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Abstract. The paper deals with detection faults and diagnosis problems in induction motors using 
hybrid techniques of predictive maintenance (vibration analysis, current analysis and artificial 
neural network). Two kinds of faults have been studied: mechanical faults (unbalance, 
misalignment and mechanical looseness) and electric faults (single phase and broken bars) beyond 
the normal condition (motor signature). The signals have been acquired in the both sides of the 
motor (radial and axial directions) through UltraSpec 8000 device, manufactured by the CSI - 
Computation System Incorporated. The MPN (Multilayer Perceptron Networks) and RBF (Radial 
Basis Function) have been trained and have been tested using Matlab program. A selective filter 
has been used to reduce the number of parameters in order to represent the signals of excitations 
during the 36 artificial neural networks training. The results obtained confirmed the efficiency of 
the hybrid techniques and their relevance to detect and diagnose faults in induction motors. In this 
way its possible to include it in a maintenance programs. 
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1. INTRODUCTION (Times 
 Newnegrito, tamanho 12) 
mpModern technological processes are characterized by the application of more and more 
complicated equipment including modern electrical drives. An electrical motor together with a load 
machine as well as supply and control systems are run to risk of various failures which are 
independent of the usage of elements and materials characterized by high reliability.  

Long time disturbances in technological processes cause big economic loses. The importance of 
incipient fault detection is a method of cost saving which is realized by detecting potential motor 
failures before they occur. Currently, motors require to be protected by circuit breakers or fuses that 
interrupt instantaneous fault currents. However, these devices are intended only as safety devices 



and  they may protect the motor and nearby personnel from injury due to a fault, but will not warn 
of potential faults before they occur. Incipient fault detection, on the other hand, allows preventative 
maintenance to be scheduled for machines that might not ordinarily be due for service and may also 
prevent an extended period of downtime caused by extensive motor failure. For this reason, the 
problem of fast fault detection and location as well as the problem of technical state evaluation are 
very significant in the industrial practice (Eisenmann et al., 1997; Vas, 1999). Brito (2001), has 
been developed a hybrid neural/expert system to diagnose faults in induction motors. 

Vibration analysis continues to be one of the most versatile and informative tools available for 
on-line monitoring and problem analysis. Vibration analysis is often required to identify faults from 
mechanical sources. Its deterministic frequencies are the rotational frequency and its harmonics (1 x 
fr, 2 x fr, 3 x fr and 4 x fr), (Brito et al., 1999; Brito et al., 2001a). Faults from electrical source 
(phase unbalances and broken bars) can also be identified by vibration analysis. The vibration 
spectra has been plotted in dB. The broken rotor bars have been identified when sidebands of the 
slip frequency (2 x fs) are visible about rotational frequency (1 x fr), (Brito et al., 2001b). The 
vibration spectra of phase unbalance have been identified when sidebands of the rotational 
frequency (2 x fr) are visible about line frequency (2 x fl), (Baccarini et al., 2001).   

Diagnostic systems use different procedures in a diagnostic process, starting from heuristic 
knowledge, through mathematical models to the artificial intelligence methods. The diagnosis of the 
industrial processes can be performed using different elements of knowledge based on analytical 
methods, expert systems, artificial neural networks (ANN) or fuzzy logic reasoning.  

Faults detection using analytical method is not always possible because it requires perfect 
knowledge of a process model. In the case of a not adequate or imprecise mathematical model false 
alarms can occur due to estimation errors of the systems state variables or process parameters                
(Vas, 1993; 1999).  

Human knowledge and experience are used in the case of the application of the heuristic expert 
system and during the interpretation of measured signals acquired on-line in the diagnosed plant. 
This solution is much easier and more useful in comparison with analytical methods. On the other 
hand it is difficult for automatic implementation.  

On the contrary, the application of artificial intelligence methods, like neural networks is rather 
easy to develop and to perform (Filippetti et al., 1997). Neural networks can be applied when the 
information about the process is obtained by measurements, which later can be used in the training 
procedures of neural nets. The main advantage of such solution is obtaining on-line information 
about the kind and the “size” of a fault without developing very complicated mathematical models. 
Neural detectors can be designed using the data acquired from simulation or experimental tests 
(Filippetti et al., 1997; Schoen, 1995; Vas, 1999).  

