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Resumo: As máquinas rotativas são equipamentos utilizados em aplicações de alto nível de exigência 
(indústrias aeronáutica, petroquímica, de geração de energia e de alto desempenho). A minimização 
dos níveis de vibração da máquina é um requisito que deve ser cumprido para que esta opere com 
eficiência e não venha a apresentar uma quebra prematura. O uso de técnicas de controle ativo de 
vibrações em rotores tem mostrado ser mais eficiente e versátil que o uso de técnicas de controle 
passivo. Este trabalho apresenta um estudo preliminar sobre o controle ativo de rotores através do 
emprego do método do controle ótimo. Primeiramente o comportamento dinâmico do rotor é 
representado pelo Método dos Elementos Finitos (F.E.M.) e a técnica de redução pseudo-modal é 
usada para diminuir o tamanho do modelo completo. Então é projetado um controlador ótimo e os 
ganhos do controle são calculados para cada velocidade de operação do rotor.  
 
Palavras-chave: Máquinas Rotativas, Resposta ao Desbalanceamento, Controle Ativo, Controle 
Ótimo. 
 
1. INTRODUÇÃO 
 

As máquinas rotativas são equipamentos utilizados em vários tipos de indústrias, dentre as quais se 
destacam: petroquímica, aeronáutica e de geração de energia. Devido ao alto nível de exigência de tais 
serviços, a minimização do nível de vibração no rotor é um requisito que deve ser cumprido. Por outro 
lado, elevados níveis de vibração podem levar o equipamento à quebra, e isto leva a perdas 
econômicas, inconvenientes aos usuários de serviços, ou até mesmo perdas de vidas humanas, 
dependendo do equipamento em questão. Então, o problema que surge é como controlar de forma 
conveniente a vibração em máquinas rotativas. 

O uso de controladores passivos de vibração é a primeira alternativa à disposição dos projetistas, ou 
seja, reprojetar a máquina modificando o amortecimento distribuído no sistema, especialmente nos 
mancais. Entretanto, existem máquinas em funcionamento que já apresentam níveis de vibração além 
dos aceitáveis e também outras máquinas, a serem projetadas, nas quais o uso de sistemas de dissipação 
passivos não conseguiriam cumprir os requisitos de projeto, quanto aos níveis de vibração máximos 



aceitáveis, Adams e MclosKey (1990). O controle ativo atua na estrutura com a tarefa de reduzir suas 
vibrações, aplicando-lhe forças de controle. Tais forças são calculadas pelo controlador do sistema a 
partir do sinal de retroalimentação dos sensores e do valor do nível de vibração final que se deseja para 
o sistema controlado. O surgimento e o desenvolvimento de materiais inteligentes, tais como cerâmicas 
piezelétricas, fluídos eletro-reológicos e magneto-reológicos, etc, propiciou um grande avanço nas 
pesquisas acadêmicas na área de controle ativo, restando ainda o desafio de tornar estas técnicas 
aplicáveis com rentabilidade econômica na maioria  das situações industriais. 

O uso de técnicas de controle ativo em dinâmica de rotação, com o objetivo de reduzir vibrações, 
vem despertando o interesse de vários pesquisadores há quase três décadas. Schweitzer e Lange (1976), 
Burrows et al (1989) propõem o uso de atuadores magnéticos no controle ativo de rotores. Palazzolo et 
al (1989) mostram a viabilidade do uso de atuadores piezelétricos instalados em um plano para o 
controle de vibrações de rotores operando em rotações transientes, e Palazzolo et al (1991) fazem 
também uso de atuadores piezelétricos dispostos em dois planos para realizar a mesma tarefa. Malhis et 
al (2002) simulam o controle de um rotor através de atuadores piezelétricos usando lógica Fuzzy.  
Althaus et al (1993), Ulbrich e Althaus (1989) e Nicoletti e Santos (2001) usam atuadores hidráulicos 
como dispositivo para controlar vibração em rotores. Forte et al (2002) testam um amortecedor com 
fluído magnetorreológico para a construção de um amortecedor ativo numa bancada de rotor. O 
presente trabalho apresenta um estudo preliminar sobre o uso do controle ótimo como forma de reduzir 
vibrações em máquinas rotativas. 
 
