Tab. (1).  Na 
Fig. (8) à direita apresenta-se a variação do índice de desempenho durante 100 iterações. Os erros 
observados no treinamento foram menores que 1%. Os resultados apresentados pela RNMC estão 
na última coluna da Tab. (1). 
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Figura 8. A RNMC e a variação do índice de desempenho da RNMC 

 
6. DADOS EXPERIMENTAIS 
 

A seguir apresenta-se os resultados de um teste experimental do pêndulo duplo. Os dois 
pêndulos tinham a mesma massa  m=0.01Kg e comprimento L=0.1m e massa adicional com 
m=0.02Kg. Utilizou-se um sensor fotoelétrico acoplado ao pêndulo 1 (conforme Fig. (1)) que 
através de um programa desenvolvido no ambiente C++ builder, com comunicação com a porta 
paralela do computador, fazia a leitura da posição do pêndulo. Foi desenvolvida uma placa 
amplificadora de sinal para o sensor que também digitalizava esse sinal para ser lido pelo 
computador. Após o sinal ser coletado (800 pontos) era novamente convertido em sinal analógico e 
analisado usando o Matlab. 

 Na Fig. (7.a) apresenta-se a espiral relativa ao movimento do pêndulo 1 sem massa adicional no 
pêndulo 2. Observe-se que a espiral apresentada é regular. 
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Figura 7. Deslocamento do pêndulo 1: (a) com e (b) sem peso extra 

 
Na Fig. (7.b) apresenta-se a espiral relativa ao movimento do pêndulo 1 com massa adicional no 

pêndulo 2. Observa-se que a espiral apresentada é irregular. Embora os gráficos da Fig. (7) se 
apresentem com ruído, é possível verificar que a trajetória dos pêndulos sem peso extra no pêndulo 
2 (Fig. (7.a)) apresenta uma espiral com uma forma bem comportada. Já na Fig. (7.b) a espiral 
apresenta-se bastante deformada com relação a anterior, caracterizando perfeitamente a influência 
do pêndulo 2 sobre o pêndulo 1.  

Na Fig. (8.a) apresentam-se os valores mínimos do deslocamento obtido com o pêndulo 2 sem 
massa adicional, os mínimos estão na ordem crescente como esperado. Na Fig. (8.b) apresentam-se 
os valores mínimos do deslocamento obtidos com o pêndulo 2 com massa adicional, os mínimos 
estão na ordem crescente e decrescente indicando a presença do peso extra no pêndulo 2. 
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Figura 8. Mínimos no deslocamento: (a) do pêndulo 1 e (b) do pêndulo 2. 

 
7. CONCLUSÃO  
 

Foi apresentado um sistema capaz de detectar a existência de dois pêndulos e capaz de 
identificar a dinâmica dos pêndulos usando massas adicionais convenientemente acoplados tanto 
nas simulações como no teste experimental. 

A partir de resultados de simulações observou-se que para se detectar a existência de dois 
pêndulos: 

1) para pequenas oscilações do pêndulo 2 pode ser necessária a utilização de massa adicional 
grande (em relação as massas dos pêndulos); 

2) o gráfico da velocidade em função do deslocamento (variáveis de estados) se mostrou 
indicado para a detecção da dinâmica do novo pêndulo;  

3) a curva dos máximos (ou dos mínimos) dos valores de deslocamento se apresentou como uma 
forma adequada para a determinação da dinâmica dos dois pêndulos;  

4) a RNMC se mostrou adequada a análise dos valores dos máximos (ou dos mínimos) do 
deslocamento do pêndulo 1 para a detecção da dinâmica dos pêndulos. 
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Abstract: This work shows the project, the analysis and the results obtained with simulations and 
experiences of a system developed for analysis and identification of the dynamics of complex 
systems. The analyzed complex system is a system of two degrees of freedom represented by a 
double pendulum. The simulations and the experimentations had been made with and without 
additional masses connected to the pendulums what it made possible the determination of the 
variation of the masses on one of the pendulums. Artificial Neural Net and Logical Fuzzy was used 
for identification  of double pendulum. The dynamics of the complex system will be analyzed using 
information on the kinetic and potential energyof the two pendulums. During the simulations the 
method of Runge-Kutta of fourth order for solution of the distinguishing equations of the model was 
used. The experimental results had revealed favorable in the identification of the double pendulum. 
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