The paper deals with detection faults and diagnosis problems in induction motors using hybrid 
techniques of predictive maintenance (vibration analysis, current analysis and artificial neural 
network). Two kinds of faults have been studied: mechanical faults (unbalance, misalignment and 
mechanical looseness) and electric faults (single phase and broken bars) beyond the normal 
condition (motor signature). The MPN (Multilayer Perceptron Networks) and RBF (Radial Basis 
Function) have been trained and have been tested using Matlab program. A selective filter has been 
used to reduce the number of parameters in order to represent the signals of excitations during the 
36 artificial neural networks training. 

 
2. BASIC PROBLEMS OF THE INDUCTION MOTOR FAULTS  
 

During the operation of induction motors (which at present make about 90% of all electrical 
motors used in the world) different faults of the electrical and mechanical parts of stator and rotor 
occur as well as some faults of a loading machine together with coupling devices. The possibility of 
incipient fault detection of electrical, magnetic and mechanical parts of the a motor has recently 
become one of the most important problems of induction motors exploitation (Yuen, 1997; 
Einsenmann et al (1997);  



There are three main kinds of faults of induction motors: winding faults (short-circuits of stator 
windings, short-circuits of rotor windings, broken rotor bars and broken rings of the rotor); faults of 
the magnetic circuit (air-gap asymmetry and stacking clearance) and faults of the motor mechanical 
system (mainly bearing failures). 

All these faults are connected with some particular phenomena: electrical, magnetic and 
vibroacoustic ones. The fault statistics of high- and low-voltage induction motors has been changing 
within the last few years. There is a significant increase of mechanical failures in comparison with 
electrical and magnetic circuits’ failures. Figure (1) shows the percentage of all motor faults, 
according to Thomson (1997). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 - Percentage of  motor faults 

 
Condition monitoring schemes have concentrated on sensing specific failure modes in one of 

three main induction machine components: the stator, the rotor or the bearings 
 

3. EXPERIMENT SETUP  
 

The experiments setup of the present work have been carried out in the Energy’s Laboratory of 
the UFSJ (Federal University of São João del Rei). Figure (2) shows the instrumented test desk, 
which includes: [1] UltraSpec 8000 manufactured by CSI - Computation System Incorporated; [2] 
notebook; [3] induction motor (squirrel-cage rotor, 5 HP, 220V, 60 Hp, 4 poles, 44 bars, 36 slots, 
1730 rpm nominal rotation); [4] CC generator; [5] resistance bench; [6] flexible linking; [7] 
voltmeter ENGRO- 600; [8] current digital clipper DAWER- CM-600; [9] Optho Tako tachometer; 
[10] CC generator field current and [11] acelerometer A0720GP SN6714. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Experimental Setup 
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4. VIBRATION DATA 
 

The vibration signals have been taken from the accelerometer at vertical, horizontal and axial 
positions in both sides of fan and motor linking, respectively. Hamming window with 3200 lines 
and 10 averages of samples have been used for a frequency width from 0 to 400 Hz and amplitude 
measured in speed (mm/s). It will be show the vibration spectra for vertical position for each type of 
excitation plotted at the same scale in order to compare the level of amplitude. 

The vibration spectrum for normal working condition (motor signature) is shown in Fig. (3). It 
can be seen from this spectrum that there are no peaks at these deterministic frequencies and that 
the peaks showed have amplitude level bellow 0.5 mm/s (maximal level for normal motor working 
condition).  

The instrumented test desk has been adjusted for the normal working condition before 
introducing a new fault. When necessary the test desk has been laser aligned and precision 
balanced. This procedure guaranteed that the faults signatures have been well defined for all tests. 
The vibration spectra for mechanical faults (unbalance) is shown in Fig. (4). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The vibrations spectral for mechanical faults (misalignment and mechanical looseness) are 
shown in Fig. (5) and (6), respectively 
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Figure 3. Vibration specrum for normal 
working condition. 

 

Figure 4. Vibration spectrum for 
Unbalance 35,1g. 
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Figure 5. Vibration spectrum for Misalignment 
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Figure 6. Vibration spectrum for 
Mechanical looseness 
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The vibration spectra for broken rotor bar (BRB) and single phase are shown in Fig. (7) and 
(8), respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the present work, these time-frequency data were processed to extract the peaks deterministic 
frequencies features for using as inputs to ANNs. 

 
5. NEURAL NETWORKS APPLICATION IN DIAGNOSTIC AND FAULT PROBLEMS 
  

The ability of the human brain to think, remember, and problem solve inspired many researchers 
to develop artificial models whose basic learning process are similar to that of a biological neuron. 
And as a result, artificial neural networks (ANN) have been developed, which are simplified 
artifcial models based on the biological learning process of the human brain. 