2. FUNDAMENTOS TEÓRICOS.  
 
2.1. Equações do Movimento  
 

Rotores flexíveis são sistemas dinâmicos compostos por elementos tais como discos, eixos 
flexíveis, mancais e selos. A equação que descreve o movimento do rotor pode ser obtida aplicando-se 
a equação de Lagrange, Eq.(1),  às expressões que fornecem as energias para os elementos do rotor. 
Informações mais detalhadas sobre as equações do movimento do rotor podem ser encontradas em 
Lalanne e Ferraris (1998). 
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onde qi são as coordenadas generalizadas independentes, Fqi são as forças generalizadas e T e U são as 
energias cinética e de deformação do sistema, respectivamente. 

O elemento de disco é assumido como sendo rígido e portanto tem apenas energia cinética. Os 
elementos de eixo têm tanto energia cinética como de deformação. Um elemento finito de eixo é 
mostrado na Fig.(1): o elemento tem 2 nós, sendo que cada nó tem 4 graus de liberdade, ou seja, 2 
translações (u, v), and 2 rotações (θ, ψ). 

Os graus de liberdade do elemento de eixo podem ser arranjados dentro de dois vetores, δu 
(deslocamento ao longo da direção X) e δw (deslocamento ao longo da direção Z), Eq.(2) e Eq. (3), 
respectivamente. 
 

[ ]T, ,ψ,u,ψuδu 2211=                      (2) 
 

[ ]T,θ,w,θwδw 2211=                              (3) 
 



Os deslocamentos u and w podem ser aproximados por: 
 

( )δuyNu 1=                   (4) 
 

( )δwyNw 2=                   (5) 
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Figura 1. Graus de liberdade de um elemento finito de eixo 
 
onde N1(y) e N2(y) são funções de forma cúbica para uma viga em flexão. As relações entre 
deslocamentos e rotações são dadas: 
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A energia cinética TS e a energia de deformação US são dadas pelas seguintes expressões: 
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onde I é o momento de inércia de área da seção transversal do eixo, S é a área da seção transversal do 
eixo, ρ é a densidade do material do eixo e L é o comprimento do elemento. Substituindo as 
aproximações feitas para os deslocamentos do rotor dentro das Eq.(8) e Eq.(9) e aplicando a equação de 
Lagrange na expressão resultante, obtém-se a matriz de massa clássica (M), a matriz de massa 
secundária (MS), a matriz giroscópica (G) e a matriz de rigidez (K) para os  elementos de eixo. A matriz 
de massa clássica e a matriz de massa secundária dos elementos de eixo devem ser somada à matriz de 
massa dos elementos de discos. Deve-se também somar as matrizes giroscópicas dos elementos de eixo 
às dos elementos de discos. Igualmente, deve-se somar as matrizes de rigidez dos elementos de eixo às 
matrizes de rigidez dos elementos de mancal. Todas estas matrizes são detalhadas em Lalanne e 
Ferraris (1998) . 



 
2.2. O Controlador 

 
As equações em espaço de estado para o rotor são dadas por:  
 

uBXAX ⋅+⋅=                                    (10-a) 
 

uDXCY ⋅+⋅=                                    (10-b) 
 

onde X é o vetor de estado, Y é o vetor de resposta, A é matriz da dinâmica do sistema, B é a matriz de 
controle do sistema, C é matriz de resposta e D é a matriz que relaciona a força de controle u com a 
resposta do sistema Y, sendo geralmente uma matriz nula. Para sistemas mecânicos vibratórios com n 
graus de liberdade, o vetor X é definido como: 
 

{ }'2121 nn xxxxxxX =                                       (11) 
 

então, a matriz dinâmica A é dada por:  
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onde Z é uma matriz nula de dimensão n x n, I é uma matriz identidade de dimensão n x n, M é a matriz 
de massa do sistema, K a matriz de rigidez e DS é a matriz de amortecimento. No caso do estudo de 
sistemas giroscópicos, DS engloba a matriz de amortecimento e a matriz giroscópica. A matriz B está 
relacionada com os atuadores presentes no sistema e a matriz C tem ver com os sensores.  