In this section, basic principles of two neural network have been employed in this paper will be 
discussed. 
 
5.1. Multilayer Perceptron networks 
 

The multi-layer perceptron neural network model consists of a network of processing elements 
or nodes arranged in layers. Typically it requires three or more layers of processing nodes: an input 
layer which accepts the input variables (e.g. vibration spectra for mechanical faults, spectra eletric 
faults, etc.) used in the classification procedure, one or more hidden layers, and an output layer with 
one node per class (Figure 9). The principle of the network is that when data from an input pattern 
is presented at the input layer the network nodes perform calculations in the successive layers until 
an output value is computed at each of the output nodes.  

This output signal should indicate which is the appropriate class for the input data i.e. we expect 
to have a high output value on the correct class node and a low output value on all the rest (Haykin, 
1999). 
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Figure 7. Spectra for 7 broken rotor 
bars 

 

Figure 8. Spectra for Single phase 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. MPL with many inputs and many outputs 
 
5.2 Radial Basis Function (RBF) Network 
 

A Radial Basis Function (RBF) ANN is basically a structure that represent the idea just showed 
in Fig. (10). It may have however more than one output. The RBF ANN can be seen hence as 
another type of feed-forward ANN. Additionally, it uses the technology of ANN training to identify 
the values of the mentioned parameters, and a clustering algorithm to identify positions of centers. 
Typically in an RBF network, there are three layers: one input, one hidden and one output layer. 
The hidden layer uses Gaussian transfer function instead of the sigmoid function. In RBF networks, 
one major advantage is that if the number of input variables is not too high, so the learning is much 
faster than in other types of networks. However, the required number of the hidden units increases 
geometrically with the number of the input variables. It becomes practically impossible to use this 
network for a large number of input variables (Haykin, 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10. RBF neural network with four inputs and two outputs  
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5.3 ANN for Identifying Induction Motor Faults 
 

In order to use ANN for identifying induction motor fault and normal conditions, it is necessary 
to select proper inputs and outputs of the network, structure of the network, and train it with 
appropriate data. In this study, inputs have been implemented trough the selective filter in order to 
pick up only the deterministic frequencies of interest. This procedure reduced significantly the 
number of information to send to neural networks removing noises, redundancies and improving the 
quality of data training. Therefore, there are seven input neurons. There are six outputs 
corresponding to five faults described before and normal condition. The output goes to 1 if that 
particular condition exits, otherwise it is zero. Therefore, there are eight output neurons. There is 
one middle layer, and the number of neurons in that layer is varied during training. Figure (11) 
shows the inputs and outputs of the ANN. 

To train the network, simulated mechanical and electric faults representing the five different 
faults and normal condition are considered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. ANN to identify induction motor fault conditions 
 

The inputs are one of the most important topics and have strongly influence on data 
convergence. If the base of data isn’t well constructed the artificial neural network can present 
convergence problems. The tests procedures have been planned in detail in order to minimize 
ambiguity and mistakes during data acquisition. The data have been acquired randomly on the 
vertical, axial and horizontal directions, side of the fan and side of the motor linking. The vibration 
analysis has been chosen because it is a non invasive technology and has more information on the 
spectra belonging fault identification from mechanical and electrical sources. The domain of 
frequency has been chosen because it is easier to diagnose faults. 
 
6. RESULTS TRAINING OF ARTIFICIAL NEURAL NETWORK 
 

The network has been trained using the back propagation algorithm by Toolbox Matlab®. In the 
network training, learning coefficient (η) and the momentum coefficient (α) have been chosen with 
different values each time. It has been built one artificial neural network to detect each of the six 
excitations for each six positions of the sensors, in a total of thirty-six artificial neural networks. 
This procedure permits smaller architectures that are easier to train. Networks architecture with     
7-11-8, 7-12-8 and 7-13-8 input, middle and output layer neurons are trained. Training has been 
processed through error convergence criteria, Anon (1993). The 7-13-8 network architecture 
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produced the best convergence. For this network, the error convergence used is 0.01, learning 
coefficient (η) used is 0.8 and the momentum coefficient (α) used is 0.6. 

During the test of validation each excitation has been passed in all thirty-six artificial neural 
network and the condition of detected and undetected excitation has been considered. When one 
excitation has been presented for a specific artificial neural network the result has been considered 
detected for output values > 0,5 mm/s (1 mm/s is the ideal value) and ≤ 0.5 mm/s for the others (0 is 
the ideal value). 