A técnica da redução pseudo-modal é usada para reduzir a ordem do modelo de elementos finitos e 
visa estabelecer o controle para os m primeiros modos do rotor. Seja a base de transformação Φ 
formada pelos m primeiros modos do sistema não-amortecido e não-giroscópico associado. As matrizes 
de massa, rigidez e amortecimento + giroscópica reduzidas são dadas respectivamente por: 

 
Φ⋅⋅Φ= MM t~                           (13) 

 
Φ⋅⋅Φ= KK t~                                                  (14) 

 
Φ⋅⋅Φ= S

t
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Assim a nova matriz dinâmica é definida: 
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As equações em espaço de estado para o sistema reduzido são então dadas por: 

 
uBXAX RR ⋅+⋅= ~~                                   (17-a) 

 



uDXCY R ⋅+⋅=
~                                      (17-b) 

 
onde B~ e C~ são as matrizes de controle e de resposta do sistema reduzido, respectivamente, e o vetor 
XR é dado por: 

 
{ }ppX R =                                       (18) 

 
A resposta do sistema giroscópico (δ) é escrita como uma combinação linear dos modos do sistema 

não-giroscópico associado:  
p⋅Φ=δ                                       (19) 

 
2.2.1. O Controle Ótimo 

 
O advento dos computadores digitais conduziu ao desenvolvimento e a utilização da teoria de 

controle moderno. Esta teoria permite a obtenção de um desempenho ótimo que atende a algum critério 
de desempenho especificado. Ela envolve a minimização (ou maximização) de um dado índice de 
desempenho (I.D.). Este método, ao contrário das técnicas de controle convencionais, faz uso 
acentuado de análise matemática.  

Dado o sistema descrito pela eq. (17-a), segundo Ogata (1970), considera-se que o problema de 
controle ótimo é encontrar a matriz KO que multiplica o vetor de estado XR e fornece a forca de controle 
u:  

 
( )tXKu RO ⋅−=                           (20) 

 
de modo a minimizar o I.D. definido por: 
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onde Q é uma matriz positiva-definida (ou positiva-semidefinida) real e simétrica que está relacionada 
com a importância relativa de cada estado e R é uma matriz positiva-definida real e simétrica que está 
relacionada como gasto de energia para se efetuar o controle (regulador quadrático linear). O diagrama 
de blocos da Fig.(2) mostra a configuração de um sistema usando o controle ótimo.            

 
 
 

 
 
 
 

Figura 2. Fluxograma do controle ótimo de um sistema 
 
A matriz KO que resolve o problema de controle ótimo é dada por:  
 

PBRK t
O ⋅⋅= − ~1                                      (22)  

 

uBXAX ⋅+⋅=

-KO 

X u 



onde P é uma matriz positiva-definida obtida resolvendo-se a Eq.(23), conhecida como Equação de 
Riccatti. 
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3. ATUADORES PIEZELÉTRICOS. 
 
Os atuadores piezelétricos aparecem como uma alternativa importante para o controle de máquinas 

rotativas. Materiais piezelétricos, quando submetidos a deformação mecânica, geram cargas elétricas 
em sua superfície, sendo este efeito conhecido como efeito piezelétrico direto. Ao contrário, quando 
aplica-se uma tensão elétrica na superfície destes materiais, eles se deformam e este fenômeno é 
denominado efeito piezelétrico inverso. Se uma cerâmica piezelétrica for colada na superfície de uma 
estrutura e submetida a uma tensão elétrica controlada, pode-se então aplicar um momento na estrutura.  

Em determinadas aplicações, como no caso aqui estudado, a necessidade inerente de alta rigidez, 
faz com que o atuador piezelétrico seja constituído de uma pilha de discos de cerâmica piezelétrica, 
montados uns sobre os outros e conectados eletricamente em paralelo., Fig. (3). 
 

 
Figura 3. Atuadores piezelétricos de pilha de discos 

 
4. RESULTADOS DE SIMULAÇÕES. 
 

Foram feitas simulações computacionais para testar o desempenho do controlador ótimo para um 
rotor excitado por uma força de desbalanceamento A matriz de ganho KO foi calculada para cada 
velocidade de operação do rotor. O cálculo desta matriz foi realizado usando a função dlqr do 
programa Matlab®. Os argumentos de entrada desta função são as matrizes A~ , B~ , Q, R. 