Figure (12) shows expected output for ANN’s RBF for position of the sensor (P-1). The answer 
showed values greater than 0,5 mm/s that means the artificial neural network was capable to 
identify seven broken rotor bars correctly.  

 
 

Figure 12. Expected Output for ANN’s RBF for position of the sensor (P-1) 
 

It is clear from Figure 12 that the ANN identified the faults. The output of the ANN for a 
particular fault is close to 1.0 while the other outputs are close to 0.0 when that fault is present. 
Though the results are satisfactory for the all positions of the sensors: P-1 (vertical direction, side of 
the fan); P-2 (axial direction, side of the fan); P-3 (horizontal direction, side of the fan); P-4 
(vertical direction, side of the motor linking); P-5 (axial direction, side of the motor linking); P-6 
(horizontal direction, side of the motor linking), further improvements can be obtained if more data 
points are used in training. For each series of ten tests it was separated randomly six series for 
training (total of 1.080 spectra), four series for neural network validation (total of 666 spectra). Data 
inputs are generally compacted in order to reduce computational time and neural network’s 
efficiency. In this way it was implemented the selective filter in order to pick up only the 
deterministic frequencies of interest. This procedure reduced significantly the number of 
information to send to neural networks removing noises, redundancies ant improving the quality of 
data training. Table (1) shows the ratio of accuracy for the MLP and RBF artificial neural networks. 
The sensor (P-1) shows the expected output.  
 

 
 
 
 
 
 
 
 
 
 



Table 1. Ratio of accuracy for the MLP and RBF artificial neural networks 
 

TEST OF 
VALIDATION 

 
MLP NETWORKS 

 
RBF NETWORK 

SENSORS 
POSITIONS P-1 P-2 P-3 P-4 P-5 P-6 P-1 P-2 P-3 P-4 P-5 P-6 

Normal condition 82,30 90,70 80,3 98,55 70,14 86,35 88,52 94,46 89,83 96,05 76,44 88,3 

Unbalance 35,1g 97,25 90,00 94,25 93,76 92,68 97,74 95,32 91,50 95,75 95,67 94,08 96,57 
Mechanical 
looseness 96,00 97,75 98,45 95,35 98,90 95,76 97,10 99,25 96,05 96,35 96,35 96,66 

Misalignment 97,68 96,90 96,77 98,78 97,39 90,25 98,15 97,00 98,25 97,18 99,86 93,68 

Single phase 98,33 96,34 98,43 99,35 99,76 97,75 97,48 98,16 99,00 97,00 100 99,85 
7 broken bars 96,31 97,51 100 96,34 98,98 98,25 95,74 98,09 99,87 100 100 100 

 
The  training  time  requirement  for  the  ANN  is  on  the  order  of  training  time requirements 

of Multilayer Perceptron and RBF networks in general as presented in Tab. (1).  In  all  cases,  the 
difference  in  the  training  time  requirements  between  feedforward and RBF is relatively small. 
Here it’s possible to see that RBF networks present a great variation when compared with 
Multilayer Perceptron, indicating good generalization. Generalization is a models ability to predict 
an new unseen pattern. Statistically the generalization is a combination of the probability of a 
pattern and the conditioned probability of the size of the error with that pattern. A fundamental 
observation with neural network is that the costfunction minimum for a finite training set is not the 
minimum for the generalization error. This is due to overfitting: where the model has fitted the 
noise in the training set, or has made an extraordinary complex model. Even though any new 
training hasn’t been performed for the thirty-six artificial neural networks, the sensors showed high 
level of accuracy. 
 
7. CONCLUSIONS 
 

In this paper, we have discussed an hybrid method to detect and diagnose problems in induction 
motors from mechanical sources (unbalance, misalignment and mechanical looseness) and electrical 
sources (phase unbalances and broken bars) beyond normal condition (motor signature). 

A multilayer perceptron and RBF ANN structure has been used and has been trained using the 
back-propagation algorithm. Although others have found that RBF networks generally give better 
results than MLP networks fault diagnosis and detection, they may not be using the RBF network to 
the best of its ability. In general, the RBF network is more resilient against a bad training set than an 
MLP and, hence, provides better results. However, an RBF system can provide even better results 
with a suitable training set. For a good training set, a significant improvement would be expected 
for an RBF network relative to an MLP, whereas a poor training set will not show much 
improvement. 
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