A Figura (4) mostra o modelo de elementos finitos do rotor a ser controlado, assim definido: 14 
elementos de eixo, 2 elementos de disco (nós 1 e 15) e 2 elementos de mancal (nós 3 e 13). A massa 
dos discos e dos mancais é de 1,5 Kg, os mancais são simétricos nas direções x e z com rigidez 8*106 
N/m. A força de controle é aplicada nos nós dos mancais nas direções x e z. A dimensão da matriz A do 
sistema completo é 120 x 120, os oito primeiros modos do sistema não-giroscópico são usados para 
compor a matriz de transformação Φ, sendo portanto a dimensão da matriz A~  usada para calcular o 
controlador de ordem 16 x 16.  

 
 

 
 
 
 
 

Figura 4: Rotor 
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Figura 5. Resposta ao desbalanceamento no nó 1, direção x 

 
O rotor é excitado por uma massa desbalanceada de 0.005 Kg, localizada na borda do disco do nó 

15, e opera numa faixa de 0 a 25000 rpm. Dentro desta faixa existem três velocidades críticas: 10060, 
10940 e 13820 rpm. A Figura (5) mostra a resposta ao desbalanceamento no nó 1 na direção x com a 
máquina operando a 10060 rpm. O controle começa a atuar sobre o rotor no instante de tempo 0,5 
segundos.  

A resposta ao desbalanceamento em função da velocidade de operação da máquina é mostrada nas  
figuras 6 a 10. Na primeira situação, os valores da matriz R são constantes para qualquer velocidade de 
operação (Fig. (6) e Fig. (7)), e estes valores foram escolhidos de forma a controlar o rotor operando na 
sua primeira velocidade crítica. No segundo caso, os valores da matriz R podem variar, dependendo da 
velocidade de operação da máquina, (Fig. (8), Fig.(9) e Fig.(10)) . 
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Figura 6: Resposta ao desbalanceamento no nó 1, direção x 
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Figura 7. Resposta ao desbalanceamento no nó 8, direção x 

 
A Figura (6) e a Fig. (7) mostram que os controladores obtidos usando R com valores constantes 

atenuam a vibração do rotor na sua primeira e segunda velocidades críticas observadas no nó 1, e na 
sua primeira e terceira velocidades críticas observadas no nó 8. A vibração do rotor controlado é maior 
que a do sistema sem controle em velocidades de operação menores que a primeira crítica e maiores 
que terceira crítica. Isto pode ser explicado pelo fato de que os valores de R  foram escolhidos para 
minimizar a vibração na primeira crítica, e o uso desses mesmos valores para velocidades diferentes 
compromete o funcionamento adequado do controlador.  

Variando R com a velocidade de operação, há uma queda considerável na vibração do rotor para 
velocidades abaixo da primeira crítica, como pode ser visto nas figuras 8 a 10. Porém, a vibração do 
rotor controlado ainda é maior do que a do sistema sem controle para velocidades de operação maiores 
que a terceira crítica conforme observadas nos nós 1 e 8. Isto pode ser devido à redução modal, que 
causa um fenômeno conhecido como spillover (espalhamento). O espalhamento é a influência dos 
modos mais altos, que são desprezados na redução modal, sobre a faixa de frequência considerada 
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Figure 8. Resposta ao desbalanceamento no nó 1, direção x 
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Figure 9. Resposta ao desbalanceamento no nó 8, direção x 
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Figure 10. Resposta ao desbalanceamento no nó 15, direção x 

 
5. CONCLUSÕES. 
 

Os controladores ótimos projetados apresentaram boa performance para atenuar a vibração do rotor 
na sua primeira e segunda velocidades críticas. A performance também pode ser considerada 
satisfatória para terceira crítica. Para velocidades de operação maiores que a terceira crítica os 
controladores não foram eficientes. O próximo passo dessa pesquisa será calcular um controlador para 
o rotor funcionando em regime transiente.  
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Abstract: Rotating machines are used in various industrial applications involving sophisticated 
technology and submitted to high performance requirements (aeronautical, petrochemical, energy 
generation, etc).  The attenuation of the vibration level of these machines assures safe and efficient 
operation, while avoids premature collapse. The use of vibration active control techniques in flexible 
rotors has shown to be more efficient and versatile than the use of passive control techniques. This 
paper presents a preliminary study about active control of rotors by using optimal control techniques. 
First, the dynamic behavior of the rotor is modeled by using the Finite Element  Method (F.E.M.), then 
the pseudo-modal reduction technique is used to reduce the size of the complete model. Finally, an 
optimal controller is designed and control gains are calculated for each operation speed of the rotor.  
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